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Abstract We give a complete and unified description – under some stability assumptions – of the functional
scaling limits associated with some persistent random walks for which the recurrent or transient type is studied
in [1]. As a result, we highlight a phase transition phenomenon with respect to the memory. It turns out that
the limit process is either Markovian or not according to – to put it in a nutshell – the rate of decrease of the
distribution tails corresponding to the persistent times. In the memoryless situation, the limits are classical strictly
stable Lévy processes of infinite variations. However, we point out that the description of the critical Cauchy case
fills some lacuna even in the closely related context of Directionally Reinforced Random Walks (DRRWs) for
which it has not been considered yet. Besides, we need to introduced some relevant generalized drift – extended
the classical one – in order to study the critical case but also the situation when the limit is no longer Markovian. It
appears to be in full generality a drift in mean for the Persistent Random Walk (PRW). The limit processes keeping
some memory – given by some variable length Markov chain – of the underlying PRW are called arcsine Lamperti
anomalous diffusions due to their marginal distribution which are computed explicitly here. To this end, we make
the connection with the governing equations for Lévy walks, the occupation times of skew Bessel processes and
a more general class modelled on Lamperti processes. We also stress that we clarify some misunderstanding
regarding this marginal distribution in the framework of DRRWs. Finally, we stress that the latter situation is
more flexible – as in the first paper – in the sense that the results can be easily generalized to a wider class of
PRWs without renewal pattern.
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1 Introduction

This paper is a continuation of [1] in which recurrence versus transience features of some PRWs are
described. More specifically, we still consider a walker tSnuně0 on Z, whose jumps are of unit size,
and such that at each step it keeps the same direction (or switches) with a probability directly depending
on the time already spent in the direction the walker is currently moving. Here we aim at investigating
functional scaling limits of the form

"

Stutu´mS ut
λ puq

*

tě0
or

"

Sut ´mS ut
λ puq

*

tě0

L
ùùùñ
uÑ8

tZptqutě0, (1.1)

for which some functional convergence in distribution toward a stochastic process Z holds. The continu-
ous time stochastic process tStutě0 above denotes the piecewise linear interpolation of the discrete time
one tSnuně0. Due to the sizes of its jumps, the latter is obviously ballistic or sub-ballistic. In particular,
the drift parameter mS belongs to r´1,1s and that the growth rate of the normalizing positive function
λ puq is at most linear. In full generality, we aim at investigating PRWs given by

S0 “ 0 and Sn :“
n
ÿ

k“1

Xk, for all ně 1, (1.2)
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where a two-sided process of jumps tXkunPZ in an additive group G is considered. In order to take into
account possibly infinite reinforcements, the increment process is supposed to have a finite but possibly
unbounded variable memory. More precisely, we assume that it is built from a Variable Length Markov
Chain (VLMC) given by some probabilized context tree. To be more explicit, let us give the general
construction that fits to our model.

1.1 VLMC structure of increments

Let L “ A ´N be the set of left-infinite words on the alphabet A :“ td,uu » t´1,1u and consider a
complete tree on this alphabet, i.e. such that each node has 0 or 2 children, whose leaves C are words
(possibly infinite) on A . To each leaf c P C , called a context, is attached a probability distribution qc

on A . Endowed with this probabilistic structure, such a tree is named a probabilized context tree. The
related VLMC is the Markov Chain tUnuně0 on L whose transitions are given by

PpUn`1 “Un`|Unq “ qÐÝpref pUnqp`q, (1.3)

where
ÐÝ
pref pwq PC is defined as the shortest prefix of w“ ¨¨ ¨w´1w0 – read from right to left – appearing

as a leaf of the context tree. The kth increment Xk of the corresponding PRW is given as the rightmost
letter of Uk :“ ¨¨ ¨Xk´1Xk with the one-to-one correspondence d “ ´1 (for a descent) and u “ 1 (for a
rise). Supposing the context tree is infinite, the resulting PRW is no longer Markovian and somehow
very persistent. The associated two-sided process of jumps has a finite but possibly unbounded variable
memory whose successive lengths are given by the so-called age time process defined for any ně 0 by

An :“ inftk ě 1 : Xn ¨ ¨ ¨Xn´k P C u. (1.4)

1.2 Outline of the article

The paper is organized as follows. In the next section, we recall the elementary assumption on S – the
double-infinite comb PRW – and we introduce our main Assumption 2.2 together with the quantity mS

in (1.1) – named the mean drift – and the normalizing function λ puq. Thereafter – in Section 3 – we
state our main results, namely Theorems 3.1, 3.2 and 3.3. Together, the two latter are refinements and
complements of the first one. In Section 4 we make some remarks to step back on these results. The
two following Sections 5 and 6 are focused on the proofs in the two fundamental cases. Finally, in the
last Section 7 we state two useful and straightforward lemmas allowing several interpretations of the
Assumption 2.2 and often implicitly used in the proofs.

2 Framework and assumptions

The model we consider corresponds to the double-infinite comb. Roughly speaking, the leaves – coding
the memory – are words on td,uu » t´1,1u of the form dnu and und. It follows that the probability to
invert the current direction depends only on the direction itself and of its present length. In the sequel, we
refer to Figure 2.1 that illustrates our notations and assumptions on the so-called double-infinite comb
PRW.

2.1 Elementary settings and hypothesis

We recall that this process is characterized by the transition probabilities

α
d
k :“ PpXk`1 “ u|Xk ¨ ¨ ¨X0 “ dkuq and α

u
k :“ PpXk`1 “ d|Xk ¨ ¨ ¨X0 “ ukdq. (2.1)

where Xk is the kth jump in td,uu» t´1,1u given as the rightmost letter of the left-infinite word Uk – the
kth term of underlying double-infinite comb VLMC defined in [2]. The latter conditional probabilities

3



are invariant by shifting the sequence of increments and thus αu
k and αd

k stand respectively for the
probabilities of changing direction after k rises and k descents. Therefore, we can write

α
u
k “ PpSn`1´Sn “ 1|Xn “ u, An “ kq “ 1´PpSn`1´Sn “´1|Xn “ u, An “ kq , (2.2)

and vice versa replacing the direction u by d and inverting the jumps 1 and ´1.
Besides, in order to avoid trivial cases, we assume that S can not be frozen in one of the two directions

with a positive probability so that it makes infinitely many U-turns almost surely. We deal throughout
this paper with the conditional probability with respect to the event pX0,X1q “ pu,dq. In other words, the
initial time is suppose to be an up-to-down turn. Obviously, there is no loss of generality supposing this
and the long time behaviour of S is not affected as well. Therefore, we assume the following

Assumption 2.1 (finiteness of the length of runs). For any ` P tu,du,

8
ź

k“1

p1´α
`
kq “ 0 ðñ

˜

Dk ě 1 s.t. α
`
k “ 1 or

8
ÿ

k“1

α
`
k “8

¸

. (2.3)

In addition, we exclude implicitly the situation when both of the length of runs are almost surely
constant. We denote by τun and τdn the length of the nth rise and descent respectively. The two sequences
of i.i.d. random variables tτdn uně1 and tτun uně1 are independent – a renewal property somehow – and it
is clear that their distribution tails and truncated means are given for any ` P tu,du and t ě 0 by

T`ptq :“ Ppτ`
1 ą tq “

ttu
ź

k“1

p1´α
`
kq and Θ`ptq :“ Erτ`

1^ ts “
ttu
ÿ

n“1

n´1
ź

k“1

p1´α
`
kq. (2.4)

We will also need to consider their truncated second moments defined by

V`ptq :“ Erpτ`
1q

21t|τ`1|ďtus. (2.5)

Furthermore, in order to deal with a more tractable random walk with i.i.d. increments, we introduce
the underlying skeleton random walk tMnuně0 associated with the even U-turns – the original walk
observed at the random times of up-to-down turns. These observation times form also a random walk
(increasing) which is denoted by tTnuně0. Note that the expectation dM of an increment Yk :“ τuk ´τdk of
M is meaningful whenever (at least) one of the persistence times is integrable. By contrast, the mean dT

of a jump τk :“ τuk ` τdk related to T is always defined. Finally, we set when it makes sense,

dS :“
dM

dT

“
Erτu1 s´Erτd1 s
Erτu1 s`Erτd1 s

, (2.6)

M0

T0 T1 T2

u d

d u d

d u 1−αu
1

1−αu
2

u d

︷ ︸︸ ︷
U0

︷ ︸︸ ︷
U1 Y1 = M1−M0M1

M2

τd1

X0 = u X1 = d

τd2
τ1 τ2

τu1 τu2

Figure 2.1: A trajectory of S

4



extended by continuity to ˘1 if only one of the persistence times has a finite expectation. This charac-
teristic naturally arises in the recurrence and transience features and as an almost sure drift of S as it is
shown in [1].

