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. As a result, we highlight a phase transition phenomenon with respect to the memory. It turns out that the limit process is either Markovian or not according to -to put it in a nutshell -the rate of decrease of the distribution tails corresponding to the persistent times. In the memoryless situation, the limits are classical strictly stable Lévy processes of infinite variations. However, we point out that the description of the critical Cauchy case fills some lacuna even in the closely related context of Directionally Reinforced Random Walks (DRRWs) for which it has not been considered yet. Besides, we need to introduced some relevant generalized drift -extended the classical one -in order to study the critical case but also the situation when the limit is no longer Markovian. It appears to be in full generality a drift in mean for the Persistent Random Walk (PRW). The limit processes keeping some memory -given by some variable length Markov chain -of the underlying PRW are called arcsine Lamperti anomalous diffusions due to their marginal distribution which are computed explicitly here. To this end, we make the connection with the governing equations for Lévy walks, the occupation times of skew Bessel processes and a more general class modelled on Lamperti processes. We also stress that we clarify some misunderstanding regarding this marginal distribution in the framework of DRRWs. Finally, we stress that the latter situation is more flexible -as in the first paper -in the sense that the results can be easily generalized to a wider class of PRWs without renewal pattern.

Introduction

This paper is a continuation of [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF] in which recurrence versus transience features of some PRWs are described. More specifically, we still consider a walker tS n u ně0 on Z, whose jumps are of unit size, and such that at each step it keeps the same direction (or switches) with a probability directly depending on the time already spent in the direction the walker is currently moving. Here we aim at investigating functional scaling limits of the form 

for which some functional convergence in distribution toward a stochastic process Z holds. The continuous time stochastic process tS t u tě0 above denotes the piecewise linear interpolation of the discrete time one tS n u ně0 . Due to the sizes of its jumps, the latter is obviously ballistic or sub-ballistic. In particular, the drift parameter m S belongs to r´1, 1s and that the growth rate of the normalizing positive function λ puq is at most linear. In full generality, we aim at investigating PRWs given by S 0 " 0 and S n :"

n ÿ k"1 X k , for all n ě 1, (1.2) 
where a two-sided process of jumps tX k u nPZ in an additive group G is considered. In order to take into account possibly infinite reinforcements, the increment process is supposed to have a finite but possibly unbounded variable memory. More precisely, we assume that it is built from a Variable Length Markov Chain (VLMC) given by some probabilized context tree. To be more explicit, let us give the general construction that fits to our model.

VLMC structure of increments

Let L " A ´N be the set of left-infinite words on the alphabet A :" td, uu » t´1, 1u and consider a complete tree on this alphabet, i.e. such that each node has 0 or 2 children, whose leaves C are words (possibly infinite) on A . To each leaf c P C , called a context, is attached a probability distribution q c on A . Endowed with this probabilistic structure, such a tree is named a probabilized context tree. The related VLMC is the Markov Chain tU n u ně0 on L whose transitions are given by PpU n`1 " U n |U n q " q ÐÝ pref pU n q p q,

where ÐÝ pref pwq P C is defined as the shortest prefix of w " ¨¨¨w ´1w 0 -read from right to left -appearing as a leaf of the context tree. The kth increment X k of the corresponding PRW is given as the rightmost letter of U k :" ¨¨¨X k´1 X k with the one-to-one correspondence d " ´1 (for a descent) and u " 1 (for a rise). Supposing the context tree is infinite, the resulting PRW is no longer Markovian and somehow very persistent. The associated two-sided process of jumps has a finite but possibly unbounded variable memory whose successive lengths are given by the so-called age time process defined for any n ě 0 by A n :" inftk ě 1 : X n ¨¨¨X n´k P C u.

(1.4)

Outline of the article

The paper is organized as follows. In the next section, we recall the elementary assumption on S -the double-infinite comb PRW -and we introduce our main Assumption 2.2 together with the quantity m S in (1.1) -named the mean drift -and the normalizing function λ puq. Thereafter -in Section 3 -we state our main results, namely Theorems 3.1, 3.2 and 3.3. Together, the two latter are refinements and complements of the first one. In Section 4 we make some remarks to step back on these results. The two following Sections 5 and 6 are focused on the proofs in the two fundamental cases. Finally, in the last Section 7 we state two useful and straightforward lemmas allowing several interpretations of the Assumption 2.2 and often implicitly used in the proofs.

Framework and assumptions

The model we consider corresponds to the double-infinite comb. Roughly speaking, the leaves -coding the memory -are words on td, uu » t´1, 1u of the form d n u and u n d. It follows that the probability to invert the current direction depends only on the direction itself and of its present length. In the sequel, we refer to Figure 2.1 that illustrates our notations and assumptions on the so-called double-infinite comb PRW.

Elementary settings and hypothesis

We recall that this process is characterized by the transition probabilities

α d k :" PpX k`1 " u|X k ¨¨¨X 0 " d k uq and α u k :" PpX k`1 " d|X k ¨¨¨X 0 " u k dq. (2.1)
where X k is the kth jump in td, uu » t´1, 1u given as the rightmost letter of the left-infinite word U k -the kth term of underlying double-infinite comb VLMC defined in [START_REF] Cénac | Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes[END_REF]. The latter conditional probabilities are invariant by shifting the sequence of increments and thus α u k and α d k stand respectively for the probabilities of changing direction after k rises and k descents. Therefore, we can write α u k " P pS n`1 ´Sn " 1|X n " u, A n " kq " 1 ´P pS n`1 ´Sn " ´1|X n " u, A n " kq , (

and vice versa replacing the direction u by d and inverting the jumps 1 and ´1.

Besides, in order to avoid trivial cases, we assume that S can not be frozen in one of the two directions with a positive probability so that it makes infinitely many U-turns almost surely. We deal throughout this paper with the conditional probability with respect to the event pX 0 , X 1 q " pu, dq. In other words, the initial time is suppose to be an up-to-down turn. Obviously, there is no loss of generality supposing this and the long time behaviour of S is not affected as well. Therefore, we assume the following Assumption 2.1 (finiteness of the length of runs). For any P tu, du,

8 ź k"1 p1 ´α k q " 0 ðñ ˜D k ě 1 s.t. α k " 1 or 8 ÿ k"1 α k " 8 ¸.
(2.3)

In addition, we exclude implicitly the situation when both of the length of runs are almost surely constant. We denote by τ u n and τ d n the length of the nth rise and descent respectively. The two sequences of i.i.d. random variables tτ d n u ně1 and tτ u n u ně1 are independent -a renewal property somehow -and it is clear that their distribution tails and truncated means are given for any P tu, du and t ě 0 by

T ptq :" Ppτ 1 ą tq " ttu ź k"1 p1 ´α k q and Θ ptq :" Erτ 1 ^ts " ttu ÿ n"1 n´1 ź k"1 p1 ´α k q.
(2.4)

We will also need to consider their truncated second moments defined by

V ptq :" Erpτ 1 q 2 1 t|τ 1 |ďtu s. (2.5) 
Furthermore, in order to deal with a more tractable random walk with i.i.d. increments, we introduce the underlying skeleton random walk tM n u ně0 associated with the even U-turns -the original walk observed at the random times of up-to-down turns. These observation times form also a random walk (increasing) which is denoted by tT n u ně0 . Note that the expectation d M of an increment Y k :" τ u k ´τd k of M is meaningful whenever (at least) one of the persistence times is integrable. By contrast, the mean d T of a jump τ k :" τ u k `τd k related to T is always defined. Finally, we set when it makes sense,

d S :" d M d T " Erτ u 1 s ´Erτ d 1 s Erτ u 1 s `Erτ d 1 s , (2.6) M 0 T 0 T 1 T 2 u d d u d d u 1 -α u 1 1 -α u 2 u d U 0 U 1 Y 1 = M 1 -M 0 M 1 M 2 τ d 1 X 0 = u X 1 = d τ d 2 τ 1 τ 2 τ u 1 τ u 2 Figure 2.1: A trajectory of S
extended by continuity to ˘1 if only one of the persistence times has a finite expectation. This characteristic naturally arises in the recurrence and transience features and as an almost sure drift of S as it is shown in [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF].

