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High order variational numerical schemes with
application to Nash - MFG vaccination games

Laetitia LAGUZET

Abstract.
This paper introduces high-order explicit Runge-Kutta numerical schemes

in metric spaces. We show that our approach reduces to corresponding Runge-
Kutta schemes if the ambient space is Hilbert.

We apply these schemes to compute the Nash equilibrium in a Mean Field
vaccination Game. Numerical simulations show improvement in the speed of
convergence towards the Nash equilibrium; the numerical scheme has high
order (two to four) in time.

1 State of the art and motivation

The games with a continuum of agents have been widely studied during the
last decade thanks to the Mean Field Games (MFG) theory, introduced by
Lasry-Lions ([16, 17, 18]) and Huang-Caines-Malhamé ([13, 11, 12]). An ap-
plication of this framework is the modeling of the vaccination decision in a
population. In this case, the Nash-MFG equilibrium corresponds to a strategy
where nobody has interest to change his own vaccination strategy; therefore
the existence and the determination of an equilibrium is central. Analytic so-
lutions are available for some particular cases (see for instance [15]) but finding
an equilibrium becomes more complicated if the model has specific behavior
with network interaction or epidemic spread for example ([10, 9, 8]). Thus
finding the equilibrium can quickly become time consuming. One commonly
used method is based on finding a fixed point of some function, which can be
formulated as the attractor of an evolution system.

The existence of an equilibrium in the general case of MFG is of utmost
interest (see for instance [2, 4] for an entry point to this literature). Several
approaches were developed, inspired by the general framework of gradient flows
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2 L. LAGUZET

(see [14]) where the procedure is iterative. Let us recall that in a gradient flow
framework (which is not necessarily related to a MFG model !) the equation
to be solved is written symbolically (see [1] for an introduction):

ξ′(t) = ∇F (ξ(t)), (1)

where the function F is given but ∇F cannot be computed. The numerical
counterpart of (1) is the celebrated JKO (see [14]) scheme which can be written
as:

ξ(tk+1) ' argmin
η

d(ξ(tk), η)2

2τ
+ F (η). (2)

Very recently, second order in time methods have been proposed (see [19]).

On the other hand, a MFG equilibrium has no associated function ’F ’ and
it is likely that no such function exists. Rather, the search for an equilibrium
takes the form of a fixed point:

ξ(t) = J(ξ(t)). (3)

In practice, inspired by the Fictitious Game (see [5]) and Best Reply (see
[4, 3]) procedures, a new algorithm has been introduced in [9, Eq 3.2] and [20]
with the following form:

ξk+1 ∈ argmin
η

{
d(η, ξk)

2

2τ
+ P(η, ξk)

}
. (4)

In the limit τ → 0 the equation (4) describes a curve which under some
assumptions on P will be called a solution of the evolution equation ξ′(t) =
P(·, ξ(t)). On the other hand, the MFG framework provides a natural function
P(·, ·) even when ξ does not belong to a Hilbert space but only to a metric
space. Thus we are led to consider evolution equations in metric spaces with
semi-explicit numerical schemes (see [20] and also [6]). The purpose of this
work is to introduce variational Runge-Kutta explicit methods of high order
in a metric space using a generalization of linearity (presented in [7]).

These approaches are applied to the control of epidemic spread with vol-
untary vaccination as in [9].

The paper is structured as follows: Section 2 is dedicated to the Runge-
Kutta method recalling its general form (subsection 2.1) and then the intro-
duction of variational Runge-Kutta methods (subsection 2.2). The equivalence
of the two approaches in a Hilbert space is proved in subsection 2.3. Then Sec-
tion 3 gives numerical application of the different schemes and some considera-
tions are discussed in Section 4. Further details concerning the epidemiological
model used in numerical application are provided in Appendix A.
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2 Runge-Kutta methods

2.1 In a Hilbert space

LetH be a Hilbert space, f : [0, T ]×H → H a regular function and y : [0, T ]→
H satisfying (in some sense to be specified):

y′(t) = f(t, y(t)). (5)

The Runge-Kutta approach is an iterative method using temporal dis-
cretization in order to obtain a numerical solution of an ordinary differential
equation of type (5). The time horizon T is supposed to be finite and can be
discretized in (NT + 1) time instants t0 = 0, t1 = τ, t2 = 2τ, ..., tNT = T where
τ is the time step. Let yk ∈ H be an approximation of y(tk).