2.2 Mean drift and stability assumption

To go further and introduce the suitable centering term mS in the scaling limits (1.1) we need to consider,
when it exists, the tail balance parameter defined by

bS :“ lim
tÑ8

Tuptq´Tdptq
Tuptq`Tdptq

, (2.7)

and set

mS :“
"

bS, when τu1 and τd1 are both not integrable,
dS, otherwise.

(2.8)

In the light of the L1-convergence in (4.4) below, this term is naturally called the mean drift of S. Note
also that it generalizes dS since, when it is well defined,

mS “ lim
tÑ8

Θuptq´Θdptq
Θuptq`Θdptq

. (2.9)

A Strong Law of Large Number (SLLN) is established in [2] as well as a (non-functional) CLT under
some strong moment conditions on the running times τ`

1. Here the assumptions are drastically weakened.
More precisely, our main hypothesis to get functional invariance principles – assumed throughout the
article unless otherwise stated – is the following

Assumption 2.2 (α-stability). The mean drift mS is well defined and not extremal, that is mS P p´1,1q.
Moreover, there exists α P p0,2s such that

τ
c
1 :“ p1´mSqτ

u
1 ´p1`mSqτ

d
1 P Dpαq, (2.10)

i.e. τc1 belongs to the domain of attraction of an α-stable distribution.

Note that τc1 is a centered random variable when mS “ dS. When mS “ bS, we will see that it is
always – in some sense – well balanced. Obviously, the α-stable distribution in the latter hypothesis is
supposed to be non-degenerate. Closely related to stable distributions and their domains of attraction
are the notions of regularly varying functions, infinitely divisible distributions and Lévy processes. We
refer, for instance, to [3–8] for a general panorama.

2.3 Normalizing functions

For the statement of the functional invariance principle, it is necessary to define the appropriate sub-
linear normalizing function λ puq in the functional convergences (1.1). To this end, we introduce the
non-negative and non-decreasing functions Σptq and Θptq respectively given by

Σptq2 :“ p1´mSqVu

ˆ

t
1´mS

˙

`p1`mSqVd

ˆ

t
1`mS

˙

and Θptq :“Θuptq`Θdptq. (2.11)

Then we shall see that a relevant choice can be given by setting λ puq :“ a˝ spuq with

apuq :“ inf
"

t ą 0 :
t2

Σptq2
ě u

*

and spuq :“ inftt ą 0 : Θ˝aptq t ě uu . (2.12)
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3 Statements of the results

We establish – under the α-stability Assumption 2.2 – a general functional invariance principle, stated in
its compact form in Theorem 3.1 below. In this one, the Skorohod space of all right-continuous functions
ω : r0,8qÝÑR having left limits (càdlàg) is endowed with the M1-topology (making it a Polish space)
and the convergence in distribution with respect to the related Borel σ -fields is denoted by M1. For more
details, we refer especially to [8].

Theorem 3.1. There exists a non-trivial càdlàg process Zα such that
"

Stutu´mS ut
λ puq

*

tě0
and

"

Sut ´mS ut
λ puq

*

tě0

M1
ùùùñ
uÑ8

tZαptqutě0. (3.1)

Remark 3.1. We point out that we make the effort to give an unified functional convergence. To enforce
the scaling limit, we do not have to know the index of stability α since computing the mean drift mS and
the normalization function λ puq only involve to observe the truncated mean and second moment of the
running times. This could have some statistical interests.

Furthermore, it turns out that there are mainly four situations according to the position of the index
of stability α P p0,2s with respect to the partition p0,1q\t1u\p1,2q\t2u. More precisely, reading the
four latter intervals from the right to the left, the limit stochastic process Zα can be equal to

1) B – a brownian motion;

2) Sα,β – a strictly α-stable Lévy process with skewness parameter β ;

3) C – a symmetric Cauchy process;

4) Sα – an arcsine Lamperti anomalous diffusion.

The first three situations cover all classical strictly stable Lévy processes having infinite variations
and we will specify later what is meant by anomalous diffusion and the arcsine Lamperti terminology,
which is undoubtedly the most fruitful situation. Note that the authors in [2] show the convergence
of some rescaling toward a kind of non-symmetric generalized telegraph process. In this paper the
limit processes are no longer generalizations of the telegraph process since the probabilities of changing
directions are fixed. Here actual scaling limits are investigated. Theorem 3.1 is divided and completed
below according to the four latter possible situations. In particular, we consider stronger convergence
in distribution: the J1-convergence and its restriction C to the Wiener space of all continuous functions
(see [9] for instance).

3.1 Classical Lévy situation

Here we deepen the case when the limit process is a strictly stable Lévy motion of infinite variation. We
shall prove – in the generic situation α P p1,2q – that up to some scale parameter it is an α-stable Lévy
process Sα,β with skewness parameter

β “
p1´mSq

αp1`bSq´p1`mSq
αp1´bSq

p1´mSq
αp1`bSq`p1`mSq

αp1´bSq
. (3.2)

More precisely, we shall see that its symbol logEreiuSα,β p1qs is equal to

´
p2´αqΓp2´αq

α

sin
`

π

2 pα´1q
˘

α´1

„

1´ iβ tan
´

πα

2

¯



|u|α , (3.3)
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where Γ is the Gamma function. In particular, its Lévy jump measure is given by
„ˆ

1´β

2

˙

1txă0u`

ˆ

1`β

2

˙

1txą0u



p2´αq

|x|α`1 dx. (3.4)

Regarding the case α “ 2, the log-characteristic function of the limit process is still given by the
right hand side of (3.3) – whatever the value of β is – and it is nothing but a standard Brownian motion
denoted by B. Concerning the last situation α “ 1, the symbol is given by the right hand side of (3.3)
with a null skewness parameter β “ 0. In other words, it is a symmetric Cauchy process denoted by C
and characterized by its marginal distribution

Cp1q „
1
2

1
pπ{2q2` x2 dx. (3.5)

As a matter of fact, the skewness parameter (3.2) is associated with the random variable τc1 intro-
duced in (2.10). This expression will be explained in the last section where equivalent formulations of
Assumption 2.2 can be deduced from Lemma 7.1. Besides, it also comes from this lemma – together
with Lemma 7.2 and classical results on regular variations in [3] for instance – that dT ă8 and mS “ dS

when α P p1,2q but also that there exists a slowly varying function Ξαpuq such that

apuq „
uÑ8

Ξαpuqu1{α and spuq „
uÑ8

u
dT

, (3.6)

In particular, the random variable τc1 is centered. As far as α “ 2, the latter considerations also hold but
with an ultimately non-decreasing slowly varying function Ξ2puq since it can be chosen as Σ˝apuq.

When α “ 1, it is possible for both of the running times τu1 and τd1 to be integrable or not. In the first
situation, the latter estimations are still effective. In the second one, the random variable τc1 is no longer
centered but it is well balanced – the skewness parameter β is equal to zero – in the sight of equality
(3.2) since mS “ bS. Anyway, when α “ 1, we can formulate the following

Lemma 3.1. When α “ 1 there exist two slowly varying functions Ξ1puq and Dpuq, the latter being
ultimately non-decreasing, such that

apuq „
uÑ8

Ξ1puqu and spuq „
uÑ8

u
Dpuq

, with lim
uÑ8

Dpuq
Ξ1 ˝ spuq

“ 8. (3.7)

The proof of these estimates – especially the right hand side of (3.7) which is not a direct conse-
quence of regular variations – is postponed to the end of Section 5.

Theorem 3.2 (classical Lévy situation). Suppose α P r1,2s, then the scaling limits in (3.1) can be
rewritten – in a stronger way – as follows.

