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Abstract. In this paper we compute the worst-case and average exe-
cution time of the Best Response Algorithm (BRA) to compute a pure
Nash equilibrium in finite potential games. Our approach is based on a
Markov chain model of BRA and a coupling technique that transform
the average execution time of this discrete algorithm into the solution
of an ordinary differential equation. In a potential game with N players
and A strategies per player, we show that the worst case complexity of
BRA (number of moves) is exactly NAN−1, while its average complexity
over random potential games is equal to eγN + O(N), where γ is the
Euler constant. We also show that the effective number of states visited
by BRA is equal to logN + c + O(1/N) (with c 6 eγ), on average. Fi-
nally, we show that BRA computes a pure Nash Equilibrium faster (in
the strong stochastic order sense) than any local search algorithm over
random potential games.

1 Introduction

The question of computing Nash Equilibria (NE) in games is a central question
in algorithmic game theory and has been investigated of many papers. The most
classical result is in [1], showing that the problem of computing NE in finite
games is PPAD complete.

Potential games have been introduced in [2] and have proven very useful,
especially in the context of routing problems in networks, first mentioned in [3]
and exhaustively studied ever since, in the transportation as well as computer
science literature, see for example [4–6]. They have also been heavily investigated
in the context of distributed optimization (see for example [7]). In [8, 9] the
authors show that the computation of NE for general potential games is PLS
complete (Polynomial Local Search complete). As for PPAD, this complexity
class is believed to be different from P .

The best response dynamics is one of the most basic tool in game theory. The
original proof of the existence of a Nash Equilibrium by Nash [10] can be seen as
the proof of existence of a fixed point of the best response correspondence (best
response is called countering in [10]). It has been well-known for a long time that



the Best Response Algorithm converges in finite time to a pure NE in potential
games [11]. So BRA is a natural candidate for computing Nash equilibria.

In this paper, we analyze the performance of BRA over potential games with
N players, each with A possible strategies. It is well known that the convergence
time of BRA over potential games can be exponential in the number of players
(see for example [8]). Here, we confirm this by showing that the worst case
complexity of BRA (number of plays) is exactly NAN−1. Special cases, such as
graphical potential games have been analyzed in [12] by showing an equivalence
between the potential of such games and Markov fields. In other special cases
such as scheduling congestion games with identical tasks, it has been show that
BRA takes at most N steps before finding a NE [13]. Extensions with positive
and negative externalities also have a linear complexity [14].

However the average complexity of BRA over all potential games has at-
tracted surprisingly little attention. Random (non potential) games with two
players have been studied in [15]: With two IID utility matrices of size A × A,
the computation of a NE is O(A3 log logA) with high probability using a rather
sophisticated algorithm.

Our main contribution is to show that for potential games with N players,
E[MBRA], the average number of strategy profiles visited by BRA before con-
vergence, is E[MBRA] = log(N)+C+O(1/N) (where C 6 eγ , γ being the Euler
constant). We also show that the average number of comparisons performed by
the algorithm is equal to eγ(A − 1)(N − 1) + o(AN). This could be intuitively
explained by the fact that random potential games have a lot of pure NE [16].
In our framework, potentials are IID random variables so that, on average, one
action profile out of (A − 1)N + 1 profiles is a NE while in the worst case, a
potential game may have a single pure NE. This is only a partial explanation,
however. This does not explain the fact that the complexity does not depend on
the number of actions, nor the value of the constant factor, eγ ≈ 1.78.

We further show that the Best Response Algorithm computes a pure Nash
Equilibrium faster than any algorithm based on player’s local information, not
only in average but also in the strong stochastic order sense.

Missing proofs and additional details (numerical simulations, analysis of al-
ternative algorithms) are given in a long version of this paper, available in HAL
Archive ( [17]).

1.1 Coupling and Markovian Analysis

The main idea of our approach is to see the evolution of BRA in a random
environment as a dynamical system, whose behavior can be computed using
differential equations. This will allow us to compute the exact asymptotics of
the average complexity in N and A, not only O(.) bounds. Second moments of
TBRA and of MBRA can also be computed by the same approach (see [17]).