Runge-Kutta method is based on the evaluation at intermediate points in
time. Equation (6) presents the general form of the Runge-Kutta method for
(5).

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a1,s

. . . . . . . . . . . . . . .

b1 b2 . . . bs

yk+1 = yk + τ
s∑
i=1

bipi,

pi = f

(
tn + ciτ, yk + τ

i−1∑
j=1

ai,jpj

)
.

(6)

Figure 1: Runge-Kutta method. Left: Butcher tableau. Right: Equation.

A method is defined by the values of the coefficients bi, ci and ai,j, often
presented in the Butcher tableau (see table in figure 1). Consistency of such a
method is ensured if

∑i−1
j=1 ai,j = ci for i = 2, . . . , s.

We will present below some particular schemes that will later be formulated
in a metric space.

2.1.1 Explicit Euler scheme

The Explicit Euler (denoting EE) scheme is a Runge-Kutta method with only
one step. It is defined in figure 2 by the Butcher tableau or equivalently by
equation (7). In this case, this scheme is of order one in time.
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0 0

1

yk+1 = yk + τf(tk, yk). (7)

Figure 2: Explicit Euler method. Left: Butcher tableau. Right: Equation.

2.1.2 Heun scheme

Heun scheme uses an approximate value p1, in order to compute yk+1, see the
figure 3. This scheme is of order two in time.

0 0 0

1 1 0

1/2 1/2

p1 = yk + τf(tk, yk),

yk+1 = yk +
τ

2

[
f(tk, yk) + f(tk+1, p1)

]
.

(8)

Figure 3: Heun method. Left: Butcher tableau. Right: Equation.

2.1.3 Runge-Kutta 3 scheme

In the same way, we introduce the Runge-Kutta 3 (denoted RK3) method.
It calculates two intermediate values (p2, p3) to obtain yk+1. See figure 4 for
the value of coefficients in the Butcher table and equation (9) for the explicit
equations. In this case, the method is of order three in time.

0 0 0 0

1/2 1/2 0 0

1 -1 2 0

1/6 2/3 1/6

yk+1 = yk +
τ

6

(
p1 + 4p2 + p3

)
,

p1 = f(tk, yk),

p2 = f(tk+1/2, yk +
τ

2
p1),

p3 = f(tk+1, yk + h(−p1 + 2p2)).

(9)

Figure 4: Runge-Kutta 3 method. Left: Butcher tableau. Right: Equation.

2.1.4 Runge-Kutta 4 scheme

The last method is the celebrated Runge-Kutta 4 (denoted RK4) where three
intermediate values (p2, p3, p4) are computed to determine yk+1. The value of
coefficients is presented in figure 5 and its application to equation (5) is given
in equation (10). This method is of order four in time.
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0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

yk+1 = yk +
τ

6

(
p1 + 2p2 + 2p3 + p4

)
,

p1 = f(tk, yk),

p2 = f(tk+1/2, yk +
τ

2
p1),

p3 = f(tk+1/2, yk +
τ

2
p2),

p4 = f(tk+1, yk + τp3).
(10)

Figure 5: Runge-Kutta 4 method. Left: Butcher tableau. Right: Equation.

2.2 Variational approach

Unfortunately, none of the schemes presented in Section 2.1 can be used for
finding a MFG equilibrium. Firstly because the problem is not really presented
that way, and secondly because the space of the unknowns is, in general, not
a vector space but a metric space. Therefore we need first to generalize the
Runge-Kutta schemes to metric spaces and then to apply them to the MFG
setting.

Let (A, d) be a metric space. The definition 2.1 below gives the properties
of a geodesic space (see [19] for additional details).

Definition 2.1. A curve γ : [0, 1] → A is called a (constant speed) geodesic
provided that d(γ(t), γ(s)) = |t−s|·d(γ(0), γ(1)) and the space is called geodesic
if, for any couple of points (X, Y ) ∈ A2, there exists at least a geodesic γ
connecting them, that is, such that γ(0) = X, γ(1) = Y .