Mean drift and stability assumption

To go further and introduce the suitable centering term m S in the scaling limits (1. (2.9)

A Strong Law of Large Number (SLLN) is established in [START_REF] Cénac | Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes[END_REF] as well as a (non-functional) CLT under some strong moment conditions on the running times τ 1 . Here the assumptions are drastically weakened. More precisely, our main hypothesis to get functional invariance principles -assumed throughout the article unless otherwise stated -is the following Assumption 2.2 (α-stability). The mean drift m S is well defined and not extremal, that is m S P p´1, 1q. Moreover, there exists α P p0, 2s such that τ c 1 :" p1 ´mS qτ u 1 ´p1 `mS qτ d 1 P Dpαq, (2.10)

i.e. τ c 1 belongs to the domain of attraction of an α-stable distribution.

Note that τ c 1 is a centered random variable when m S " d S . When m S " b S , we will see that it is always -in some sense -well balanced. Obviously, the α-stable distribution in the latter hypothesis is supposed to be non-degenerate. Closely related to stable distributions and their domains of attraction are the notions of regularly varying functions, infinitely divisible distributions and Lévy processes. We refer, for instance, to [START_REF] Bingham | of Encyclopedia of Mathematics and its Applications[END_REF][START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF][5][6][7][START_REF] Whitt | Stochastic-process limits[END_REF] for a general panorama.

Normalizing functions

For the statement of the functional invariance principle, it is necessary to define the appropriate sublinear normalizing function λ puq in the functional convergences (1.1). To this end, we introduce the non-negative and non-decreasing functions Σptq and Θptq respectively given by Σptq 2 :" p1 ´mS qV u ˆt 1 ´mS ˙`p1 `mS qV d ˆt 1 `mS ˙and Θptq :" Θ u ptq `Θd ptq.

(2.11)

Then we shall see that a relevant choice can be given by setting λ puq :" a ˝spuq with apuq :" inf

" t ą 0 : t 2 Σptq 2 ě u *
and spuq :" inf tt ą 0 : Θ ˝aptqt ě uu .

(2.12)

Statements of the results

We establish -under the α-stability Assumption 2.2 -a general functional invariance principle, stated in its compact form in Theorem 3.1 below. In this one, the Skorohod space of all right-continuous functions ω : r0, 8q ÝÑ R having left limits (càdlàg) is endowed with the M 1 -topology (making it a Polish space) and the convergence in distribution with respect to the related Borel σ -fields is denoted by M 1 . For more details, we refer especially to [START_REF] Whitt | Stochastic-process limits[END_REF]. Remark 3.1. We point out that we make the effort to give an unified functional convergence. To enforce the scaling limit, we do not have to know the index of stability α since computing the mean drift m S and the normalization function λ puq only involve to observe the truncated mean and second moment of the running times. This could have some statistical interests.

Furthermore, it turns out that there are mainly four situations according to the position of the index of stability α P p0, 2s with respect to the partition p0, 1q \ t1u \ p1, 2q \ t2u. More precisely, reading the four latter intervals from the right to the left, the limit stochastic process Z α can be equal to 1) B -a brownian motion;

2) S α,β -a strictly α-stable Lévy process with skewness parameter β ;

3) C -a symmetric Cauchy process; 4) S α -an arcsine Lamperti anomalous diffusion.

The first three situations cover all classical strictly stable Lévy processes having infinite variations and we will specify later what is meant by anomalous diffusion and the arcsine Lamperti terminology, which is undoubtedly the most fruitful situation. Note that the authors in [START_REF] Cénac | Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes[END_REF] show the convergence of some rescaling toward a kind of non-symmetric generalized telegraph process. In this paper the limit processes are no longer generalizations of the telegraph process since the probabilities of changing directions are fixed. Here actual scaling limits are investigated. Theorem 3.1 is divided and completed below according to the four latter possible situations. In particular, we consider stronger convergence in distribution: the J 1 -convergence and its restriction C to the Wiener space of all continuous functions (see [START_REF] Billingsley | Convergence of probability measures[END_REF] for instance).

Classical Lévy situation

Here we deepen the case when the limit process is a strictly stable Lévy motion of infinite variation. We shall prove -in the generic situation α P p1, 2q -that up to some scale parameter it is an α-stable Lévy process S α,β with skewness parameter β " p1 ´mS q α p1 `bS q ´p1 `mS q α p1 ´bS q p1 ´mS q α p1 `bS q `p1 `mS q α p1 ´bS q .

(3.2)

More precisely, we shall see that its symbol log Ere iuS α,β p1q s is equal to

´p2 ´αqΓp2 ´αq α sin `π 2 pα ´1q α ´1 " 1 ´iβ tan ´πα 2 ¯ |u| α , (3.3) 
where Γ is the Gamma function. In particular, its Lévy jump measure is given by

"ˆ1 ´β 2 ˙1txă0u `ˆ1 `β 2 ˙1txą0u  p2 ´αq |x| α`1 dx. (3.4)
Regarding the case α " 2, the log-characteristic function of the limit process is still given by the right hand side of (3.3) -whatever the value of β is -and it is nothing but a standard Brownian motion denoted by B. Concerning the last situation α " 1, the symbol is given by the right hand side of (3.3) with a null skewness parameter β " 0. In other words, it is a symmetric Cauchy process denoted by C and characterized by its marginal distribution

Cp1q " 1 2 1 pπ{2q 2 `x2 dx. (3.5)
As a matter of fact, the skewness parameter (3.2) is associated with the random variable τ c 1 introduced in (2.10). This expression will be explained in the last section where equivalent formulations of Assumption 2.2 can be deduced from Lemma 7.1. Besides, it also comes from this lemma -together with Lemma 7.2 and classical results on regular variations in [START_REF] Bingham | of Encyclopedia of Mathematics and its Applications[END_REF] for instance -that d T ă 8 and m S " d S when α P p1, 2q but also that there exists a slowly varying function Ξ α puq such that apuq " uÑ8 Ξ α puq u 1{α and spuq "

uÑ8 u d T , (3.6) 
In particular, the random variable τ c 1 is centered. As far as α " 2, the latter considerations also hold but with an ultimately non-decreasing slowly varying function Ξ 2 puq since it can be chosen as Σ ˝apuq.

When α " 1, it is possible for both of the running times τ u 1 and τ d 1 to be integrable or not. In the first situation, the latter estimations are still effective. In the second one, the random variable τ c 1 is no longer centered but it is well balanced -the skewness parameter β is equal to zero -in the sight of equality (3.2) since m S " b S . Anyway, when α " 1, we can formulate the following Lemma 3.1. When α " 1 there exist two slowly varying functions Ξ 1 puq and Dpuq, the latter being ultimately non-decreasing, such that apuq " The proof of these estimates -especially the right hand side of (3.7) which is not a direct consequence of regular variations -is postponed to the end of Section 5. Theorem 3.2 (classical Lévy situation). Suppose α P r1, 2s, then the scaling limits in (3.1) can be rewritten -in a stronger way -as follows.