1) If α “ 2 – the Gaussian case – then
"?

dT u
Ξ2puq

ˆ

Stutu

u
´dS t

˙*

tě0

J1
ùùùñ
uÑ8

tBptqutě0,

and
"?

dT

?
u

Ξ2puq

ˆ

Sut

u
´dS t

˙*

tě0

C
ùùùñ
uÑ8

tBptqutě0. (3.8)

2) If α P p1,2q – the generic case – then
#

d1{α
T u1´1{α

Ξαpuq

ˆ

Stutu

u
´dS t

˙

+

tě0

J1
ùùùñ
uÑ8

tSα,β ptqutě0. (3.9)

3) If α “ 1 – the Cauchy case – then
"

Dpuq
Ξ1 ˝ spuq

ˆ

Stutu

u
´mS t

˙*

tě0

J1
ùùùñ
uÑ8

tCptqutě0. (3.10)
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3.2 Anomalous situation

In this section, we detail the functional convergence (3.1) when α P p0,1q. It turns out that the limit
process is no longer a stable Lévy process nor even a Markov process. Roughly speaking, it is – up to
a linear and multiplicative term – a random continuous piecewise linear function built from an α-stable
subordinator as follows.

1) We attach i.i.d. Bernoulli distributions of parameter p1`bSq{2 to every maximal open intervals in
the complementary the range of the α-stable subordinator.

2) According to their success or their failure, the slope on the corresponding jump interval is chosen
to be equal to 1 or ´1 accordingly.

We refer carefully to Figure 3.2 illustrating some notations and the construction of this process.
Again, classical results on regularly varying functions together with Lemma 7.1 and 7.2 apply and we
can check that dT “8 and mS “ bS in this section. The reason we used mS rather than bS or vice versa
is motivated by the will to focus on different meanings – a mean drift or a balance term – according to
the situations. In the following, we mention [10] concerning classical results about Lévy subordinators
and their local times and [11, Chap. 6.] for general Markov processes. Finally, we allude to [12] for the
general theory of excursions and Poisson point processes which is strongly connected to these notions.

3.2.1 Preliminaries

Let Tα be an α-stable Lévy subordinator with no drift and recall that it is a càdlàg non-decreasing pure
jump process. Let J be its random set of jumps – the random set of discontinuity points. It follows that
the closure of the image Rα :“ tTαptq : t ě 0u – the so-called regenerative set or range – is a perfect set
of zero Lebesgue measure satisfying

Rα “Rα \tTαpu´q : u PJ u and r0,8qzRα “
ğ

uPJ

pTαpu´q,Tαpuqq. (3.11)

The backward recurrence time (the current life time) and the forward renewal time (the residual life
time) processes are respectively defined as

Gαptq :“ suptsď t : s PRαu and Hαptq “ inftsě t : s PRαu. (3.12)

t

Sα(t)

Yα(t) = Sα(u)

Xα(t) = Sα(u−)

tGα(t) = Tα(u−) Hα(t) = Tα(u)

Nα(t) = u

Xα(t) =−1

slope =±1

Aα(t) Hα(t)

Figure 3.2: Construction of the anomalous diffusion
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Those are càdlàg stochastic processes and we can check that Gαptq “ Tαpu´q and Hαptq “ Tαpuq when
Tαpu´q ď t ă Tαpuq whereas Gαptq “ Hαptq “ Tαpuq when t “ Tαpuq. To go further, we consider the
local time of (the inverse of) the stable subordinator Tα defined by

Nαptq :“ inftsą 0 : Tαpsq ą tu “ suptsą 0 : Tαpsq ď tu. (3.13)

Note the usefull switching identity tTαpsq ď tu “ ts ď Nαptqu and the fact that Nα is a continuous
stochastic process. When α “ 1{2 it is nothing but the classical local time of a Brownian motion.
In full generality, it is is a non-decreasing continuous stochastic process such that the support of the
random Stieljes measure dNα is equal to the range of the subordinator. Then, one has Nαptq “ u when
Tαpu´q ď t ď Tαpuq and the first and last renewal time processes can be rewritten as

Gαptq “ rT´α ˝Nα s
`ptq and Hαptq “ Tα ˝Nαptq, (3.14)

where F˘ptq :“ Fpt˘q is the right or the left continuous version of a function Fptq.
Furthermore, it is well-known that stable subordinator can be decomposed as

Tαptq “ T u
α ptq`T d

α ptq :“
ˆ

1`bS

2

˙1{α

T 1αptq`
ˆ

1´bS

2

˙1{α

T 2α ptq, (3.15)

where T 1α and T 2α are i.i.d. with the same distribution as Tα . This decomposition can be obtained intrinsi-
cally from Tα by labelling each jump interval (an excursion) I “ pTαpu´q,Tαpuqq as in [13, pp. 342-343]
by i.i.d. Rademacher random variables XI independent of Tα and of parameter p1`bSq{2. It follows
that T u

α ptq and T d
α ptq can be viewed as the sums up to the time t of the jumps ∆Tαpuq :“ Tαpuq´Tαpu´q

for which the corresponding labels are respectively equal to one and minus one. They are both thinning
of the initial subordinator. Coupled with the latter decomposition, we can consider the α-stable Lévy
process

Sαptq :“ T u
α ptq´T d

α ptq “
ˆ

1`bS

2

˙1{α

T 1αptq´
ˆ

1´bS

2

˙1{α

T 2α ptq. (3.16)

This one can be viewed as a pure jump process whose increment ∆Sαpuq is equal to ∆Tαpuq or ´∆Tαpuq
according to the label of the corresponding excursion. Following the terminology used in [14] we can
introduce the so-called lagging and leading càdlàg stochastic processes respectively defined by

Xαptq :“ rS´α ˝Nα s
`ptq and Yαptq :“ Sα ˝Nαptq. (3.17)

It is not difficult to check that Xαptq “ Sαpu´q and Yαptq “ Sαpuq when Tαpu´q ď t ă Tαpuq whereas
Xαptq “ Yαptq “ Sαpuq when t “ Tαpuq.

3.2.2 Arcsine Lamperti anomalous diffusions

We can now define the so-called Arcsine Lamperti anomalous diffusion by

Sαptq :“ Xαptq`
t´Gαptq

Hαptq´Gαptq
pYαptq´Xαptqq, (3.18)

with Sαptq “ Xαptq when t PRα . In other words, the so-called anomalous diffusion Sαptq is the center
of mass of the lagging and leading processes Xαptq and Yαptq with respective weights given by the
so-called remaining time and age time processes

Hαptq :“ Hαptq´ t and Aαptq “ t´Gαptq. (3.19)
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This kind of construction as already been exposed in [15]. From the self-similarity of Tα we get that
the law of Sα is self-similar of index 1: for any λ ą 0,

tSαpλ tqutě0
L
“ tλSαptqutě0. (3.20)

Besides, its law does not depend on the scale parameter chosen to define Tα . To go further, it is
continuous and of bounded variation and it can be written as

Sαptq “
ż t

0
Xαpsqds, (3.21)

where tXαptqutě0 denote the so-called label process taking its values in t´1,1u and such that Xαptq :“
XI when t P I – no matter its values on the regenerative set is. We recall that the XI are i.i.d. Rademacher
random variables of parameter p1`bSq{2 attached on the excursion intervals I. To get the latter integral
representation one can see that Sα is linear on each excursion interval I with a slope given by XI . Then,
noting that there is clearly equality on the random set tHαptq : t ą 0u with Yα – the so-called overshoot
continuous time random walk – we obtain the equality on r0,8q.

Furthermore, one can see that λ puq “ a˝spuq is equivalent to p2´αqp1´αqu{α as u goes to infinity
and thus we only need to study the asymptotic of normalized processes t ÞÑ Sut{u.