From now on we assume that (A, d) is a geodesic space. Consider P :
A×A → R a function with the following properties:

(H1) ∀n ≤ 4, ∀r > 0, ∀ξ, Y1, . . . , Yn ∈ A, the set of vectors

{(P(z, Y1), . . . ,P(z, Yn)); z ∈ A, d(z, ξ) ≤ r} is compact as a subset of
Rn,

(H2) for any point Y ∈ A and any constant speed geodesic γ the function
t 7→ P(γ(t), Y ) from [0, 1] to R is linear.

The evolution equation that we want to solve has the form ξ′(t) = P(·, ξ(t))
(but note that this is only a formal expression as ξ′(t) does not have a well-
defined meaning in a general metric space).

This section develops a variational Runge-Kutta method in a metric space.
We propose a method that does not assume any vector calculus but uses the
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hypothesis (H2) which defines the notion of linear application in a metric
space (see also [7, Section 8, Definition 8.1 page 480] for more details). As τ
tends to zero equation (4) describes a curve. The purpose of the scheme is to
describe this evolution faster and more precisely that is to say to obtain high
order schemes.

2.2.1 Variational Explicit Euler scheme

The first scheme of that form was introduced in [9, Eq 3.2]. Formally, we define
the variational Explicit Euler scheme (VEE ) by:

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2τ
+ P(η, ξk)

}
. (11)

2.2.2 Variational Heun scheme

The variational Heun scheme (VH ) introduces, as in vector space, an inter-

mediate value ξ̃k+1 (equation (12a)) and uses it to compute ξk+1 (equation
(12b)).

ξ̃k+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2τ
+ P(η, ξk)

}
, (12a)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2τ
+

1

2
P(η, ξk) +

1

2
P(η, ξ̃k+1)

}
. (12b)

Note that two minimizations are required in order to obtain ξk+1.

2.2.3 Variational Runge-Kutta 3 scheme

The variational Runge-Kutta 3 scheme (VRK3 ) is defined by equation (13).

Two intermediate values are computed in this case (ξ̃1
k+1 with equation (13a)

and ξ̃2
k+1 with equation (13b)) in order to obtain ξk+1 using equation (13c).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2τ
+

1

2
P(η, ξk)

}
, (13a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2τ
− P(η, ξ̃1

k+1) + 2P(η, ξ̃2
k+1)

}
, (13b)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2τ
+

1

6
P(η, ξk) +

2

3
P(η, ξ̃1

k+1) (13c)

+
1

3
P(η, ξ̃2

k+1)

}
.
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2.2.4 Variational Runge-Kutta 4 scheme

The variational Runge-Kutta 4 scheme is presented in equation (14). Three

intermediate values (ξ̃1
k+1 with equation (14a), ξ̃2

k+1 with equation (14b) and

ξ̃3
k+1 defined by equation (14c)) are computed in order to obtain ξk+1 by using

equation (14d).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2τ
+

1

2
P(η, ξk)

}
, (14a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2τ
+

1

2
P(η, ξ̃1

k+1)

}
, (14b)

ξ̃3
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2τ
+

1

2
P(η, ξ̃2

k+1)

}
, (14c)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2τ
+

1

6
P(η, ξk) +

1

3
P(η, ξ̃1

k+1) (14d)

+
1

3
P(η, ξ̃2

k+1) +
1

6
P(η, ξ̃3

k+1)

}
.

Note that four minimizations are needed in order to obtain ξk+1.

See section 3.2 for a numerical application and the study of the order in
time of these schemes.

2.3 Property of variational scheme

In this subsection we prove that using hypotheses (H1) and (H2), the varia-
tional schemes introduced above are well-defined (Prop. 2.1) and correspond,
when the ambient space is Hilbert, to the Runge-Kutta method presented in
section 2.1 (Prop. 2.2).

Prop 2.1. Under the hypothesis (H1) and (H2), the equations (11), (12),
(13) and (14) defining respectively the VEE, VH, VRK3 and VRK4 schemes
admit a solution, i.e., the schemes are well defined.