The first step (§ 4.2) is to construct an approximation of the behavior of
BRA over a potential game. This approximation is called IFA in the paper, for
Intersection-Free Approximation because it discards strategies already explored



by BRA. We show that the execution time of BRA is smaller than the execu-
tion time of its IFA approximation for the strong stochastic order. This is done
by constructing a non-trivial coupling between both executions. This powerful
technique is exploited to our great benefit here.

The second and most important step (§ 4.4) is to consider one run of the IFA
approximation of BRA as a trajectory of a Markov chain over the continuous
space of potentials. Doing so, the average complexity is transformed into the
average hitting time of an absorbing state of the Markov chain. The theory of
Markov chains implies that this average hitting time satisfies a Poisson differen-
tial equation. Thus, the average complexity of BRA is given by the solution of
a system of ordinary differential equations. This system happens to have a solu-
tion in closed form whose asymptotics in N and A can be computed by taking
integrals over initial states.

As for the proof of optimality of BRA among all local search algorithms
(§ 5), our approach is based once again on a coupling argument. While using
coupling techniques is more classical in this context (comparison of algorithms),
this particular case retains some originality because the coupling used here is
not built off-line but is being constructed on the fly while the algorithm runs.

2 Best Response Algorithm and Potential Games

We consider a game with a finite number N of players, each with A strategies.

Definition 1 (N-player game). A game is a tuple G
def
= G(N ,A, u) with

– a finite set of players N = {1, . . . , N};
– a finite set Ak of pure strategies for each player k ∈ N .

The set of strategy profiles or states of the game is A def
= A1 × A2 ×

· · ·AN .
– The players’ payoff functions uk : A → R.

We define the best response correspondence brk(x) as the set of all strategies
that maximizes the payoff for player k under profile x = (x1, . . . , xN ): brk(x)

def
={

argmax
α∈Ak

uk(α;x−k)

}
.

A Nash equilibrium (NE) is a fixed point of this correspondence, i.e. a profile
x∗ such that x∗k ∈ brk(x

∗) for every player k.

Definition 2 (Potential games and its generalizations). A game is an
(exact) potential game [11] if it admits a function (called the potential) Φ : A →
R such that for any player k and any unilateral deviation of k from strategy
profile x to x′: uk(α, x−k)− uk(α′, x−k) = Φ(α, x−k)− Φ(α′, x−k).

A game is a generalized ordinal potential game [11] (or G-potential game for
short) if there exists a potential function Φ : A → R such that, for any player k
and any state x, uk(α, x−k) > uk(α

′, x−k)⇒ Φ(α, x−k) > Φ(α′, x−k).



A game is a best-response potential game [18] (or BR-potential game for
short) if there is Φ : A → R such that for any player k and strategy profile x,

brk(x) =

{
argmax
α∈Ak

Φ(α, x−k)

}
.

As shown in [18], exact potential games are BR-potential games, but there
exist G-potential games that are not BR-potential games. In the following, we
will consider the most general case (i.e. all games that are either BR-potential
or G-potential games) and call them potential games for simplicity.

We consider a general version of the Best Response Algorithm (BRA) with
uniform choice over all possible best responses when ties occur and where the
next player is selected according to a revision function R(.), that may depend
of the whole past of the algorithm. We assume that this function is weakly fair:
each player appears infinitely often in the sequence of plays induced by R, almost
surely. This revision function can be deterministic (for example, round-robin:
R(t) = t mod N ) or random (for example, Bernoulli where the next player
is chosen according to an probability distribution ρ (the revision law): ∀k ∈
N ,P(R(t) = k) = ρk). In that case, weak fairness implies that the probability of
choosing any player k is strictly positive (∀k ∈ N , ρk > 0).

Algorithm 1: Best Response Algorithm (BRA)
Input: Game utilities (uk(·)); Initial state (x := x(0));
Weakly fair revision function R;
List of satisfied customers, initially empty: L := ∅;

repeat
Pick next player k := R(t); t := t+ 1;
if xk 6∈ brk(x) then

Update strategy for player k to any xk ∈ brk(x);
L := ∅;

L := L ∪ {k};
until size(L) = N ;

It is well known (see [11]) that for any potential game G, Algorithm 1 con-
verges in finite time, almost surely, to a Nash Equilibrium of G.