Theorem 3.3 (anomalous situation). Suppose α P p0,1q, then the functional convergence (3.1) can be
rewritten – in a stronger form – as

"

Sut

u

*

tě0

C
ùùùñ
uÑ8

tSαptqutě0 . (3.22)

Moreover, the marginal Sαptq has a density function ftpxq on p´t, tq satisfying – in a weak sense – the
fractional partial differential equation

„

1`mS

2

ˆ

B

Bx
`
B

Bt

˙α

`
1´mS

2

ˆ

B

Bx
´
B

Bt

˙α

ftpxq

“
1

Γp1´αqtα

„

1`mS

2
δ tpdxq`

1´mS

2
δ´tpdxq



, (3.23)

In addition, the latter density admits the integral representation

ftpxq “

ż t

0

„

1`mS

2
uαpx´pt´ sq,sq

Γp1´αq
`

1´mS

2
uαpx`pt´ sq,sq

Γp1´αq



ds
p1´ sqα

, (3.24)

where uαpx, tq denotes the 0-potential density of pSα ,Tαq. Furthermore, this it is – up to an affine
transformation – an arsine Lamperti distribution given by

ftpxq “
2sinpπαq

π t
pt´ xqα´1pt` xqα´1

rSpt´ xq2α `2cospπαqpt` xqαpt´ xqα ` r´1
S pt` xq2α

, (3.25)

with rS :“ p1`mSq{p1´mSq. Also, the stochastic process pXα ,Aαq on the state space t´1,1uˆr0,8q
is Markovian

3.2.3 On general PRWs

In [1, Section 4.] the recurrence and transience criteria are extended to a wider class of PRWs – without
any renewal assumption – suitable perturbations of the double-infinite comb model when the persistence
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times are non-integrable. In the same way, it would be possible – adding some other natural stability
assumptions – to deduce the same theorem for these walks as it is stated below.

Consider a double-infinite comb and attach to each finite leaf c another context tree Tc (possibly
trivial) as in Figure 3.3. The leaves of the related graft are denoted by Cc and this one is endowed with
Bernoulli distributions tql : l P Ccu on tu,du. Note that any probabilized context tree on tu,du can
be constructed in this way. We denote by Sg the corresponding PRW. In this case, the random walk
is particularly persistent in the sense that the rises and descents are no longer independent. A renewal
property may still hold but it is more tedious to expect in general. Let S and S be the double-infinite
comb PRWs with respective transitions

α
u
n :“ suptqcpdq : c P Cundu, α

d
n “ inftqcpuq : c P Cdnuu,

and α
u
n :“ inftqcpdq : c P Cundu, α

d
n :“ suptqcpuq : c P Cdnuu. (3.26)

The proof of the following proposition is omitted and follows from comparison results exposed
in [1].

Proposition 3.1. Assume that S and S satisfy the same Assumption 2.2 with α P p0,1q. To be more
precise, we suppose that the associated mean-drifts are equal and non-extremal but also that the corre-
sponding random variables τc1 and τ

c
1 are both in Dpαq, the stable limit distribution being the same by

taking the same normalization and centering terms. Then Theorem 3.3 holds for Sg.

For instance, Theorem 3.3 holds when the (non-trivial) grafts are some finite trees in finite number
such that the attached Bernoulli distributions are non-degenerated and induce running times in Dpαq.

4 Few comments and contributions

After some clarifications on the choice of the normalizing functions – see Section 4.1 – and the con-
nections between the scaling limits associated with the piecewise constant or the linear interpolations in
Theorem 3.1, we give some interpretations on various parameters and limits involved in Theorems 3.2
and 3.3 – see Section 4.2. Thereafter – see Section 4.3 – we briefly explain how to extend our results
to the extremal mean drift situations. Then – see Section 4.4 – we interpret the essential difference be-
tween the limit processes in Theorems 3.2 and 3.3 as a phase transition phenomenon with respect to the
memory. Finally, the last Section 4.5 is devoted to the relation with a part of the literature on CTRWs
and their connections with the Lévy walks or the DRRWs.

d

u

Td1u

d

u

Td2u

u

d

Tu1d

u

d

Tu2d

Figure 3.3: Grafting of the double-infinite comb

11



4.1 Regular variations and Slutsky type arguments

First of all, we shall see that the normalization function and those involved in its construction are regu-
larly varying. More precisely, we can show that they are characterized by the relations

apuq
pΣ˝apuqq2

„
uÑ8

u and Θ˝a˝ spuqspuq „
uÑ8

u. (4.1)

Then, in virtue of Slutsky type arguments – see [16, Theorem 3.4, p. 55] and [16, Proposition 3.1., p.
57] or [9, Theorem 3.1., p. 27] for instance – together with classical properties about regularly varying
functions – see the reference [3] – it comes that in the definition of λ puq, along with Σptq and Θptq, the
functions apuq and spuq can replaced by any other equivalent function in a neighbourhood of infinity to
get the same functional convergences.

In this spirit, when the persistence times are both square integrable, one can replace Ξ2puq in (3.8)
by the the standard deviation of τc1 to retrieve the CLT shown in [2]. Also, when dT ă8, one can replace
Dpuq by dT and thus mS by dS in (3.10).

4.2 About the three theorems

First, we stress that each of the functional convergences in (3.1) implies the other one. Indeed, due to
the tightness criterion [8, Theorem 12.12.3., p. 426] and the form of the oscillation function for the
M1-metric, the tightness of one induces the tightness of the other. Then, the identification of the finite-
dimensional distribution follows from St ´1ď Sttu ď St `1 and the Slutsky lemma. As a consequence,
the general Theorem 3.1 is a direct consequence of Theorems 3.2 and 3.3.

Furthermore, we deduce from (3.10) and (3.7) the following interpretation of the so-called mean
drift mS – appearing here as a drift in probability – since for α P r1,2s, the following holds

lim
nÑ8

Sn

n
P
“ mS. (4.2)

Even if the latter convergence is a straightforward consequence of the almost sure convergence exposed
in [1] under the assumption that the running times are both integrable, it is completely new otherwise.

To go further, if α “ 1{2 and mS “ 0 in Theorem 3.3 then one can note that the distribution ftpxq
given in (3.25) is nothing but the push forward image by x ÞÝÑ 2tx´ 1 of the classical arcsine distri-
bution, the law of the occupation time of the half-line, up to the time t, of a one-dimensional standard
Brownian motion. In full generality, it also appears as the limit of the mean sojourn time of some clas-
sical random walks, including a wide class of discrete time processes described by Lamperti in [17]. It
is also explained in [18, 19] that it is – up to an affine transformation – the law of the occupation time
of the half-line of a skew Bessel process of dimension 2´ 2α with a skewness parameter p1`mSq{2.
Moreover, it is shown in [13, Corollary 4.2., p. 343] that f1pxq can be represented as the distribution of
the random variable

Dα :“
T u

α p1q´T d
α p1q

T u
α p1q`T d

α p1q
. (4.3)

Hence, the marginal convergence at time t “ 1 in (3.22) can be interpreted as a kind of law of large
number in distribution which extends the classical one in [1] – the means in (2.6) being replaced by
some canonical positive α-stable random variables.

In addition, the terminology used for the so-called mean drift mS is a direct consequence of the latter
considerations since in any case α Ps0,2s we get that

lim
nÑ8

Sn

n
L1
“ mS. (4.4)
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Besides – among other considerations – it turns out that pSα , Xα , Aα ) is somehow the continuous
time counterpart of (S, X , A) and the label process Xα is in some sense a continuous time VLMC. We
recall that the discrete age time process A is introduced in (1.4) as S the corresponding PRW and the
two-sided sequence of jumps X . Indeed – as it is explained in [2] – the stochastic process tpXn,Anquně0
on tu,duˆZ` is also a Markov process.

4.3 On extremal situations

We have exclude in Assumption 2.2 the extremal mean drifts – say mS “ 1 for the example – situation
that may arise when α “ 1 and dT “ 8 or when α P p0,1q. In some sense, this mean – in a first
approximation – that the weight of the persistence time τd1 in the scaling limits can be omitted.

As a matter of facts, we can obtain similar functional convergences as (3.10) or (3.22) but there
toward the null or the identity process respectively. To this end, it suffices to replace Σptq2 by V ptq
defined in (7.4) in the settings of apuq and the proofs follows the same lines.