1) If α " 2 -the Gaussian case -then

" ? d T u Ξ 2 puq ˆStutu u ´dS t ˙*tě0 J 1 ù ùù ñ uÑ8 tBptqu tě0 , and 
" ? d T ? u Ξ 2 puq ˆSut u ´dS t ˙*tě0 C ù ùù ñ uÑ8 tBptqu tě0 . (3.8)
2) If α P p1, 2q -the generic case -then

# d 1{α T u 1´1{α Ξ α puq ˆStutu u ´dS t ˙+tě0 J 1 ù ùù ñ uÑ8 tS α,β ptqu tě0 . (3.9)
3) If α " 1 -the Cauchy case -then

" Dpuq Ξ 1 ˝spuq ˆStutu u ´mS t ˙*tě0 J 1 ù ùù ñ uÑ8 tCptqu tě0 .
(3.10)

Anomalous situation

In this section, we detail the functional convergence (3.1) when α P p0, 1q. It turns out that the limit process is no longer a stable Lévy process nor even a Markov process. Roughly speaking, it is -up to a linear and multiplicative term -a random continuous piecewise linear function built from an α-stable subordinator as follows.

1) We attach i.i.d. Bernoulli distributions of parameter p1 `bS q{2 to every maximal open intervals in the complementary the range of the α-stable subordinator.

2) According to their success or their failure, the slope on the corresponding jump interval is chosen to be equal to 1 or ´1 accordingly.

We refer carefully to Figure 3.2 illustrating some notations and the construction of this process. Again, classical results on regularly varying functions together with Lemma 7.1 and 7.2 apply and we can check that d T " 8 and m S " b S in this section. The reason we used m S rather than b S or vice versa is motivated by the will to focus on different meanings -a mean drift or a balance term -according to the situations. In the following, we mention [START_REF] Bertoin | Subordinators: examples and applications[END_REF] concerning classical results about Lévy subordinators and their local times and [START_REF] Itô | Diffusion processes and their sample paths[END_REF]Chap. 6.] for general Markov processes. Finally, we allude to [START_REF] Itô | Poisson point processes attached to Markov processes[END_REF] for the general theory of excursions and Poisson point processes which is strongly connected to these notions.

Preliminaries

Let T α be an α-stable Lévy subordinator with no drift and recall that it is a càdlàg non-decreasing pure jump process. Let J be its random set of jumps -the random set of discontinuity points. It follows that the closure of the image R α :" tT α ptq : t ě 0u -the so-called regenerative set or range -is a perfect set of zero Lebesgue measure satisfying R α " R α \ tT α pu´q : u P J u and r0, 8qzR α " ğ uPJ pT α pu´q, T α puqq.

(3.11)

The backward recurrence time (the current life time) and the forward renewal time (the residual life time) processes are respectively defined as G α ptq :" supts ď t : s P R α u and H α ptq " infts ě t : s P R α u.

(3.12) Those are càdlàg stochastic processes and we can check that G α ptq " T α pu´q and H α ptq " T α puq when T α pu´q ď t ă T α puq whereas G α ptq " H α ptq " T α puq when t " T α puq. To go further, we consider the local time of (the inverse of) the stable subordinator T α defined by N α ptq :" infts ą 0 : T α psq ą tu " supts ą 0 : T α psq ď tu.

t S α (t) Y α (t) = S α (u) X α (t) = S α (u-) t G α (t) = T α (u-) H α (t) = T α (u) N α (t) = u X α (t) = -1 slope = ±1 A α (t) H α (t)
(3.13) Note the usefull switching identity tT α psq ď tu " ts ď N α ptqu and the fact that N α is a continuous stochastic process. When α " 1{2 it is nothing but the classical local time of a Brownian motion.

In full generality, it is is a non-decreasing continuous stochastic process such that the support of the random Stieljes measure dN α is equal to the range of the subordinator. Then, one has N α ptq " u when T α pu´q ď t ď T α puq and the first and last renewal time processes can be rewritten as

G α ptq " rT ά ˝Nα s `ptq and H α ptq " T α ˝Nα ptq, (3.14) 
where F ˘ptq :" Fpt˘q is the right or the left continuous version of a function Fptq. Furthermore, it is well-known that stable subordinator can be decomposed as

T α ptq " T u α ptq `T d α ptq :" ˆ1 `bS 2 ˙1{α T 1 α ptq `ˆ1 ´bS 2 ˙1{α T 2 α ptq, (3.15) 
where T 1 α and T 2 α are i.i.d. with the same distribution as T α . This decomposition can be obtained intrinsically from T α by labelling each jump interval (an excursion) I " pT α pu´q, T α puqq as in [13, pp. 342-343] by i.i.d. Rademacher random variables X I independent of T α and of parameter p1 `bS q{2. It follows that T u α ptq and T d α ptq can be viewed as the sums up to the time t of the jumps ∆T α puq :" T α puq ´Tα pu´q for which the corresponding labels are respectively equal to one and minus one. They are both thinning of the initial subordinator. Coupled with the latter decomposition, we can consider the α-stable Lévy process

S α ptq :" T u α ptq ´T d α ptq " ˆ1 `bS 2 ˙1{α T 1 α ptq ´ˆ1 ´bS 2 ˙1{α T 2 α ptq. (3.16)
This one can be viewed as a pure jump process whose increment ∆S α puq is equal to ∆T α puq or ´∆T α puq according to the label of the corresponding excursion. Following the terminology used in [START_REF] Straka | Lagging and leading coupled continuous time random walks, renewal times and their joint limits[END_REF] we can introduce the so-called lagging and leading càdlàg stochastic processes respectively defined by X α ptq :" rS ά ˝Nα s `ptq and Y α ptq :" S α ˝Nα ptq.

(3.17)

It is not difficult to check that X α ptq " S α pu´q and Y α ptq " S α puq when T α pu´q ď t ă T α puq whereas X α ptq " Y α ptq " S α puq when t " T α puq.

Arcsine Lamperti anomalous diffusions

We can now define the so-called Arcsine Lamperti anomalous diffusion by S α ptq :" X α ptq `t ´Gα ptq H α ptq ´Gα ptq pY α ptq ´Xα ptqq,

with S α ptq " X α ptq when t P R α . In other words, the so-called anomalous diffusion S α ptq is the center of mass of the lagging and leading processes X α ptq and Y α ptq with respective weights given by the so-called remaining time and age time processes H α ptq :" H α ptq ´t and A α ptq " t ´Gα ptq. (3.19) This kind of construction as already been exposed in [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF]. From the self-similarity of T α we get that the law of S α is self-similar of index 1: for any λ ą 0, tS α pλtqu tě0 L " tλ S α ptqu tě0 .

(3.20)

Besides, its law does not depend on the scale parameter chosen to define T α . To go further, it is continuous and of bounded variation and it can be written as

S α ptq " ż t 0 X α psq ds, (3.21) 
where tX α ptqu tě0 denote the so-called label process taking its values in t´1, 1u and such that X α ptq :" X I when t P I -no matter its values on the regenerative set is. We recall that the X I are i.i.d. Rademacher random variables of parameter p1 `bS q{2 attached on the excursion intervals I. To get the latter integral representation one can see that S α is linear on each excursion interval I with a slope given by X I . Then, noting that there is clearly equality on the random set tH α ptq : t ą 0u with Y α -the so-called overshoot continuous time random walk -we obtain the equality on r0, 8q. Furthermore, one can see that λ puq " a ˝spuq is equivalent to p2 ´αqp1 ´αqu{α as u goes to infinity and thus we only need to study the asymptotic of normalized processes t Þ Ñ S ut {u. Theorem 3.3 (anomalous situation). Suppose α P p0, 1q, then the functional convergence (3.1) can be rewritten -in a stronger form -as

" S ut u * tě0 C ù ùù ñ uÑ8 tS α ptqu tě0 . (3.22) 
Moreover, the marginal S α ptq has a density function f t pxq on p´t,tq satisfying -in a weak sense -the fractional partial differential equation