3 Worst Case Complexity

In this section, we analyze the time complexity of BRA. More precisely, we con-
sider three measures (related to each other). The first one is TBRA, the number
of iterations (or the number of times that the function br is called) before BRA
reaches a Nash equilibrium. A related measure is the total number of comparisons
used by BRA (denoted CBRA). One should expect that CBRA ≈ (A− 1)TBRA.
Finally, another interesting quantity is the number of different states visited by
BRA (denoted MBRA). This is called the number of moves done by BRA before
convergence to a Nash equilibrium (NE). Of course, MBRA 6 TBRA.



These quantities depend on the game over which BRA is run, on the initial
state x0 and on the infinite sequence of revision players R. It should also be clear
that they are functions of the game only through the potential Φ, so we denote
by TBRA(Φ, x0, R) the number of steps before convergence of Algorithm BRA
for a game with potential Φ, starting in state x0, under the condition that the
sequence of players is given by R.

In the worst case, for some weakly fair revision functions R, TBRA(Φ, x0, R)
can be unbounded because the revision sequence induced by R can be arbitrarily
bad: one player might appear too few times to guarantee convergence in any
bounded time. When R is the round-robin function, the time for convergence is
finite but can still be very large, as shown in the following theorem.

Theorem 1. In the worst case, TBRA(Φ, x0, round-robin) = NAN−1.

It is well known that the worst case complexity of BRA is exponential in
the number of players (see for example [8]). The version of this result given here
(for round robin revision and generalized potential games) is only given for the
record (the proof is given in [17]).

4 Average Complexity of BRA

4.1 Randomization

In the following we will randomize over the potential games over which BRA
is used. Since the behavior of BRA only depends on the potential function, we
randomize directly over the potential Φ.

We consider a randomization over all games, uniformly over all possible orders
for the potentials. On one hand, this is the classical average complexity approach
when no additional information is known about the games (the same approach
is used in [15] for 2 player games for example). This yields IID potential for all
profiles, as explained below. On the other hand, some may argue that uniformly
random games are not generic in some sense and a good performance of BRA
on average does not necessarily translate in good performances for “real word”
games. In any case, this is a first step that must be taken in absence of additional
information about specific games that one may want to study.

There are several equivalent ways to do this randomization. The first one
is based on the fact that the complexity of the algorithm does not depend on
the actual values of the potential of the states but only on the comparisons
between them. When two potentials are equal, a strict order between them is
chosen uniformly. Therefore, the natural randomization is to consider the linear
extensions (total orders) of all possible partial orders over the set A and pick
one uniformly. The number of total orders on A is the number of permutations
on A, namely (AN )!.

The second (equivalent) randomization is the following: The potentials of all
states x are chosen independent, identically distributed according to an arbitrary
distribution F admitting a density w.r.t. the Lebesgue measure.



Both randomizations are equivalent. Indeed, take any k states x1, . . . , xk in
A. In both cases, P(Φ(x1) > Φ(x2) > · · · > Φ(xk)) = 1/k!. Now, since F is
increasing, F−1 is well-defined and we get P(Φ(x) > Φ(x′)) = P(F−1(Φ(x)) >
F−1(Φ(x′))). Note that F−1(Φ(x)) is uniformly distributed on [0, 1]. Therefore,
with no loss of generality, one can assume that the potential of all the states are
i.i.d., uniformly distributed on [0, 1]. This randomization is used in the following.

4.2 Intersection-Free Approximation

The direct analysis of the behavior of BRA over a random potential is difficult be-
cause, over time, more and more states have been visited by the algorithm. Thus,
its behavior is non-homogeneous in time. To avoid this difficulty, we consider a
new model, called the Intersection-Free Approximation (IFA) in the following.
Under the Intersection-Free Approximation, every time a new player (say k) has
to compute its best response in a state (say x), it compares Φ(x) with the po-
tential of its A− 1 other possible strategies, as for the real BRA. Here however,
we assume that those A − 1 states have not yet been visited during the previ-
ous steps of the algorithm. Note that under the real behavior of BRA, it could
happen that some of these states have already been compared at a previous step
of the algorithm, by another player (this will be called an intersection in the
following). Under the Intersection-Free Approximation, the states visited by the
algorithm are always “new” states, never compared before with any other states.