The additional conditions to get non trivial limits are more subtle and related to the negligible per-
sistence time. Roughly speaking, when τd1 belongs to Dpγq with 0 ă γ ď α ă 1 – hypothesis p#q – or
when it is a relatively stable distribution in the sense of [3, Chap. 8.8, p. 372] – hypothesis p‹q – then
the generic form of the functional convergence seems to be

#

´
u1´ α

γ

Ξpuq

ˆ

Stutu

u
´ t

˙

+

tě0

J1
ùùùñ
uÑ8

 

T d
γ ˝Nu

αptqq
(

tě0
p#q,

or
"

´
u1´α

Ξpuq

ˆ

Sut

u
´ t

˙*

tě0

C
ùùùñ
uÑ8

tNu
αptqqutě0 p‹q, (4.5)

where Ξpuq is slowly varying and T d
γ is a γ-stable subordinator independent – contrary to the non-

extremal situation – of an α-local time Nu
α . In other words the limit process is an uncoupled CTRW

under the assumption p#q.
Furthermore, assuming in place of the relative stability that τd1 PDpγqwith γ P r1,2s, the next term in

the asymptotic expansion of p‹q is – heuristically – of the order of Sdγ ˝Nu
αptq{u

α{γ where Sdγ is a γ-stable
Lévy process independent of Nu

α .

4.4 Phase transition phenomenon on the memory

It follows from our results and Assumption 2.2 that the limit process and the proper normalizations of
the walk given in (3.1) strongly depend on the tail distributions of the length of runs. In fact, we bring
out phase transition phenomena concerning the speed of diffusivity and the memory of the limit process.

When the tail distributions are sufficiently light – that is α P r1,2s in (2.10) – the limit process is
Markovian – we lose the long term memory. In addition, the sub-linear normalizing function λ puq will
be p1{αq-regularly varying as the index of self-similarity of the limit process.

When the tails are sufficiently heavy – that is α P p0,1q – the limit process is no-longer Markovian.
We keep an unbounded memory encoded – in addition to its position – by the “current” label Xαptq and
the age time Aαptq. Moreover, the limit process is somehow ballistic and it is self-similar of index 1.

4.5 Around and beyond CTRWs

In full generality, anomalous diffusions – as the lagging process Xαptq in (3.17) – appear as scaling
limits of (possibly coupled) CTRWs named also renewal reward processes or Lévy walks following the
context. Those are nothing but classical RW subordinated to a counting process. Their scaling limits and
their finite-dimensional distributions has been widely investigated in [14, 20–23] for example. Besides,
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closely related to our model, DRRW has been introduced in [24] to model ocean surface wave fields.
Those are nearest neighbourhood random walks on Zd keeping their directions during random times τ ,
independently and identically drawn after every change of directions. We refer to [25–27] where are
revealed diffusive and super-diffusive behaviours. These walks are intrinsically continuous and can be
seen as a linear interpolation of a CTRW – as the “true” Lévy walks studied in [15].

Our model generalizes one dimensional DRRW since asymmetrical transition probabilities αu
n and

αd
n lead in general to running times τu1 and τd1 with distinct distributions. Even if the mean drift mS

represents the classical almost sure drift dS of the PRW when it is well defined, it appears to be a drift in
mean when the persistence times are not integrable and thus also in full generality as it is pointed out by
(4.4). This relevant characteristic has not yet been revealed to our knowledge.

Furthermore, it seems that some results in [25, 27] are not entirely true when the persistence times
are not integrable, and so it must have some misunderstanding in their proofs. We think more precisely
to [25, Theorem 1.3., p. 370] and equation (3.24), p. 3281 relative to the proof of [27, Theorem 2.6., p.
3272]. In fact, with our settings, those results would imply that

Sn

n
L
ùùùñ
nÑ8

Yαp1q. (4.6)

However, the latter convergence can not be true since Yαp1q is the overshoot limit of the underlying
CTRW and thus it is not compactly supported – contrary to Xαp1q. Moreover, in their results it misses
the residual term insuring the continuity of the limit process.

As a matter of fact, this kind of subtle mistake – corrected in [22] – has already been made in [21].
In that paper the authors prove some powerful limit theorems concerning coupled CTRW. The outcomes
of our interest are [21, Theorem 3.1., p. 738] together with [21, Theorem 3.4., p.744] upgraded with the
slight but significant modification in [22].

Finally, we also fill some gaps in the literature. In addition to only investigating symmetric DRRWs
in [25, 27], the authors have omitted to treat the Cauchy situation α “ 1. This case is more delicate as it
is explained in Section 5. To be more precise, the choice of the suitable centering term is not clear and
the counting process Nptq associated with the time τd1 ` τu1 no longer satisfies a SLLN so that we need
to revise the proof when α P p1,2s.

Moreover, in the case when α P p0,1q, there is no available proof of a functional convergence (at
best a marginal one) and the limit distribution is not explicit to our knowledge. In this paper, we give the
explicit density of such marginal limit in (3.25) and we adopt the following complementary approaches,
according to the desired aims, in Section 6:

1) We adapt the results in [15, Section 5.] representing the marginal densities of some Lévy walks as
the solution of pseudo partial differential equations.

2) We make the link with the excursions theory of α-stable subordinators presented for instance
in [13, section 4., pp. 341-343] and [18, Theorem 1].

3) We make the connection with the occupation time of wide class of stochastic processes modelled
on those defined by Lamperti in [17] and including tXnXn`1uně0.

5 Proof of Theorem 3.2

We begin with the case of a Lévy motion as a limit process. The proofs follow more or less the same
lines depending on the index of stability and therefore we only insist on the most difficult – and never
exposed – situation when α “ 1. The proof in the other cases will be only outline.
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5.1 Sketch of the proof and preliminaries

Let N be the continuous time counting process associated with T – the increasing discrete time RW.
The latter is introduced and represented – as M the skeleton RW – in Section 2.1. More precisely, this
renewal process is defined by

Nptq :“maxtně 0 : Tn ď tu “ inftně 0 : Tn`1 ą tu. (5.1)

The main idea of the proofs when α P p1,2s consists of taking advantage of the decomposition

Stutu´mS ut “:
`

MNputq´mSTNputq
˘

`Rputq “: CNputq`Rputq, (5.2)

where tCnuně0 denotes the RW whose jumps are distributed as the random variable τc1 given in (2.10)
and tRpvquvě0 is the corresponding residual continuous time process. Note that

|Rpvq| ď p1´mSqτ
u
Npvq`1`p1`mSqτ

d
Npvq`1. (5.3)

Actually, the proofs of (3.8) and (3.9) is organized as follows.

Step 1. Direct consequence of Assumption 2.2 and estimations (7.8) together with classical results
on α-stable distributions we observe that C belongs to the domain of attraction of the α-stable Lévy
process Sα,β – B when α “ 2 – with the normalization function given by apuq.

Step 2. Applying the weak law of large numbers to T , we show that tNputq{spuqutě0 converge in
probability towards the identity process t ÞÑ t as u goes to infinity.

Step 3. We prove that the normalization of the residual process tRputq{apuqutě0 converges in prob-
ability towards the null process t ÞÑ 0 for u large enough.

Applying a classical continuous mapping argument as in [9, Sect. 17., Chap. 3., pp. 143-150] for
instance – or to be more explicit by using [8, Theorem 13.2.2., p. 430, Chap. 13.] coupled with the
continuous mapping [8, Theorem 3.4.3., p. 86, Chap. 3.] – we can deduce the required scaling limits
with the normalizing function λ puq “ a˝spuq and this ends the proof when α P p1,2s assuming the three
latter steps.

5.2 Focus on the Cauchy situation

Unfortunately, in the case when α “ 1, the Step 1. is not true – with the corresponding limit C – if the
persistence times are both integrable dT ă 8. Besides, we also need to be careful about the Step 2. if
dT “8 since the weak law of large numbers does not hold in that case. Therefore, we need to adapt the
reasoning above according the two latter situations.

First, when the persistence times are both of infinite mean, we can see that the proof follows exactly
the same steps as previously by noting that Step 2. remains valid. Indeed, in any case T is relatively
stable in the sense of [3, Chap. 8.8, p. 372] with the inverse of u ÞÑ spuq as normalizing function.