Proof. As the argumentation is very similar for all schemes, we present the
general case where ξk+1 ∈ argminη∈A{F (η)} with F : A → R, for fixed

ξ ∈ A,F (η) = d(η,ξ)2

2τ
+ l(η) where l satisfies hypothesis (H2) and the following

hypothesis (H1bis):

(H1bis) ∀r > 0, ∀ξ ∈ A, the set {l(z); z ∈ A, d(z, ξ) ≤ r} is compact as a
subset of R.
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We will prove that the application F attains its minimum in A.
Let (zk)k∈N ∈ A be a sequence such that limk→∞F (zk) = m with m =

infη∈AF (η). We show that d(zk, ξ) is bounded then we find a minimizer.
Suppose d(zk, ξ) = λ > 1 and let γ be the geodesic connecting ξ and zk

(γ(0) = ξ and γ(1) = zk). Consider an element in the geodesic z = γ(t) such
that d(z, ξ) = 1 (implies necessary t = 1/λ) and using hypothesis (H2), we
obtain:

l(z) = (1− 1

λ
)l(ξ) +

1

λ
l(zk). (15)

For k large enough, zk is such that F (zk) < 2m that is λ2

2τ
+ l(zk) < 2m.

Rearranging equation (15) gives l(zk) = λl(z) − (λ − 1)l(ξ), note that l(ξ) is
constant and as d(z, ξ) = 1, hypothesis (H1bis) insures that l(z) is bounded,
so l(zk) is also bounded (by M ∈ R). Consequently, there exists a constant C,
depending on m, τ and M such that λ < C.

As d(zk, ξ) is bounded, there exists a converging subsequence, (xk)k∈N ∈ A
such that d(xk, ξ) → d1, and l(xk) converges to m − d21

2τ
. Starting from some

index k, xk ∈ B(ξ, d1) (the ball with center ξ and radius d1) and if it is not
the case, we replace xk by the element at the intersection of the ball and the
geodesic γ linking xk and ξ. This operation does not change the limit of l(zk):
noting temporarily x̃k the obtained sequence, as l satisfies hypothesis (H2),
we have l(x̃k) = (1− d1

d(xk,ξ)
)l(ξ)+ d1

d(xk,ξ)
l(xk) with d(xk, ξ)→ d1. By hypothesis

(H1bis), the set l(xk) is closed, so there exists an element Z ∈ B(ξ, d1) such

that l(Z) = m − d21
2τ

with, of course, d(Z, ξ) ≤ d1. In this case, F (Z) =
d(Z,ξ)2

2τ
+m− d21

2τ
≤ m, so Z is a minimizer.

Let n ≤ 4, Y1, . . . , Yn ∈ A, λ1, . . . , λn ∈ R and P satisfying (H1) and
(H2). We define the linear combination l of P by : l(η) =

∑n
i=1 λiP(η, Yi).

We show that l satisfies (H1bis) and (H2). As all elements of the sum are in
a compact set, the sum is bounded. Let (zk)k∈N ∈ A be a sequence such that
limk→∞ l(zk) = α. Using (H1), there exists a subsequence of zk (also noted zk)
such that the element (P(zk, Y1), . . . ,P(zk, Yn)) ∈ Rn converges to (α1, . . . αn)
so l(zk) converges to l(z) with l(z) =

∑n
i=1 λiαi = α.

It is left to the reader to show the equivalence of hypotheses (H1) and
(H1bis) for l.

Prop 2.2. Let H be a Hilbert space, f : H → H be a function and P(x, y) =
〈x, f(y)〉. Then the schemes VEE (equation (11)), VH (equation (12)), VRK3
(equation (13)), and VRK4 (equation (14)) correspond to Explicit Euler (equa-
tion (7)), Heun (equation (8)), Runge-Kutta 3 (equation (9)) and Runge-Kutta
4 (equation (10)) schemes respectively for the evolution equation (5).