More formally, the algorithm BRA under IFA can be written as follows.
Algorithm 2: BRA algorithm under IFA
Input: Initial state (x(0)); Revision function R;
Set of satisfied players, initially empty L := ∅.

repeat
Pick next player k := R(t); t := t+ 1;
if k /∈ L then

Generate IID potentials Φ(α, x−k), α ∈ Ak \ {xk} unif. on [0, 1];
Compute best response: αk := argmax

β∈Ak

Φ(β;x−k);

if αk = xk then
L := L ∪ {k}

else
L := {k}; xk := αk;

until size(L) = N ;

Let us recall that CBRA (resp. TBRA,MBRA) is the number of comparisons
(resp. number of steps, number of moves) taken by BRA before convergence
and let us define CIFA (resp. TIFA,MIFA) to be the number of comparisons
(steps, moves) of BRA under the intersection-free approximation. By definition,
the worst case complexity of IFA under a round-robin revision sequence is infi-
nite. However, its average complexity is the same as for BRA, as shown by the
following lemma.



Lemma 1 (BRA and IFA are asymptotically equivalent). Under the fore-
going notations and using a round-robin revision function, the following compar-
isons hold, where 6st is the strong stochastic order:

1. CBRA 6st CIFA (equivalently, [19] ∀t ∈ R, P(CBRA > t) 6 P(CIFA > t)).
2. If I is the total number of intersections in BRA, then TBRA 6st TIFA+ I

A−1 .
3. E[TBRA] = E[TIFA] + o(1) and E[CBRA] = E[CIFA] + o(1),
4. E[MBRA] = E[MIFA] + o(1).

The proof of the lemma is available in [17]. It is based on the construction of a
coupling between the executions of BRA with and without IFA. The assumption
that the revision function is round-robin for BRA and for IFA does not play a
big role in the proof, and it could be removed. However, the following section,
asserting the optimality of round-robin implies that extending the proof to more
general revision functions has a limited interest.

4.3 Round-Robin and Other Revision Sequences

As for the worst case analysis, the revision sequence influences the average time
complexity of the algorithm. We show that on average round-robin is asymptot-
ically the best one.

Lemma 2 (Asymptotic optimality of round-robin). For any revision func-
tion R, E

[
TBRA(Φ, x

0, round-robin)
]
6 E

[
TBRA(Φ, x

0, R)
]
+ ε(N), where the

expectation is taken over all potentials Φ and all initial states x0 and ε(N) goes
to zero when N goes to infinity.

The proof is again available in [17]. It uses the comparison with IFA. In the
rest, we focus on round-robin revision functions and omit it in the notations,
unless specified otherwise.

4.4 Complexity Analysis

We will be analyzing the intersection-free approximation of the behavior of BRA,
under a round-robin revision sequence, with no further reference to this.

Let us consider the intersection-free approximation and let y be the poten-
tial of the current state x: (y def

= Φ(x)). Let k be the number of players that
have already played best response without changing the profile. This number
of “satisfied” players can replace the explicit set L used in Algorithm 2 when
the revision sequence is round-robin. The evolution at the next step of BRA
under IFA is as follows. The kth player computes its best response. The player
has A − 1 new strategies whose potential must be compared with the current
potential (y). As mentioned before, we can assume that the potentials of those
a

def
= A− 1 strategies are IID, uniformly distributed in [0, 1].
With probability ya none of the new strategies beat the current choice. The

state remains at y, one more player is satisfied and it is the turn of the k + 1-st
player to try its best response.



With probability 1− ya, one of the new strategies is the best response. The
current state moves to a new state where the number of satisfied players is set
back to 1 and the potential increases to a value larger than u > y with probability
1− ua.

Let Yt be the potential at step t (Yt ∈ [0, 1]) and Kt be the current number
of consecutive players whose best response did not change the current potential
(Kt ∈ {1, 2, . . . , N}) (number of satisfied players). The previous discussion says
that the couple (Yt,Kt) is a discrete-time, continuous-space Markov chain whose
kernel is:

P
(
(Yt+1,Kt+1) = (y, k + 1)

∣∣∣∣(Yt,Kt) = (y, k)

)
= ya,

and, for any u > y,

P
(
(Yt+1,Kt+1) ∈ ([u, 1], 1)

∣∣∣∣(Yt,Kt) = (y, k)

)
= 1− ua.