" 1 `mS 2 ˆB Bx `B Bt ˙α `1 ´mS 2 ˆB Bx ´B Bt ˙α  f t pxq " 1 Γp1 ´αqt α " 1 `mS 2 δ t pdxq `1 ´mS 2 δ ´t pdxq  , (3.23) 
In addition, the latter density admits the integral representation f t pxq "

ż t 0 " 1 `mS 2 u α px ´pt ´sq, sq Γp1 ´αq `1 ´mS 2 u α px `pt ´sq, sq Γp1 ´αq  ds p1 ´sq α , (3.24) 
where u α px,tq denotes the 0-potential density of pS α , T α q. Furthermore, this it is -up to an affine transformation -an arsine Lamperti distribution given by

f t pxq " 2 sinpπαq π t pt ´xq α´1 pt `xq α´1 r S pt ´xq 2α `2 cospπαqpt `xq α pt ´xq α `r´1 S pt `xq 2α , (3.25) 
with r S :" p1 `mS q{p1 ´mS q. Also, the stochastic process pX α , A α q on the state space t´1, 1u ˆr0, 8q is Markovian

On general PRWs

In [1, Section 4.] the recurrence and transience criteria are extended to a wider class of PRWs -without any renewal assumption -suitable perturbations of the double-infinite comb model when the persistence times are non-integrable. In the same way, it would be possible -adding some other natural stability assumptions -to deduce the same theorem for these walks as it is stated below. Consider a double-infinite comb and attach to each finite leaf c another context tree T c (possibly trivial) as in Figure 3.3. The leaves of the related graft are denoted by C c and this one is endowed with Bernoulli distributions tq l : l P C c u on tu, du. Note that any probabilized context tree on tu, du can be constructed in this way. We denote by S g the corresponding PRW. In this case, the random walk is particularly persistent in the sense that the rises and descents are no longer independent. A renewal property may still hold but it is more tedious to expect in general. Let S and S be the double-infinite comb PRWs with respective transitions

α u n :" suptq c pdq : c P C u n d u, α d n " inftq c puq : c P C d n u u, and α u n :" inftq c pdq : c P C u n d u, α d n :" suptq c puq : c P C d n u u. (3.26)
The proof of the following proposition is omitted and follows from comparison results exposed in [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF]. Proposition 3.1. Assume that S and S satisfy the same Assumption 2.2 with α P p0, 1q. To be more precise, we suppose that the associated mean-drifts are equal and non-extremal but also that the corresponding random variables τ c 1 and τ c 1 are both in Dpαq, the stable limit distribution being the same by taking the same normalization and centering terms. Then Theorem 3.3 holds for S g .

For instance, Theorem 3.3 holds when the (non-trivial) grafts are some finite trees in finite number such that the attached Bernoulli distributions are non-degenerated and induce running times in Dpαq.

Few comments and contributions

After some clarifications on the choice of the normalizing functions -see Section 4.1 -and the connections between the scaling limits associated with the piecewise constant or the linear interpolations in Theorem 3.1, we give some interpretations on various parameters and limits involved in Theorems 3.2 and 3.3 -see Section 4.2. Thereafter -see Section 4.3 -we briefly explain how to extend our results to the extremal mean drift situations. Then -see Section 4.4 -we interpret the essential difference between the limit processes in Theorems 3.2 and 3.3 as a phase transition phenomenon with respect to the memory. Finally, the last Section 4.5 is devoted to the relation with a part of the literature on CTRWs and their connections with the Lévy walks or the DRRWs. 
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About the three theorems

First, we stress that each of the functional convergences in (3.1) implies the other one. Indeed, due to the tightness criterion [8, Theorem 12.12.3., p. 426] and the form of the oscillation function for the M 1 -metric, the tightness of one induces the tightness of the other. Then, the identification of the finitedimensional distribution follows from S t ´1 ď S ttu ď S t `1 and the Slutsky lemma. As a consequence, the general Theorem 3.1 is a direct consequence of Theorems 3.2 and 3.3.

Furthermore, we deduce from (3.10) and (3.7) the following interpretation of the so-called mean drift m S -appearing here as a drift in probability -since for α P r1, 2s, the following holds

lim nÑ8 S n n P " m S . (4.2) 
Even if the latter convergence is a straightforward consequence of the almost sure convergence exposed in [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF] under the assumption that the running times are both integrable, it is completely new otherwise.

To go further, if α " 1{2 and m S " 0 in Theorem 3.3 then one can note that the distribution f t pxq given in (3.25) is nothing but the push forward image by x Þ ÝÑ 2tx ´1 of the classical arcsine distribution, the law of the occupation time of the half-line, up to the time t, of a one-dimensional standard Brownian motion. In full generality, it also appears as the limit of the mean sojourn time of some classical random walks, including a wide class of discrete time processes described by Lamperti in [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF]. It is also explained in [START_REF] Barlow | Une extension multidimensionnelle de la loi de l'arc sinus[END_REF][START_REF] Watanabe | Generalized arc-sine laws for one-dimensional diffusion processes and random walks[END_REF] that it is -up to an affine transformation -the law of the occupation time of the half-line of a skew Bessel process of dimension 2 ´2α with a skewness parameter p1 `mS q{2. Moreover, it is shown in [13, Corollary 4.2., p. 343] that f 1 pxq can be represented as the distribution of the random variable

D α :" T u α p1q ´T d α p1q T u α p1q `T d α p1q . (4.3)
Hence, the marginal convergence at time t " 1 in (3.22) can be interpreted as a kind of law of large number in distribution which extends the classical one in [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF] -the means in (2.6) being replaced by some canonical positive α-stable random variables.

In addition, the terminology used for the so-called mean drift m S is a direct consequence of the latter considerations since in any case α Ps0, 2s we get that

lim nÑ8 S n n L 1 " m S . (4.4) 
Besides -among other considerations -it turns out that pS α , X α , A α ) is somehow the continuous time counterpart of (S, X, A) and the label process X α is in some sense a continuous time VLMC. We recall that the discrete age time process A is introduced in (1.4) as S the corresponding PRW and the two-sided sequence of jumps X. Indeed -as it is explained in [START_REF] Cénac | Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes[END_REF] -the stochastic process tpX n , A n qu ně0 on tu, du ˆZ`i s also a Markov process.

On extremal situations

We have exclude in Assumption 2.2 the extremal mean drifts -say m S " 1 for the example -situation that may arise when α " 1 and d T " 8 or when α P p0, 1q. In some sense, this mean -in a first approximation -that the weight of the persistence time τ d 1 in the scaling limits can be omitted. As a matter of facts, we can obtain similar functional convergences as (3.10) or (3.22) but there toward the null or the identity process respectively. To this end, it suffices to replace Σptq 2 by V ptq defined in (7.4) in the settings of apuq and the proofs follows the same lines.

The additional conditions to get non trivial limits are more subtle and related to the negligible persistence time. Roughly speaking, when τ d 1 belongs to Dpγq with 0 ă γ ď α ă 1 -hypothesis p#q -or when it is a relatively stable distribution in the sense of [3, Chap. 8.8, p. 372] -hypothesis p‹q -then the generic form of the functional convergence seems to be

# ´u1´α γ Ξpuq ˆStutu u ´t˙+ tě0 J 1 ù ùù ñ uÑ8 T d γ ˝Nu α ptqq ( tě0 p#q, or " ´u1´α Ξpuq ˆSut u ´t˙* tě0 C ù ùù ñ uÑ8 tN u α ptqqu tě0 p‹q, (4.5) 
where Ξpuq is slowly varying and T d γ is a γ-stable subordinator independent -contrary to the nonextremal situation -of an α-local time N u α . In other words the limit process is an uncoupled CTRW under the assumption p#q.