Lemma 5.1 (Step 2.). The following convergences hold in probability: for any vě 0,

sup
0ďtďv

ˇ

ˇ

ˇ

ˇ

Nputq
spuq

´ t
ˇ

ˇ

ˇ

ˇ

P
ÝÝÝÑ
uÑ8

0. (5.4)

15



Proof. Using the switching identity we first remark that it suffices to show that

sup
0ďtďv

ˇ

ˇ

ˇ

ˇ

Ttspuqtu

u
´ t

ˇ

ˇ

ˇ

ˇ

P
ÝÝÝÑ
uÑ8

0. (5.5)

When dT ă8 the convergence in (5.5) at any fixed time t but without the supremum follows imme-
diately from the weak law of large numbers since spuq can be chosen to be equal to u{dT .

When dT “8, the same marginal convergence is a direct consequence of the considerations on the
tail distribution T ptq of T in Lemma 7.1 and classical results on stable distributions – especially [28, p.
174] – which imply the convergence in distribution as u tends to infinity of

Ttutu

apuq
´

Θ˝apuqu
apuq

t. (5.6)

Thus, in both cases, it only remains to prove the local uniform convergence in probability. To this
end, it is well-known for stable distributions that the convergence of one marginal distribution implies
its functional counterpart. Here the same is true. One way to prove this is to use the characteristics
of semi-martingales which are in addition processes with independent increments. More precisely, by
using [29, Theorem 2.52, Chap. VII.2, p. 409] and [29, Theorem 3.4, Chap. VII.3, p. 414] we only
need to prove that the characteristics pbu, c̃u,νuq relative to a truncation function h of t ÞÑ Ttspuqtu{u tends
to pt ÞÑ t,0,0q as u tends to infinity uniformly on compact subset. Following [29, Theorem 3.11, Chap.
II.3, p. 94] and [29, Equation 3.18, Chap. II.3, p. 96] it turns out that

buptq “ E
”

h
´

τ1

u

¯ı

tutu, c̃uptq “ V
”

h
´

τ1

u

¯ı

tutu and νupr0, tsˆgq :“ E
”

g
´

τ1

u

¯ı

tutu, (5.7)

where τ1 is a jump of T and g is any bounded continuous function bounded by x ÞÑ x2 in a neighbourhood
of the origin. Then the punctual convergence of this triplet follows from the convergence for t “ 1.
Furthermore, their uniform convergence on compact sets are obvious and we deduce the convergence in
distribution of the associated processes in the Skorokhod space endowed with the J1-Borel σ -field. Since
the convergence in distribution to a constant in metric spaces implies the convergence in probability, the
lemma is proved.

By contrast, when the persistence times are both integrable, we will see that we need to adjust the first
step and more precisely the decomposition (5.2) involving the jump distribution τc1 which is no longer
well balanced. This dichotomy appears in the choice of the centering term in the classical convergence
towards a symmetric Cauchy process.

Lemma 5.2 (Step 1. when α “ 1). Let W be a random walk whose jump w1 belongs to the domain of
attraction of a symmetric Cauchy distribution. Then the centering term can be chosen to be equal to
zero, when w1 is not integrable, and to the drift otherwise, in such way that

"

Wtutu

kpuq

*

tě0
or

"

Wtutu´Erw1sut
kpuq

*

ně0

J1
ùùùñ
uÑ8

tCptqutě0 , (5.8)

according to the situations. Here we denote by kpuq the suitable normalizing function so that the limit
process is the symmetric Cauchy process defined previously.

Proof. First, we can show by using [28, pp. 170-174] that a suitable centering term (in the numerator
above) to get the marginal convergence at time t “ 1 above is

bpuq :“ u

˜

ż kpuq

0
Pp`w1 ą sqds´

ż kpuq

0
Pp´w1 ą sqds

¸

, (5.9)
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which can be rewritten when w1 is integrable as

bpuq :“ u
„

Erw1s´

ˆ
ż 8

kpuq
Ppw1 ą sqds´

ż 8

kpuq
Pp´w1 ą sqds

˙

. (5.10)

In fact, the convergence holds when u runs through the integers in most of the papers but since bpuq
and kpuq are regularly varying (indexes 0 and 1 respectively) a Slutsky type argument implies the con-
vergence for u along the real numbers. Besides, it is well known that the functional convergence is a
consequence of the marginal at t “ 1.

To go further, we can see that for t sufficiently large there exist λ˘ptq such that

ż 8

t
Pp˘w1 ą sqds“

1
2

ż 8

λ˘ptq
Pp|w1| ą sqds or

ż t

0
Pp˘w1 ą sqds“

1
2

ż

λ˘ptq

0
Pp|w1| ą sqds, (5.11)

depending on whether w1 is integrable or not. Moreover, since the right tail and the left tail of w1 are
well balanced, standard results on regularly functions (in particular those of slowly variations) and their
inverse allow us to see that λ˘ptq{t tend to 1 as t goes to infinity. Furthermore, noting that the two-sided
tail of w1 is regularly varying of index 1, the de Haan theory applies – especially [3, Theorem 3.7.3, pp.
162-163] coupled with [3, Theorem 3.1.16, p. 139] – and with (5.11) it implies that

ż 8

u
Ppw1 ą sqds´

ż 8

u
Pp´w1 ą sqds or

ż u

0
Ppw1 ą sqds´

ż u

0
Pp´w1 ą sqds, (5.12)

depending on whether w1 is integrable or not, is negligible with respect to uPp|w1| ą uq as u goes to
infinity. To conclude, it suffices to note that uPp|w1| ą kpuqq is equivalent to 1 in a neighbourhood of
infinity and thus by a Slutsky argument we deduce convergences (5.8).

Therefore, when the persistence times are both of infinite mean, one can see the first step above
holds with a symmetric Cauchy process for limit since τc1 is well balanced and the centering term is null.
This is not the case when the running times are both integrable. To overcome those difficulties, we write
in place of the decomposition (5.2) the more adapted relation

Stutu´mS ut “:
`

Stutu´bS ut
˘

´pdS´bSqut “: Co
Nputq´pdS´bSqut`Roputq. (5.13)

We recall that mS “ dS in this situation. Here Co denotes the RW associated with the (well balanced)
jump τo1 :“ p1´ bSqτ

u
1 ´ p1` bSqτ

d
1 and Ro is a residual process satisfying the same upper bound as

the previous R replacing mS by bS. Note that τo1 is in the domain of attraction of a symmetric Cauchy
distribution – a direct consequence of Lemma 7.1 – and has for expectation

Erτo1 s “ dTpdS´bSq. (5.14)

As a consequence – since we can take spuq :“ u{dT – we deduce from Lemmas 5.1 and 5.2 and that
#

Co
Nputq´pdS´bSqut

a˝ spuq

+

ně0

J1
ùùùñ
uÑ8

tCptqutě0 (5.15)

In any cases, to conclude, we need to show that the normalization of the residual term is negligible
and it is done in the proof of the following

Lemma 5.3 (Step 3.). The following convergences hold in probability: for any vě 0,

sup
0ďtďv

ˇ

ˇ

ˇ

ˇ

Rputq
a˝ spuq

ˇ

ˇ

ˇ

ˇ

P
ÝÝÝÑ
uÑ8

0 and sup
0ďtďv

ˇ

ˇ

ˇ

ˇ

Roputq
a˝ spuq

ˇ

ˇ

ˇ

ˇ

P
ÝÝÝÑ
uÑ8

0. (5.16)
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Proof. First note that whatever α P r1,2s it suffices to prove that for any ` P tu,du,

sup
0ďtďv

τ`
Nputq`1

a˝ spuq
P

ÝÝÝÑ
uÑ8

0. (5.17)

It follows from Lemma 5.1 above that for any δ ą 0, there exists s ě 0 such that for all u ě s,
PpΩu,δ q ě 1´δ , with

Ωu,δ :“
"

sup
0ďtďv

ˇ

ˇ

ˇ

ˇ

Nputq
spuq

´ t
ˇ

ˇ

ˇ

ˇ

ď δ

*

. (5.18)

Then, one can see for any ε ą 0 that

P

˜

sup
0ďtďv

τ`
Nputq`1

a˝ spuq
ą ε , Ωu,δ

¸

ď 1´
“

1´Ppτ`
1 ą ε a˝ spuqq

‰2δ spuq
. (5.19)

Furthermore, we obtain from the regular variations of the involved functions and Lemma 7.1 the exis-
tence of a positive constant k depending only on mS, bS and ` such that

rPpτ`
1 ą εaprqq „

rÑ8
k
ˆ

2´α

α

˙

ε
´α . (5.20)

Therefore, we deduce from (5.19) and (5.20) that

limsup
uÑ8

P

˜

sup
0ďtďv

τ`
Nputq`1

a˝ spuq
ą ε

¸

ď δ `

„

1´ exp
ˆ

´2δk
ˆ

2´α

α

˙

ε
´α

˙

, (5.21)

for any δ ą 0, which achieves the proof of this lemma.