All the other transitions have a null probability.
Let m(y, k) be the number of moves of IFA before convergence when the

current state of the Markov chain is equal to (y, k).
With probability ya, the next player does not change its choice so that

m(y, k) = m(y, k + 1).
With probability density aua−1 the next player finds a new best response with
potential u so that one move is taken and m(y, k) = 1 +m(u, 1).
Let M(y, k) = E[m(y, k)]. The previous one step analysis of m(y, k) makes
M(y, k) satisfy a forward Poisson equation:

M(y, k) = yaM(y, k + 1) +

∫ 1

y

aua−1(M(u, 1) + 1)du.

By definition, the boundary conditions are: ∀y,M(y,N) = 0 (the current
state is NE when all players agree on this) and ∀k,M(1, k) = 0 (the potentials
are all bounded by 1, so a state with potential 1 is guaranteed to be a NE).

By setting B(y)
def
=
∫ 1

y
aua−1(M(u, 1) + 1)du, we get the following system of

integral equations 

M(y, 1) = yaM(y, 2) +B(y),

M(y, 2) = yaM(y, 3) +B(y),
... =

...
M(y,N − 2) = yaM(y,N − 1) +B(y),

M(y,N − 1) = B(y).

(1)

Successive substitution of M(y, 2), . . . ,M(y,N − 1) in the first equality yields
M(y, 1) = B(y)H(y) where H(y)

def
= 1+ya+ · · ·+ya(N−2). Differentiating w.r.t.

y, one gets an ordinary differential equation in M(y, 1):

dM(y, 1)

dy
+ (aya−1H − 1

H

dH

dy
)M(y, 1) = −aya−1H.



The equation is of the form ḟ+gf = h. Using the boundary conditionM(1, 1) =
0, its generic solution is

M(y, 1) = e−Q(y)

∫ 1

y

aua−1H(u)eQ(u)du. (2)

where

Q(y)
def
=

∫ y

0

(
aua−1H(u)− 1

H(u)

dH(u)

du

)
du = − log(H(y))+

∫ y

0

aua−1H(u)du.

(3)
The average number of profile changes in the execution of the algorithm

starting from an arbitrary profile is E[MIFA] =
∫ 1

0
M(y, 1)dy. Since M(y, 1)

is decreasing in y, E[MIFA] is upper-bounded by M(0, 1). Using Q(0) = 0,
H(0) = 1 and replacing Q and H by their values,

M(0, 1) =

∫ 1

0

exp

(
N−2∑
i=0

ua(i+1)

i+ 1

)
aua−1du =

∫ 1

0

exp

(
N−2∑
i=0

vi+1

i+ 1

)
dv (with v = ua)

=

∫ 1− 1
N

0

exp

(
N−1∑
i=1

vi

i

)
dv +

∫ 1

1− 1
N

exp

(
N−1∑
i=1

vi

i

)
dv

6
∫ 1− 1

N

0

exp

( ∞∑
i=1

vi

i

)
dv +

1

N
exp

(
N−1∑
i=1

1

i

)
(4)

=

∫ 1− 1
N

0

dv

1− v
+ eγ +O(1/N) = log(N) + eγ +O(1/N). (5)

Furthermore, this bound is tight, up to an additive constant (see [17]).
Let us now consider the average number of comparisons made by BRA under

the intersection-free assumption. Let C(y, k) be the average number of compar-
isons starting in a state with potential y and k players have played without
changing their strategy. The Poisson equation for C(y, k) is :

C(y, k) = ya(C(y, k + 1) + a) +

∫ 1

y

aua−1(C(u, 1) + a)du,

with the boundary conditions C(1, 1) = a(N − 1) and C(y,N) = 0.
The solution of this differential system can be obtained in closed form, using

a similar approach as for M(y, 1).

C(y, 1) = a

(
N−2∑
i=0

yai

)
exp

(
−
N−1∑
i=1

yai − 1

i

)
.