Furthermore, assuming in place of the relative stability that τ d 1 P Dpγq with γ P r1, 2s, the next term in the asymptotic expansion of p‹q is -heuristically -of the order of S d γ ˝Nu α ptq{u α{γ where S d γ is a γ-stable Lévy process independent of N u α .

Phase transition phenomenon on the memory

It follows from our results and Assumption 2.2 that the limit process and the proper normalizations of the walk given in (3.1) strongly depend on the tail distributions of the length of runs. In fact, we bring out phase transition phenomena concerning the speed of diffusivity and the memory of the limit process.

When the tail distributions are sufficiently light -that is α P r1, 2s in (2.10) -the limit process is Markovian -we lose the long term memory. In addition, the sub-linear normalizing function λ puq will be p1{αq-regularly varying as the index of self-similarity of the limit process.

When the tails are sufficiently heavy -that is α P p0, 1q -the limit process is no-longer Markovian. We keep an unbounded memory encoded -in addition to its position -by the "current" label X α ptq and the age time A α ptq. Moreover, the limit process is somehow ballistic and it is self-similar of index 1.

Around and beyond CTRWs

In full generality, anomalous diffusions -as the lagging process X α ptq in (3.17) -appear as scaling limits of (possibly coupled) CTRWs named also renewal reward processes or Lévy walks following the context. Those are nothing but classical RW subordinated to a counting process. Their scaling limits and their finite-dimensional distributions has been widely investigated in [START_REF] Straka | Lagging and leading coupled continuous time random walks, renewal times and their joint limits[END_REF][START_REF] Mark | Limit theorems for continuous-time random walks with infinite mean waiting times[END_REF][START_REF] Becker-Kern | Limit theorems for coupled continuous time random walks[END_REF][START_REF] Kern | Correction: Limit theorems for coupled continuous time random walks [mr2039941[END_REF][START_REF] Mark | Semi-Markov approach to continuous time random walk limit processes[END_REF] for example. Besides, closely related to our model, DRRW has been introduced in [START_REF] Daniel Mauldin | Directionally reinforced random walks[END_REF] to model ocean surface wave fields. Those are nearest neighbourhood random walks on Z d keeping their directions during random times τ, independently and identically drawn after every change of directions. We refer to [START_REF] Horváth | Limit distributions of directionally reinforced random walks[END_REF][START_REF] Rastegar | Topics in self-interacting random walks[END_REF][START_REF] Arka | On a directionally reinforced random walk[END_REF] where are revealed diffusive and super-diffusive behaviours. These walks are intrinsically continuous and can be seen as a linear interpolation of a CTRW -as the "true" Lévy walks studied in [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF].

Our model generalizes one dimensional DRRW since asymmetrical transition probabilities α u n and α d n lead in general to running times τ u 1 and τ d 1 with distinct distributions. Even if the mean drift m S represents the classical almost sure drift d S of the PRW when it is well defined, it appears to be a drift in mean when the persistence times are not integrable and thus also in full generality as it is pointed out by (4.4). This relevant characteristic has not yet been revealed to our knowledge.

Furthermore, it seems that some results in [START_REF] Horváth | Limit distributions of directionally reinforced random walks[END_REF][START_REF] Arka | On a directionally reinforced random walk[END_REF] are not entirely true when the persistence times are not integrable, and so it must have some misunderstanding in their proofs. We think more precisely to [25, However, the latter convergence can not be true since Y α p1q is the overshoot limit of the underlying CTRW and thus it is not compactly supported -contrary to X α p1q. Moreover, in their results it misses the residual term insuring the continuity of the limit process. As a matter of fact, this kind of subtle mistake -corrected in [START_REF] Kern | Correction: Limit theorems for coupled continuous time random walks [mr2039941[END_REF] -has already been made in [START_REF] Becker-Kern | Limit theorems for coupled continuous time random walks[END_REF]. In that paper the authors prove some powerful limit theorems concerning coupled CTRW. The outcomes of our interest are [21, Theorem 3.1., p. 738] together with [21, Theorem 3.4., p.744] upgraded with the slight but significant modification in [START_REF] Kern | Correction: Limit theorems for coupled continuous time random walks [mr2039941[END_REF].

Finally, we also fill some gaps in the literature. In addition to only investigating symmetric DRRWs in [START_REF] Horváth | Limit distributions of directionally reinforced random walks[END_REF][START_REF] Arka | On a directionally reinforced random walk[END_REF], the authors have omitted to treat the Cauchy situation α " 1. This case is more delicate as it is explained in Section 5. To be more precise, the choice of the suitable centering term is not clear and the counting process Nptq associated with the time τ d 1 `τu 1 no longer satisfies a SLLN so that we need to revise the proof when α P p1, 2s.

Moreover, in the case when α P p0, 1q, there is no available proof of a functional convergence (at best a marginal one) and the limit distribution is not explicit to our knowledge. In this paper, we give the explicit density of such marginal limit in (3.25) and we adopt the following complementary approaches, according to the desired aims, in Section 6: 1) We adapt the results in [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF]Section 5.] representing the marginal densities of some Lévy walks as the solution of pseudo partial differential equations.

2) We make the link with the excursions theory of α-stable subordinators presented for instance in [13, section 4., pp. 341-343] and [START_REF] Barlow | Une extension multidimensionnelle de la loi de l'arc sinus[END_REF]Theorem 1].

3) We make the connection with the occupation time of wide class of stochastic processes modelled on those defined by Lamperti in [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF] and including tX n X n`1 u ně0 .

5 Proof of Theorem 3.2

We begin with the case of a Lévy motion as a limit process. The proofs follow more or less the same lines depending on the index of stability and therefore we only insist on the most difficult -and never exposed -situation when α " 1. The proof in the other cases will be only outline.

Sketch of the proof and preliminaries

Let N be the continuous time counting process associated with T -the increasing discrete time RW. The latter is introduced and represented -as M the skeleton RW -in Section 2.1. More precisely, this renewal process is defined by Nptq :" maxtn ě 0 : T n ď tu " inftn ě 0 : T n`1 ą tu.

(5.1)

The main idea of the proofs when α P p1, 2s consists of taking advantage of the decomposition S tutu ´mS ut ": `MNputq ´mS T Nputq ˘`Rputq ": C Nputq `Rputq, (5.2)

where tC n u ně0 denotes the RW whose jumps are distributed as the random variable τ c 1 given in (2.10) and tRpvqu vě0 is the corresponding residual continuous time process. Note that |Rpvq| ď p1 ´mS qτ u Npvq`1 `p1 `mS qτ d Npvq`1 .

(5.3)

Actually, the proofs of (3.8) and (3.9) is organized as follows.

Step 1. Direct consequence of Assumption 2.2 and estimations (7.8) together with classical results on α-stable distributions we observe that C belongs to the domain of attraction of the α-stable Lévy process S α,β -B when α " 2 -with the normalization function given by apuq.

Step 2. Applying the weak law of large numbers to T , we show that tNputq{spuqu tě0 converge in probability towards the identity process t Þ Ñ t as u goes to infinity.

Step 3. We prove that the normalization of the residual process tRputq{apuqu tě0 converges in probability towards the null process t Þ Ñ 0 for u large enough.

Applying a classical continuous mapping argument as in [9, Sect. 17., Chap. 3., pp. 143-150] for instance -or to be more explicit by using [8, Theorem 13.2.2., p. 430, Chap. 13.] coupled with the continuous mapping [8, Theorem 3.4.3., p. 86, Chap. 3.] -we can deduce the required scaling limits with the normalizing function λ puq " a ˝spuq and this ends the proof when α P p1, 2s assuming the three latter steps.