Since the first step is obvious when α P p1,2s, this completes the proof of the Lévy situations,
excepted Lemma 3.1 whose proof is given below.

Proof of Lemma 3.1. First, one can see from Lemma 7.1 and standard results on regularly varying func-
tions that Ξ1puq :“ apuqT ˝apuq. Besides, the second asymptotic holds with Dpuq :“Θ˝a˝ spuq. Then
Karamata’s Theorem [3, Proposition 1.5.9a., p. 26] implies that uT puq is negligible with respect to θpuq
as u goes to infinity and we deduce the lemma.

6 Proof of Theorem 3.3

We treat in this section the anomalous case, i.e. α P p0,1q. The proof is divided into four parts. First, we
show the functional invariance principle – Section 6.1. Then – Section 6.2 – we describe the marginal
distributions of the process before we investigate – Section 6.3 – the Markov property given at the end of
the theorem. Finally, we identify the marginal distributions in Section 6.4.1 by the mean of the excursion
theory but also – Section 6.4.2 – by extending the structure of Lamperti processes introduced in [17].

6.1 Functional scaling limits

First note that the tightness in (3.22) is obvious since the modulus of continuity of tSut{uutě0 is equal
to 1 almost surely. Hence, we only need to show the convergence of the finite-dimensional marginal
distributions. To this end, we shall adapt the results in [15] for Lévy walks. In that paper, the authors
consider Lévy walks of the form

Sptq :“
Nptq
ÿ

k“1

Λk Jk`pt´TNptqqΛNptq`1, (6.1)
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with

Tn :“
n
ÿ

k“1

Jk and Nptq :“maxtk ě 1 : Tk ď tu. (6.2)

Here the random moving times Jk and the jumps Λk Jk are i.i.d. – the Λk being i.i.d. and independent
of the jumping times and of unit size. Here, one can interpret S – the PRW – as such Lévy walk
for which the random moving times are given by τd2n´1 or τu2n alternatively and corresponding random
jumps ´τd2n´1 or τu2n. Hence, the directions are deterministic and equal to ´1 or 1 alternatively.

Even if their assumptions do not fit to this model, we shall see that their results extend easily to our
situation. Indeed, the central convergence [15, Theorem 3.4., pp. 4023-4024] becomes in our situation

ˆ

Mn

apnq
,

Tn

apnq

˙

L
ùùùñ
nÑ8

pSαp1q,Tαp1qq, (6.3)

where Tα and Sα are the coupled α-stable Lévy processes introduced to define the arcsine Lamperti
anomalous diffusion. Thereafter, it is not difficult to check that the same continuous mapping and
topological arguments used in the proof of [15, Theorem 4.11., p. 4032] and its Corollary 4.14., p.
4033, hold to obtain the functional convergence (3.22).

6.2 About the governing equation

We observe that Sα is the same scaling limit of a “true” Lévy walk – in the sense of [15] – whose
random moving times and jumps are respectively given by ξnτun ` p1´ ξnqτ

d
n and ξnτun ´ p1´ ξnqτ

d
n

with i.i.d. random directions 2ξn´1 independent of the running times and distributed as a Rademacher
distribution of parameter p1`bSq{2 denoted in the following by X pd`q.

Remark 6.1. One can see the latter Lévy walk as randomized version of the PRW which is somehow
more convenient to study as it is already appeared for the recurrence and transience criteria in [1].

It is also shown in [15, Theorem 5.6., pp. 4036-4037] that the density distribution ftpxq satisfies – in
a weak sense – the fractional partial differential equation (3.23) since it can be write as

ż

A

ˆ

B

Bt
` `

B

Bt

˙α

ftpxqX pd`q “
1

Γp1´αq

1
tα

ż

A
δ` tpdxqX pd`q. (6.4)

Besides, it follows from [15, Section 5., p. 4035] that ftpxq can be expressed as

ftpxq “
1

Γp1´αq

ż

A

ż t

0

uαpx´ `pt´ sq,sq
p1´ sqα

dsX pd`q, (6.5)

where uαpx, tq denotes the 0-potential density of pSα ,Tαq – the occupation time density – and it comes
(3.24). Furthermore, the Fourier-Laplace Transform (FLT) of uαpx, tq can be computed explicitly and it
leads to the FLT of Sαp1q given in equation (5.5) of [15] – equal here to

ps´ iyqα´1`ps` iyqα´1
´

1`bS
2

¯

ps´ iyqα `
´

1´bS
2

¯

ps` iyqα
. (6.6)

Taking the derivative at the origin with respect to the spacial variable we can see that the mean distri-
bution of f1pxq is equal to mS. However, we have not been able to invert directly this FLT to get the
expression (3.25).

Remark 6.2. By using the results in [23] it may be possible to provide the same representations of the
finite-dimensional marginal distributions.
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6.3 Markov property and continuous time VLMC

Here we show that pXα ,Aαq is Markovian. Let Pα
0 be the distribution of such stochastic process.

First, from the regenerative property of a stable subordinator we get that tpXαpt` sq,Aαpt` sqqutě0 is
distributed as Pα

0 for any s PRα . Furthermore – by using [10, Lemma 1.10, p. 15] – one can see that

PpHαptq P dh |Aαptq “ aq “
α aα

pa`hqα`1 dh, (6.7)

for any t ą 0 and we denote this homogeneous kernel by Npa;dhq. Then we introduce for any ` P t´1,1u
and aě 0 the distribution Hα

p`,aq of the process on t´1,1uˆr0,8q equal to t ÞÑ p`,a` tq up the random
time Ha distributed as Npa;dhq and whatever elsewhere. Therefore, by construction and the regenerative
property, it turns out that the distribution of the stochastic process tpXαpt ` sq,Aαpt ` sqqutě0 is –
almost surely – the push-forward image of Hα

pXα psq,Aα psqq
bPα

0 under the gluing map G defined by

Gpw1,w2q :“ w1ptq1ttăHau`w2ptq1ttąHau, (6.8)

The Markov property is then a simple consequence of this representation.
As a consequence, one can see Xα as a continuous time VLMC. Besides, it is well known – see [3,

Chap. 8.6] for instance – that the distribution of the couple formed with the age time and the remaining
time pAαptq,Hαptqq can be computed explicitly and some scaling limits of this couple leads to other
generalized arcsine distributions. Moreover, one can easily be convinced using [30, Theorem (3.2), p.
506] or the results in [31, 32]) that this process admit the invariant (infinite) measure given by

ż

A

ż 8

0
G˚pHα

p`,aqbPα
0 q

1
aα`1 daX pd`q, (6.9)

where G˚µ is the push-forward image of a distribution µ by the map G. One can note that this measure
is not a probability and that to be compared with the result [2] stating that a the double-comb PRW
admits an invariant probability measure if and only if the persistence times are both integrable.

6.4 Arcsine Lamperti density

To conclude the proof of Theorem 3.3 it remains to we compute explicitly the density expression. The
first proof uses the theory of excursion whereas the second one generalizes the concept of Lamperti and
is a more general result.

6.4.1 Via the excursion theory

We deduce from the integral representation (3.21) that [13, section 4., pp. 341-343] holds and more
precisely that [18, Theorem 1] apply to our situation. Hence, we get the density expression, making in
addition the link with the distribution of the occupation time in the positive half-line of a skew Bessel
process of dimension 2´2α and skewness parameter p1`bSq{2.

6.4.2 A second class of Lamperti processes

Lamperti investigate in [17] the general question of the distribution of the occupation time of a set A
for some stochastic process tXnuně0 on a state space E. Regarding the dynamic, it is surprisingly only
assumed that E can be divided into two sets – the aforementioned A and an other one B – plus a recurrent
state σ in such a way that for any ně 1, if Xn´1 P A and Xn`1 P B or vice versa, then necessarily Xn “ σ .