The average number of comparisons is E[CIFA] =
∫ 1

0
C(y, 1)dy.



For all y < 1,

C(y, 1) = a

( ∞∑
i=0

yai

)
exp

(
N−1∑
i=1

1/i

)
exp

(
−
∞∑
i=1

yia/i

)
+ o(aN) (6)

= a
1

1− ya
(N − 1)eγ(1− ya) + o(aN) +O(1) (7)

= a(N − 1)eγ + o(aN), (8)

where γ is the Euler constant (γ ≈ 0.5772...). Therefore, the same equality holds
for the integral, equal to E[CIFA].

The results of this section, together with Lemma 1, lead to the following
theorem, the main result of the section.

Theorem 2 (Average complexity of BRA). Under the round-robin revision
sequence, the average complexity of BRA over a potential game satisfies:
(i) Average number of moves: E[MBRA] = log(N) + c+O(1/N)., where c 6 eγ

(ii) Average number of comparisons : E[CBRA] = eγAN + o(AN).
(iii) Average number of steps: E[TBRA] = eγN + o(N).

The average complexity E[TBRA] can be split into two parts: The number of
plays before reaching a NE and the number of plays needed to check if a state is
indeed a NE. This last part takes exactly N−1 steps in Algorithm 1: The players
have to play one by one to fill up set L. This means that a NE equilibrium is
reached on average as soon as eγ−1 ≈ 78% of the players have played once. The
second moments of the number of steps and the number of moves under IFA can
be computed similarly (see [17]). In both cases, the standard deviations are of
the same order as the means.

5 Optimality of BRA

In this section, we prove that BRA finds a Nash equilibrium faster than any local
search algorithm (defined in Section 5), in the strong stochastic order sense.

By definition a Local Search Algorithm can only access the payoff matrix, one
player at a time. This access is often called a query in the literature. Once the
payoff of a strategy profile has been obtained, it is stored in memory and can
re-used later by the algorithm without an additional query.

In addition to queries, a local search algorithm can use any arithmetic oper-
ation, draw random variables and choose a strategy for all players.

Any local search algorithm can be written in the following form, based on
the history of the execution, Ht, that corresponds to the amount of information
gathered by the algorithm up to step t.



Algorithm 3: A general local search algorithm
Initial storage reduced to the initial profile: H0 := {(x(0)}.
repeat

Select next player: k := R(Ht);
Query payoff vector of k under current state: uk(·, x−k(t));
Store the new visited states and their payoffs in memory:
Ht+1 := Ht ∪ {((α, x−k(t)), uk(α, x−k(t)))α∈Ak

};
jump to next state x(t+ 1) := J(Ht+1);
Set stop := 1 if the current state is a NE;
t := t+ 1;

until stop;

The functions J and R used in the inner loop are arbitrary functions that
choose the next state as well as the next player to play, according to the whole
history of the process. These functions can be deterministic or random. Testing
if x(t+1) is NE is not detailed. Notice, however, that it can only be done when
all the payoff vectors for all the players in state x(t + 1) have been stored in
memory.

The complexity of a local search algorithm A is defined as the total number
of its payoff vector queries (denoted TA).

Theorem 3 (Optimality of BRA). Let A be any local search algorithm that
computes a Nash Equilibria in potential games. Under the foregoing random-
ization, and choosing the starting point x0 uniformly among all states, ∀t > 0,
P(TBRA > t|R = RA) 6 P(TA > t), where RA is the revision sequence con-
structed in A.

The proof is reported in [17]. Combining this theorem with Lemma 2 estab-
lishes the optimality of BRA with round-robin.

6 Conclusion and Perspectives

The best response algorithm is one on the most basic object in game theory.
In this paper, we prove it has a linear complexity on average over uniformly
randomized potential games. Furthermore, BRA is optimal in the class of lo-
cal search algorithms when one has no information about the structure of the
potential game.

Does all this make BRA the perfect algorithm to compute NE in general? We
believe that the answer is no because BRA suffers from several drawbacks. First,
it does not tolerate simultaneous plays. Second, it requires to know the entire
payoff vector of a player before choosing its strategy. Other drawbacks include
high sensitivity on the order of play and on noisy perturbations on the payoffs.
Designing algorithms that do not suffer from these drawbacks is the object of
our future investigations.
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