Focus on the Cauchy situation

Unfortunately, in the case when α " 1, the Step 1. is not true -with the corresponding limit C -if the persistence times are both integrable d T ă 8. Besides, we also need to be careful about the Step 2. if d T " 8 since the weak law of large numbers does not hold in that case. Therefore, we need to adapt the reasoning above according the two latter situations.

First, when the persistence times are both of infinite mean, we can see that the proof follows exactly the same steps as previously by noting that Step 2. remains valid. Indeed, in any case T is relatively stable in the sense of [START_REF] Bingham | of Encyclopedia of Mathematics and its Applications[END_REF]Chap. 8.8,p. 372] with the inverse of u Þ Ñ spuq as normalizing function. (5.5) When d T ă 8 the convergence in (5.5) at any fixed time t but without the supremum follows immediately from the weak law of large numbers since spuq can be chosen to be equal to u{d T .

When d T " 8, the same marginal convergence is a direct consequence of the considerations on the tail distribution T ptq of T in Lemma 7.1 and classical results on stable distributions -especially [28, p. 174] -which imply the convergence in distribution as u tends to infinity of T tutu apuq ´Θ ˝apuq u apuq t.

(5.6) Thus, in both cases, it only remains to prove the local uniform convergence in probability. To this end, it is well-known for stable distributions that the convergence of one marginal distribution implies its functional counterpart. Here the same is true. One way to prove this is to use the characteristics of semi-martingales which are in addition processes with independent increments. More precisely, by using [29, Theorem 2.52, Chap. VII.2, p. 409] and [29, Theorem 3.4, Chap. VII.3, p. 414] we only need to prove that the characteristics pb u , cu , ν u q relative to a truncation function h of t Þ Ñ T tspuqtu {u tends to pt Þ Ñ t, 0, 0q as u tends to infinity uniformly on compact subset. Following [START_REF] Jacod | Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 3.11 

where τ 1 is a jump of T and g is any bounded continuous function bounded by x Þ Ñ x 2 in a neighbourhood of the origin. Then the punctual convergence of this triplet follows from the convergence for t " 1. Furthermore, their uniform convergence on compact sets are obvious and we deduce the convergence in distribution of the associated processes in the Skorokhod space endowed with the J 1 -Borel σ -field. Since the convergence in distribution to a constant in metric spaces implies the convergence in probability, the lemma is proved.

By contrast, when the persistence times are both integrable, we will see that we need to adjust the first step and more precisely the decomposition (5.2) involving the jump distribution τ c 1 which is no longer well balanced. This dichotomy appears in the choice of the centering term in the classical convergence towards a symmetric Cauchy process. Lemma 5.2 (Step 1. when α " 1). Let W be a random walk whose jump w 1 belongs to the domain of attraction of a symmetric Cauchy distribution. Then the centering term can be chosen to be equal to zero, when w 1 is not integrable, and to the drift otherwise, in such way that

" W tutu kpuq * tě0 or " W tutu ´Erw 1 s ut kpuq * ně0 J 1 ù ùù ñ uÑ8 tCptqu tě0 , (5.8) 
according to the situations. Here we denote by kpuq the suitable normalizing function so that the limit process is the symmetric Cauchy process defined previously.

Proof. First, we can show by using [28, pp. 170-174] that a suitable centering term (in the numerator above) to get the marginal convergence at time t " 1 above is

bpuq :" u ˜ż kpuq 0 Pp`w 1 ą sqds ´ż kpuq 0 Pp´w 1 ą sqds ¸, (5.9) 
which can be rewritten when w 1 is integrable as (5.10)

In fact, the convergence holds when u runs through the integers in most of the papers but since bpuq and kpuq are regularly varying (indexes 0 and 1 respectively) a Slutsky type argument implies the convergence for u along the real numbers. Besides, it is well known that the functional convergence is a consequence of the marginal at t " 1.

To go further, we can see that for t sufficiently large there exist λ ˘ptq such that

ż 8 t Pp˘w 1 ą sqds " 1 2 ż 8 λ ˘ptq Pp|w 1 | ą sqds or ż t 0 Pp˘w 1 ą sqds " 1 2 
ż λ ˘ptq 0 Pp|w 1 | ą sqds, (5.11) 
depending on whether w 1 is integrable or not. Moreover, since the right tail and the left tail of w 1 are well balanced, standard results on regularly functions (in particular those of slowly variations) and their inverse allow us to see that λ ˘ptq{t tend to 1 as t goes to infinity. Furthermore, noting that the two-sided tail of w 1 is regularly varying of index 1, the de Haan theory applies -especially [3, Theorem 3.7. 

depending on whether w 1 is integrable or not, is negligible with respect to u Pp|w 1 | ą uq as u goes to infinity. To conclude, it suffices to note that u Pp|w 1 | ą kpuqq is equivalent to 1 in a neighbourhood of infinity and thus by a Slutsky argument we deduce convergences (5.8).

Therefore, when the persistence times are both of infinite mean, one can see the first step above holds with a symmetric Cauchy process for limit since τ c 1 is well balanced and the centering term is null. This is not the case when the running times are both integrable. To overcome those difficulties, we write in place of the decomposition (5.2) the more adapted relation S tutu ´mS ut ": `Stutu ´bS ut ˘´pd S ´bS q ut ": C o Nputq ´pd S ´bS q ut `Ro putq.

(5.13)

We recall that m S " d S in this situation. Here C o denotes the RW associated with the (well balanced) jump τ o 1 :" p1 ´bS qτ u 1 ´p1 `bS qτ d 1 and R o is a residual process satisfying the same upper bound as the previous R replacing m S by b S . Note that τ o 1 is in the domain of attraction of a symmetric Cauchy distribution -a direct consequence of Lemma 7.1 -and has for expectation Erτ o 1 s " d T pd S ´bS q.

(5.14)

As a consequence -since we can take spuq :" u{d T -we deduce from Lemmas 5.1 and 5.2 and that # C o Nputq ´pd S ´bS q ut a ˝spuq

+ ně0 J 1 ù ùù ñ uÑ8 tCptqu tě0 (5.15)
In any cases, to conclude, we need to show that the normalization of the residual term is negligible and it is done in the proof of the following (5.17)

It follows from Lemma 5.1 above that for any δ ą 0, there exists s ě 0 such that for all u ě s, PpΩ u,δ q ě 1 ´δ , with Ω u,δ :" 

"
for any δ ą 0, which achieves the proof of this lemma.

Since the first step is obvious when α P p1, 2s, this completes the proof of the Lévy situations, excepted Lemma 3.1 whose proof is given below.

Proof of Lemma 3.1. First, one can see from Lemma 7.1 and standard results on regularly varying functions that Ξ 1 puq :" apuqT ˝apuq. Besides, the second asymptotic holds with Dpuq :" Θ ˝a ˝spuq. Then Karamata's Theorem [3, Proposition 1.5.9a., p. 26] implies that uT puq is negligible with respect to θ puq as u goes to infinity and we deduce the lemma.

6 Proof of Theorem 3.3 We treat in this section the anomalous case, i.e. α P p0, 1q. The proof is divided into four parts. First, we show the functional invariance principle -Section 6.1. Then -Section 6.2 -we describe the marginal distributions of the process before we investigate -Section 6.3 -the Markov property given at the end of the theorem. Finally, we identify the marginal distributions in Section 6.4.1 by the mean of the excursion theory but also -Section 6.4.2 -by extending the structure of Lamperti processes introduced in [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF].