Thereafter, given such process starting from σ , Lamperti consider Nn the occupation time of A up
to the time n – the state σ being counted when the process comes from A – and he introduces Fpxq the
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generating function associated with the recurrence time of σ . This decomposition of the state space and
how to count the occupation time is resumed by the weighted diagram in the left-hand side of Figure
6.4. The following Theorem is stated and proved in its paper.

Theorem 6.1. The mean occupation time tNn{nuně1 converges in distribution as n goes to infinity to a
non-degenerate limit if and only if there exist α and p in p0,1q such that

lim
nÑ8

ErNn{ns “ p and lim
xÒ1
p1´ xqF 1pxq{p1´Fpxqq “ α. (6.10)

Besides –in that case – the limit distribution has for density on p0,1q the function

sinpπαq

π

tα´1p1´ tqα´1

rt2α `2cospπαqtαp1´ tqα ` r´1p1´ tq2α
, (6.11)

with r :“ p1´ pq{p.

The proof is based on a precise asymptotic estimate of the moments associated with Nn as n goes to
infinity – via suitable generating functions and their regular variations – in order to identify the limit of
the Stieljes transform of Nn{n.

In our case, it would seem natural to see A as the rises of S so that it can be write more or less as
Sn “ 2Nn´n. Unfortunately, we have not been able to fit this situation to the latter Lamperti dynamic.
As a matter of fact, the communication diagram and the way to compute the suitable occupation time Nn

can be given as in the right hand side of Figure 6.4.
To be more precise, if we consider the 2-letters process Xn :“ XnXn`1 with the decomposition of

tu,duˆtu,du given by A :“tuuu, B :“tddu, σ :“ ud and η :“ du and if we denote by Nn the occupation
time of A up to the time n – the state η being counted or not according to well chosen weights – the
PRW satisfies for any ně 1 the relation Sn “ 2Nn´1´n. Note also that σ and η are recurrent states and
since the random times spend in A and B are distributed as τu1 and τd1 respectively the recurrence times
of σ and η are both equal in law to τ1 “ τu1 ` τd1 .

To get the limit distribution we adapt and follow a part of the proof in [17]. To this end, we introduce
pn,k the probability – starting from σ – that Nn “ k and we denote by un and dn the probability that
τu1 “ n and τd1 “ n respectively. Thereafter, by conditioning with respect to the complete three events
tτ1 ď nu\tτ1 ě n`1,τd1 ď nu\tτd1 ě n`1u we obtain

pn,k “
ÿ

m`lďn
mďk

dl um pn´pm`lq,k´m`
ÿ

lďn

dlTupn´ lqδk,n´l`1`Tdpnqδk,0, (6.12)

σ BA
0

01

1
01

0

σ η

B

A

0

1
10

0 1

1

0

Figure 6.4: Original and current Lamperti decomposition of the state space
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with δi, j is 1 or 0 according to i “ j or not. Then, let F̀ pzq be the generating function of τ`
1 and T`pzq

be the one associated with its tail distribution. it follows that the double generating function associated
with the latter difference equation satisfies

Ppx,yq :“
ÿ

n,kě0

pn,k xn yk “
FdpyqTupxyqy`Tdpxq

1´FdpxqFupxyq
, (6.13)

From our stability assumption and classical results on regular variations we get that there exists a slowly
varying function Lpzq such that

1´Fupzq “ p1´ zqTupzq „
zÒ1

ˆ

1`bS

2

˙

L
ˆ

1
1´ z

˙

p1´ zqα , (6.14)

the same asymptotic and equality being also true replacing u by d and p1`bSq{2 by p1´bSq{2. Then
we can check that for any λ ą 0,

lim
xÒ1
p1´ xqP

´

x,e´λp1´xq
¯

“
p1`λ qα´1` rS

p1`λ qα ` rS

, (6.15)

and thereafter the proof follows exactly the same lines as [17]. We obtain the arcsine Lamperti density.
Note that it may be possible to state and prove a general theorem for such Lamperti processes.

This completes the proof of the anomalous situation.

7 Equivalent characterizations of Assumption 2.2

In the continuity of (2.4) and (2.5) we can consider Tcptq and Vcptq the two-sided distribution tail and
the truncated second moment of the central random variable τc1 given in (2.10). In the following, we
denote by RVpλ q the set of regularly varying functions of index λ P R, also named the set of slowly
varying functions SV if λ “ 0. It is well known that hypothesis (2.10) is equivalent to

Vcptq P RVp2´αq, or equivalently when α ‰ 2, Tcptq P RVp´αq, (7.1)

with an additional tail balance criterion when α ‰ 2: there exists β P r´1,1s with

lim
tÑ8

Ppτc1 ą tq´Ppτc1 ă´tq
Ppτc1 ą tq`Ppτc1 ă´tq

“ β . (7.2)

Remark from [7, Theorem 2, Chap. VIII.9, p. 283] that

lim
tÑ8

t2Tcptq
Vcptq

“
2´α

α
, (7.3)

To go further, introduce

T ptq :“Tuptq`Tdptq and V ptq :“Vuptq`Vdptq. (7.4)

The two following lemmas gives another possible interpretations and choices of condition (2.10) and
of the normalizing functions. Their proofs are straightforward computations using only classical results
on regularly varying functions which can be found in [3] for instance, they are omitted.
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Lemma 7.1. Assuming the existence of the mean drift mS P p´1,1q, the hypothesis (2.10) is equivalent
when α ‰ 2 to Y1 “ τu1 ´ τd1 P Dpαq but also to

”

V ptq P RVp2´αq or T ptq P RVp´αq

ı

and lim
tÑ8

Tuptq´Tdptq
Tuptq`Tdptq

“ bS. (7.5)

In that case, the functions T ptq and V ptq are respectively the tail distribution and the truncated second
moment of Y1 but also of τ1. Besides, one has

Tcptq „
tÑ8

„

p1´mSq
α

ˆ

1`bS

2

˙

`p1`mSq
α

ˆ

1´bS

2

˙

T ptq, (7.6)

and thus the same asymptotic between Vcptq and V ptq. Moreover, the balance term β in (7.2) satisfies

β “
p1´mSq

αp1`bSq´p1`mSq
αp1´bSq

p1´mSq
αp1`bSq`p1`mSq

αp1´bSq
. (7.7)

Finally, when α “ 2,
Vrτc11t|τc1 |ďtus „

tÑ8
Vcptq „

tÑ8
Σptq2. (7.8)

Hence, when α ‰ 2, Assumption 2.2 means that at least one of the persistence times belongs to the
domain of attraction of a stable distribution, the tail distribution of the other one being in some sense
comparable with the first one. However, in view of [33, Theorem 4.5., p. 790], we can state

Remark 7.1. When α “ 2, it is possible for all linear combination of τu1 and τd1 distinct of τc1 to not
belong to the domain of attraction of a standard normal distribution.

As a consequence, it turns out that apuq, spuq and thus λ puq – together with Σptq2 and Θptq inside their
definitions – are regularly varying functions. In particular, we can see that the sub-linear normalizing
function λ puq is asymptotically linear if and only if α P p0,1q. in any case, there exists a slowly varying
function `puq such that

λ puq „
uÑ8

`puqu
1

α_1 .

The second lemma, coupled with the first one, will be useful – among other considerations – to
discriminate whether the persistence times are integrable or not and thus to identify mS. Again, the
proof is omitted. Given two real functions f ptq and gptq defined on a neighbourhood of infinity, we set
f ptq—gptq when there exists cą 0 such that for t sufficiently large c´1gptq ď f ptq ď cgptq.

Lemma 7.2. Let µ be a positive measure on r0,8q and for any pě 0 and t ě 0,

Mpptq :“
ż

r0,ts
xp

µpdxq and Tpptq :“
ż

pt,8q
xp

µpdxq.

Then for any qą pě 0,

Mpptq —
ż

r1,ts

Mqpuq
uq´p`1 du`

Mqptq
tq´p and Tpptq —

ż

pt,8q

Mqpuq
uq´p`1 du`

Mqptq
tq´p .

Therefore, the persistence times are both integrable dT ă8when α P p1,2s and in that case mS “ dS.
Besides, they are both of infinite mean when α P p0,1q and then mS “ bS, the two latter situations being
possible when α “ 1.
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