Proof. We prove hypothesis (H1) in the case n = 1, the proof for the general
case is left to the reader. We show that, for ξ ∈ H, D = {〈z, f(ξ)〉 ; z ∈
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H, d(z, ξ) ≤ r} is bounded and closed. Denoting || · || the norm of H, by
the triangular inequality when x ∈ B(ξ, r), ||x|| ≤ r + ||ξ||. For x ∈ D,
|| 〈x, f(ξ)〉 || ≤ ||x||·||f(ξ)|| ≤ (r+||ξ||)·||f(ξ)|| <∞, so D is bounded. Let z be
an element of B(ξ, r) and x ∈ H such that z = ξ+x with ||x|| ≤ r, by linearity
〈z, f(ξ)〉 = 〈ξ, f(ξ)〉 + 〈x, f(ξ)〉. Furthermore, 〈x, f(ξ)〉 ≤ ||x|| · ||f(ξ)|| ≤
r||f(ξ)|| so {〈z, f(ξ)〉 , z ∈ B(ξ, r)} is included in the closed interval [〈ξ, f(ξ)〉−
r||f(ξ)||, 〈ξ, f(ξ)〉 + r||f(ξ)||]. If we take x = λ f(ξ)

||f(ξ)|| with λ ∈ [−r, r] then

〈x, f(ξ)〉 = λ||f(ξ)|| which implies 〈z, f(ξ)〉 = 〈ξ, f(ξ)〉 + λ||f(ξ)||. Therefore
{〈z, f(ξ)〉 , z ∈ B(ξ, r)} is exactly [〈ξ, f(ξ)〉− r||f(ξ)||, 〈ξ, f(ξ)〉+ r||f(ξ)||] and
is closed as a closed interval of R.

To prove hypothesis (H2), consider x0, x1 ∈ H and for t ∈ [0, 1], γ(t) =
tx1 + (1− t)x0 the segment between x0 and x1. For t, s ∈ [0, 1], with straight-
forward computation, we have d(γ(t), γ(s)) = |t − s| · d(γ(0), γ(1)), show-
ing that γ is a (constant speed) geodesic. Assume that there exists another
geodesic γ2 linking x0 and x1. Let z = γ2(t) be an element only on γ2; using
the triangle inequality and that γ is the segment linking x0 and x1 we have
d(x0, z) + d(z, x1) > d(x0, x1). Furthermore as γ2 is a geodesic, left member of
previous equation is td(x0, x1)+(1−t)d(x0, x1) = d(x0, x1). We obtain a contra-
diction thus there does not exist another geodesic. The function t→ P(γ(t), Y )
has the form t→ 〈tx1 + (1− t)x0, f(Y )〉, so is linear.

We now prove the equivalence of schemes. The scheme VEE is defined by
the following equation:

ξk+1 ∈ argmin
η∈H

{ ||η − ξk||2
2τ

+ 〈η, f(ξk)〉
}
.

The application F : H → R, F (η) = ||η−ξk||2
2τ

+ 〈η, f(ξk)〉 is differentiable

and its derivative F ′ : H → H is F ′(η) = η−ξk
τ

+f(ξk). The minimizer of F is
a critical point, the minimum noted ξk+1, satisfies F ′(ξk+1) = 0. After trivial
rearrangement, we obtain ξk+1 = ξk−τf(ξk), that is the Explicit Euler scheme
presented in (7) for equation (5). Arguments are similar for other schemes.

3 Numerical illustration

3.1 Framework

F. Salvarani and G. Turinici [9] introduced an epidemiological model with
possibility of vaccine which has imperfect efficiency and limited persistence. To
model the spread of the disease in the population, they use a compartmental
model and a probability distribution to reflect the individual decisions. The
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reader is invited to refer to their article for more details and proofs. A short
presentation of the model is also provided in Appendix A.

To find stable individual decision they define the problem as a Nash equilib-
rium. They find the probability distribution ξ making an individual indifferent
to change his vaccination decision if all individuals have the same ξ (see [9,
Theorem 2.1] for the proof of equilibrium existence).

Let Cξ be the cost of pure strategies ”vaccination happens at time t” when
all individuals choose as vaccination strategy ξ. In that case 〈η,Cξ〉 represents
the cost of an individual with strategy η when others use strategy ξ.