Functional scaling limits

First note that the tightness in (3.22) is obvious since the modulus of continuity of tS ut {uu tě0 is equal to 1 almost surely. Hence, we only need to show the convergence of the finite-dimensional marginal distributions. To this end, we shall adapt the results in [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF] for Lévy walks. In that paper, the authors consider Lévy walks of the form Sptq :"

Nptq ÿ k"1 Λ k J k `pt ´TNptq qΛ Nptq`1 , (6.1) 
with

T n :" n ÿ k"1
J k and Nptq :" maxtk ě 1 : T k ď tu. (6.2)

Here the random moving times J k and the jumps Λ k J k are i.i.d. -the Λ k being i.i.d. and independent of the jumping times and of unit size. Here, one can interpret S -the PRW -as such Lévy walk for which the random moving times are given by τ d 2n´1 or τ u 2n alternatively and corresponding random jumps ´τd 2n´1 or τ u 2n . Hence, the directions are deterministic and equal to ´1 or 1 alternatively. Even if their assumptions do not fit to this model, we shall see that their results extend easily to our situation. Indeed, the central convergence [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF]Theorem 3.4., 

About the governing equation

We observe that S α is the same scaling limit of a "true" Lévy walk -in the sense of [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF] -whose random moving times and jumps are respectively given by ξ n τ u n `p1 ´ξn qτ d n and ξ n τ u n ´p1 ´ξn qτ d n with i.i.d. random directions 2ξ n ´1 independent of the running times and distributed as a Rademacher distribution of parameter p1 `bS q{2 denoted in the following by X pd q.

Remark 6.1. One can see the latter Lévy walk as randomized version of the PRW which is somehow more convenient to study as it is already appeared for the recurrence and transience criteria in [START_REF] Cénac | Persistent Random Walks. I. Recurrence Versus Transience[END_REF].

It is also shown in [15, Theorem 5.6., pp. 4036-4037] that the density distribution f t pxq satisfies -in a weak sense -the fractional partial differential equation (3.23) since it can be write as

ż A ˆB Bt ` B Bt ˙α f t pxq X pd q " 1 Γp1 ´αq 1 t α ż A δ t pdxq X pd q.
(6.4)

Besides, it follows from [15, Section 5., p. 4035] that f t pxq can be expressed as

f t pxq " 1 Γp1 ´αq ż A ż t 0 u α px ´ pt ´sq, sq p1 ´sq α ds X pd q, (6.5) 
where u α px,tq denotes the 0-potential density of pS α , T α q -the occupation time density -and it comes (3.24). Furthermore, the Fourier-Laplace Transform (FLT) of u α px,tq can be computed explicitly and it leads to the FLT of S α p1q given in equation (5.5) of [START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF] -equal here to ps ´iyq α´1 `ps `iyq α´1 ´1`b S 2 ¯ps ´iyq α `´1´b S 2 ¯ps `iyq α . (6.6)

Taking the derivative at the origin with respect to the spacial variable we can see that the mean distribution of f 1 pxq is equal to m S . However, we have not been able to invert directly this FLT to get the expression (3.25).

Remark 6.2. By using the results in [START_REF] Mark | Semi-Markov approach to continuous time random walk limit processes[END_REF] it may be possible to provide the same representations of the finite-dimensional marginal distributions.

Markov property and continuous time VLMC

Here we show that pX α , A α q is Markovian. Let P α 0 be the distribution of such stochastic process. First, from the regenerative property of a stable subordinator we get that tpX α pt `sq, A α pt `sqqu tě0 is distributed as P α 0 for any s P R α . Furthermore -by using [10, Lemma 1.10, p. 15] -one can see that PpH α ptq P dh | A α ptq " aq " α a α pa `hq α`1 dh, (6.7) for any t ą 0 and we denote this homogeneous kernel by Npa; dhq. Then we introduce for any P t´1, 1u and a ě 0 the distribution H α p ,aq of the process on t´1, 1u ˆr0, 8q equal to t Þ Ñ p , a `tq up the random time H a distributed as Npa; dhq and whatever elsewhere. Therefore, by construction and the regenerative property, it turns out that the distribution of the stochastic process tpX α pt `sq, A α pt `sqqu tě0 isalmost surely -the push-forward image of H α pX α psq,A α psqq b P α 0 under the gluing map G defined by Gpw 1 , w 2 q :" w 1 ptq1 ttăH a u `w2 ptq1 ttąH a u , (6.8)

The Markov property is then a simple consequence of this representation.

As a consequence, one can see X α as a continuous time VLMC. Besides, it is well known -see [3, Chap. 8.6] for instance -that the distribution of the couple formed with the age time and the remaining time pA α ptq, H α ptqq can be computed explicitly and some scaling limits of this couple leads to other generalized arcsine distributions. Moreover, one can easily be convinced using [30, Theorem (3.2), p. 506] or the results in [START_REF] Fitzsimmons | Stationary regenerative sets and subordinators[END_REF][START_REF] Kaspi | Regenerative systems on the real line[END_REF]) that this process admit the invariant (infinite) measure given by

ż A ż 8 0 G ˚pH α p ,aq b P α 0 q 1 a α`1 da X pd q, (6.9) 
where G ˚µ is the push-forward image of a distribution µ by the map G. One can note that this measure is not a probability and that to be compared with the result [START_REF] Cénac | Persistent random walks, variable length Markov chains and piecewise deterministic Markov processes[END_REF] stating that a the double-comb PRW admits an invariant probability measure if and only if the persistence times are both integrable.

Arcsine Lamperti density

To conclude the proof of Theorem 3.3 it remains to we compute explicitly the density expression. The first proof uses the theory of excursion whereas the second one generalizes the concept of Lamperti and is a more general result.

Via the excursion theory

We deduce from the integral representation (3.21) that [13, section 4., pp. 341-343] holds and more precisely that [18, Theorem 1] apply to our situation. Hence, we get the density expression, making in addition the link with the distribution of the occupation time in the positive half-line of a skew Bessel process of dimension 2 ´2α and skewness parameter p1 `bS q{2.

A second class of Lamperti processes

Lamperti investigate in [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF] the general question of the distribution of the occupation time of a set A for some stochastic process tX n u ně0 on a state space E. Regarding the dynamic, it is surprisingly only assumed that E can be divided into two sets -the aforementioned A and an other one B -plus a recurrent state σ in such a way that for any n ě 1, if X n´1 P A and X n`1 P B or vice versa, then necessarily X n " σ .

Thereafter, given such process starting from σ , Lamperti consider N n the occupation time of A up to the time n -the state σ being counted when the process comes from A -and he introduces Fpxq the generating function associated with the recurrence time of σ . This decomposition of the state space and how to count the occupation time is resumed by the weighted diagram in the left-hand side of Figure 6.4. The following Theorem is stated and proved in its paper.

Theorem 6.1. The mean occupation time tN n {nu ně1 converges in distribution as n goes to infinity to a non-degenerate limit if and only if there exist α and p in p0, 1q such that lim nÑ8 ErN n {ns " p and lim xÒ1 p1 ´xqF 1 pxq{p1 ´Fpxqq " α.

(6.10)

Besides -in that case -the limit distribution has for density on p0, 1q the function sinpπαq π t α´1 p1 ´tq α´1 rt 2α `2 cospπαqt α p1 ´tq α `r´1 p1 ´tq 2α , (6.11)

with r :" p1 ´pq{p.

The proof is based on a precise asymptotic estimate of the moments associated with N n as n goes to infinity -via suitable generating functions and their regular variations -in order to identify the limit of the Stieljes transform of N n {n.

In our case, it would seem natural to see A as the rises of S so that it can be write more or less as S n " 2N n ´n. Unfortunately, we have not been able to fit this situation to the latter Lamperti dynamic. As a matter of fact, the communication diagram and the way to compute the suitable occupation time N n can be given as in the right hand side of Figure 6.4.

To be more precise, if we consider the 2-letters process X n :" X n X n`1 with the decomposition of tu, duˆtu, du given by A :" tuuu, B :" tddu, σ :" ud and η :" du and if we denote by N n the occupation time of A up to the time n -the state η being counted or not according to well chosen weights -the PRW satisfies for any n ě 1 the relation S n " 2N n´1 ´n. Note also that σ and η are recurrent states and since the random times spend in A and B are distributed as τ u 1 and τ d 1 respectively the recurrence times of σ and η are both equal in law to τ 1 " τ u 1 `τd 1 . To get the limit distribution we adapt and follow a part of the proof in [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF]. To this end, we introduce p n,k the probability -starting from σ -that N n " k and we denote by u n and d n the probability that τ u 1 " n and τ d 1 " n respectively. Thereafter, by conditioning with respect to the complete three events tτ 1 ď nu \ tτ 1 ě n `1, τ d In that case, the functions T ptq and V ptq are respectively the tail distribution and the truncated second moment of Y 1 but also of τ 1 . Besides, one has T c ptq " tÑ8 " p1 ´mS q α ˆ1 `bS 2 ˙`p1 `mS q α ˆ1 ´bS 2 ˙ T ptq, (7.6)

and thus the same asymptotic between V c ptq and V ptq. Moreover, the balance term β in (7.2) satisfies β " p1 ´mS q α p1 `bS q ´p1 `mS q α p1 ´bS q p1 ´mS q α p1 `bS q `p1 `mS q α p1 ´bS q .

(7.7)

Finally, when α " 2, Vrτ c 1 1 t|τ c 1 |ďtu s " Hence, when α ‰ 2, Assumption 2.2 means that at least one of the persistence times belongs to the domain of attraction of a stable distribution, the tail distribution of the other one being in some sense comparable with the first one. However, in view of [START_REF] Shimura | Decomposition of nondecreasing slowly varying functions and the domain of attraction of Gaussian distributions[END_REF]Theorem 4.5.,p. 790], we can state Remark 7.1. When α " 2, it is possible for all linear combination of τ u 1 and τ d 1 distinct of τ c 1 to not belong to the domain of attraction of a standard normal distribution.

As a consequence, it turns out that apuq, spuq and thus λ puq -together with Σptq 2 and Θptq inside their definitions -are regularly varying functions. In particular, we can see that the sub-linear normalizing function λ puq is asymptotically linear if and only if α P p0, 1q. in any case, there exists a slowly varying function puq such that λ puq " The second lemma, coupled with the first one, will be useful -among other considerations -to discriminate whether the persistence times are integrable or not and thus to identify m S . Again, the proof is omitted. Given two real functions f ptq and gptq defined on a neighbourhood of infinity, we set f ptq-gptq when there exists c ą 0 such that for t sufficiently large c ´1gptq ď f ptq ď cgptq. Lemma 7.2. Let µ be a positive measure on r0, 8q and for any p ě 0 and t ě 0, M p ptq :" ż r0,ts

x p µpdxq and T p ptq :" ż pt,8q

x p µpdxq.

Then for any q ą p ě 0, M p ptq -ż r1,ts M q puq u q´p`1 du `Mq ptq t q´p and T p ptq -ż pt,8q

M q puq u q´p`1 du `Mq ptq t q´p .

Therefore, the persistence times are both integrable d T ă 8 when α P p1, 2s and in that case m S " d S . Besides, they are both of infinite mean when α P p0, 1q and then m S " b S , the two latter situations being possible when α " 1.
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  In the light of the L 1 -convergence in (4.4) below, this term is naturally called the mean drift of S. Note also that it generalizes d S since, when it is well defined,

						1) we need to consider,
	when it exists, the tail balance parameter defined by
				b S :" lim tÑ8	T u ptq ´Td ptq T u ptq `Td ptq	,	(2.7)
	and set	m S :"	"	b S , when τ u 1 and τ d 1 are both not integrable, d S , otherwise.	(2.8)

m S " lim tÑ8 Θ u ptq ´Θd ptq Θ u ptq `Θd ptq .

  Theorem 1.3., p. 370] and equation (3.24), p. 3281 relative to the proof of [27, Theorem 2.6., p. 3272]. In fact, with our settings, those results would imply that

	S n n	L ù ùù ñ nÑ8	Y α p1q.	(4.6)

  , Chap. II.3, p. 94] and [29, Equation 3.18, Chap. II.3, p. 96] it turns out that

	b u ptq " E	" h	´τ1 u	¯ı tutu, cu ptq " V	" h	´τ1 u	¯ı tutu and ν u pr0,ts ˆgq :" E	" g	´τ1 u	¯ı tutu, (

  Furthermore, we obtain from the regular variations of the involved functions and Lemma 7.1 the existence of a positive constant k depending only on m S , b S and such that r Ppτ 1 ą εaprqq "

						sup 0ďtďv	ˇˇˇN putq spuq	´tˇˇˇˇď	δ	*	.	(5.18)
	Then, one can see for any ε ą 0 that			
	P ˜sup 0ďtďv	τ Nputq`1 a ˝spuq	ą ε , Ω u,δ ¸ď 1 ´"1 ´Ppτ 1 ą ε a ˝spuqq	‰ 2δ spuq .	(5.19)
						rÑ8	k	ˆ2	´α α	˙ε´α .	(5.20)
	Therefore, we deduce from (5.19) and (5.20) that	
	lim sup uÑ8	P ˜sup 0ďtďv	τ Nputq`1 a ˝spuq	ą ε ¸ď δ `"1 ´exp ˆ´2δ k	ˆ2	´α α	˙ε´α ˙ ,

  and S α are the coupled α-stable Lévy processes introduced to define the arcsine Lamperti anomalous diffusion. Thereafter, it is not difficult to check that the same continuous mapping and topological arguments used in the proof of[START_REF] Magdziarz | Limit theorems and governing equations for Lévy walks[END_REF] Theorem 4.11., p. 4032] and its Corollary 4.14., p. 4033, hold to obtain the functional convergence(3.22).

						becomes in our situation
	ˆMn apnq	,	T n apnq	˙L ù ùù ñ nÑ8	pS α p1q, T α p1qq,	(6.3)
	where T α					

with δ i, j is 1 or 0 according to i " j or not. Then, let F pzq be the generating function of τ 1 and T pzq be the one associated with its tail distribution. it follows that the double generating function associated with the latter difference equation satisfies the same asymptotic and equality being also true replacing u by d and p1 `bS q{2 by p1 ´bS q{2. Then we can check that for any λ ą 0, lim xÒ1 p1 ´xqP ´x, e ´λ p1´xq ¯" p1 `λ q α´1 `rS p1 `λ q α `rS , (6.15)

and thereafter the proof follows exactly the same lines as [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF]. We obtain the arcsine Lamperti density. Note that it may be possible to state and prove a general theorem for such Lamperti processes.

This completes the proof of the anomalous situation.

7 Equivalent characterizations of Assumption 2.2

In the continuity of (2.4) and (2.5) we can consider T c ptq and V c ptq the two-sided distribution tail and the truncated second moment of the central random variable τ c 1 given in (2.10). In the following, we denote by RVpλ q the set of regularly varying functions of index λ P R, also named the set of slowly varying functions SV if λ " 0. It is well known that hypothesis (2.10) is equivalent to V c ptq P RVp2 ´αq, or equivalently when α ‰ 2, T c ptq P RVp´αq, (

with an additional tail balance criterion when α ‰ 2: there exists β P r´1, 1s with

Remark from [7, Theorem 2, Chap. VIII.9, p. 283] that

To go further, introduce T ptq :" T u ptq `Td ptq and V ptq :" V u ptq `Vd ptq.

(7.4)

The two following lemmas gives another possible interpretations and choices of condition (2.10) and of the normalizing functions. Their proofs are straightforward computations using only classical results on regularly varying functions which can be found in [START_REF] Bingham | of Encyclopedia of Mathematics and its Applications[END_REF] for instance, they are omitted.