The definition of the mapping E(ξ) as introduced in [9] is the maximum gain
obtained by an individual if he changes unilaterally his strategy and everybody
else remains with the strategy ξ; with mathematical notation:

E(ξ) = 〈ξ,Cξ〉 − min
η∈ΣN+1

〈η,Cξ〉 .

where ΣN+1 =
{
x ∈ RN+1

∣∣∣∑N
k=0 xk = 1 and xk ≥ 0, 0 ≤ k ≤ N

}
. A mini-

mum of the mapping ξ → E(ξ) is a Nash equilibrium. To find it they introduce
an iterative method depending on a step τ (algorithm 1). In this algorithm,
equation (16) is used. The following intuitive interpretation is also provided:
an individual in a population with strategy ξk will, if necessary, adjust his
strategy to minimize his cost function η → 〈η,Cξk〉 while at the same time
keeping small the distance between the previous strategy ξk and the new ξk+1.
But algorithm 1 can also be seen as numerical resolution of an evolution e.g.,
describing a curve in the metric space of the admissible strategies. That is
why we apply variational methods in the metric space ΣN+1 with the stan-
dard Euclidean distance to obtain faster convergence to the Nash equilibrium.
Here P(x, y) = 〈x,Cy〉 and for the same reasons as in the proof of Prop. 2.2,
P satisfies hypotheses (H1) and (H2). Note that with high order schemes
VH, VRK3 and VRK4, we lose the intuitive idea but we increase the Nash
equilibrium computing.

Algorithm 1 Finding a Nash equilibrium (as introduced in [9])

1: Choose a step τ > 0 and a starting distribution ξ0.
2: Set iteration count k = 1.
3: Compute ξk+1 with following formula:

ξk+1 ∈ argmin
η∈ΣN+1

{
d(η, ξk)

2

2τ
+ 〈η,Cξk〉

}
. (16)

4: If E(ξk+1) is smaller than a given tolerance then stop and exit, otherwise
set k → k + 1 and go back to step 3.



HIGH ORDER VARIATIONAL SCHEMES AND NASH - MFG GAMES 11
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)

VEE with τ = 0.1

VEE with τ = 0.01

VH with τ = 0.01

VRK3 with τ = 0.01

VRK4 with τ = 0.01

Figure 6: The evolution of the mapping E(·) for the four schemes in section
2.2 in the case Short persistence, large efficacy. In [9] VEE with τ = 0.1 is
used.

3.2 Results

In this section we test the variational schemes proposed in section 2.2.

The reader is invited to refer to [9, Sec 4.6] or Appendix A for the nu-
merical values of the two studied cases Short persistence, large efficacy (with
vaccine persistence at one month with a delay of action at five days) and Long
persistence, 100% efficacy (with persistence of the vaccine at six months with
no delay of action).

In order to appreciate the convergence scheme for the case Short persistence,
large efficacy the evolution of the mapping E(·) is presented (see figure 6 for
VEE with τ = 0.1), where the evolution for the four schemes with lower τ
value is added to stabilize result of mapping E(·).

For the Short persistence, large efficacy case, the graph at the left in figure
7 presents the numerical estimation of the scheme order: only the VEE is of
order one, the others are of order two in τ . Recall that a high order scheme
needs a very regular functional to provide high order convergence, but in our
case the regularity of the function is completely unknown. However, this case
remains very interesting because it shows that even if the regularity of the
function is not enough to obtain order three or four, the VRK3 and VRK4
still improve the regularity of the function and have a better order than the
VEE scheme.

For the other example Long persistence, 100% efficacy, the convergence is
faster: figure 8 compares the evolution of mapping E(·) for the two cases. In
the second case, the graph at the right of figure 7 shows that the scheme has
high order as it was expected previously. VH is indeed of order 2 and VRK3
and VRK4 are respectively order three and four.
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Figure 7: Numerical order obtained for the four presented schemes. Reference
solution is given by a VRK4 scheme with τref = 0.01. Other steps used are
0.04, 0.06, 0.08, 0.10 and 0.12. Left: Short persistence, large efficacy. Right:
Long persistence, 100% efficacy.
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Figure 8: Mapping E(·) for the case Short persistence, large efficacy and Long
persistence, 100% efficacy, generated with VEE scheme and τ = 0.1.

4 Perspectives

This work introduces three high order schemes to find a Nash equilibrium and
illustrates their use in an epidemiological application.

We show numerically that the schemes VH, VRK3 and VRK4 exhibit bet-
ter order than VEE and we can obtain, depending on the regularity of the
function, up to order four convergence. The approach based on the Runge-
Kutta method can be applied for other numerical schemes, for instance Mid
Point, Leap-Frog or Adams-Bashford methods. Please note that presented al-
gorithms are not optimized, as minimizations can take a long time and need a
high numerical precision, so the time execution can be significant. A perspec-
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tive of this work is to provide an extension to bi-dimensional or tri-dimensional
problems.
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A Presentation of the epidemiological model

This section reproduces a short presentation of the epidemiological model and
of the cost computing as introduced in [9, Sec 2]. Please refer to the original
article for more details and proof.

A.1 Epidemiological model

The model simulates the dynamics of an epidemic in a population. The final
time period T is supposed finite, and the time horizon can be discretized in
(N + 1) time instants, noted t0 = 0, t1 = ∆T, ..., tN = T .

The model is compartmental, and the population is divided into several
classes: susceptible individuals (Sn) is the proportion of individuals suscepti-
ble to catch the disease at time instant tn; infected individuals regroups indi-
viduals who are infected, more precisely, Iωn is the proportion of individuals
who have been infected at time instant tn−ω (with ω ∈ {0, 1, ...,Ω}) and In is
the sum of all Iωn ; recovered individuals (Rn) is the proportion of individuals
who have exited from one infected class; vaccinated individuals (V θ

n where θ
counts the time between vaccination time instant and current time instant with
θ ∈ {0, 1, ...,Θ}) is the proportion of vaccinated individuals at time instant tn
and not infected since; failed vaccinated individuals (Fn) is the proportion of
individuals who were vaccinated at some time t ≤ tn but whose vaccination
failed and have not been infected since. As individuals can only take vacci-
nation once, V Ω represents individuals who have lost immunity. Lastly Un
represents the proportion of individuals vaccinated between tn and tn+1, a
proportion f of them will never develop any immunity and go to the failed
vaccination class.

The specificities of disease are represented by the vector γ = (γ0, ..., γΩ) ∈
(R+)Ω+1 (which reflects the recovery of an infected individual); the function
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β(t) (which characterizes the contact between an infected individual and a sus-
ceptible one at time t); and the vector α ∈ [0, 1] which quantifies the protection
provided by the vaccine in terms of the probability of infection.

The model is defined by the following system of equations:

Sn+1 = (1− βn∆T In) (Sn − Un) (17a)

I0
n+1 = βn∆T

[
Fn + Sn +

N−1∑
θ=0

αθV
θ
n

]
In (17b)

Iω+1
n+1 = (1− γω∆T )Iωn ω = 0, . . . ,Ω− 1 (17c)

V 0
n+1 = (1− f) · (1− βn∆T In)Un (17d)

V θ+1
n+1 = (1− βn∆TαθIn)V θ

n , θ = 0, . . . ,Θ− 2 (17e)

V Θ
n+1 = (1− βn∆TαΘ−1In)V Θ−1

n + (1− βn∆T In)V Θ
n (17f)

Fn+1 = f · (1− βn∆T In)Un + Fn (1− βn∆T In) (17g)

with initial conditions:

S0 = S0− , Iω0 = Iω0− , V θ
0 = 0, ∀θ ≥ 0. (17h)

A.2 Individual cost

The system (17) presents the spread of the disease at the population level. For
an individual, we consider the Markov chain Mn which describes, in terms of
transition probabilities (see [9, Eq 2.10]), the state of the individual (Mn ∈
{S,R, F, Ij, V l} with j ∈ {0, . . . ,Ω} and l ∈ {0, . . . ,Ω}).

In order to reflect the decision of an individual, we introduce the proba-
bility density ξ defined on {t0, ..., tN−1} ∪∞. In practice, before the epidemic
starts, the individual chooses his probability of vaccination at each time step
tk, assuming his non-infected status.

The collection of conditional rates λ = (λn)Nn=1 is given by the density ξ:

∀n ≤ N − 1 : λn =


ξn

ξn + · · ·+ ξ∞
, if ξn + · · ·+ ξ∞ > 0

0, otherwise
(18)

The individual in the susceptible class at time t0 (M0 = S) has the following
cost: Jindi(ξ;U) = 〈ξ,CU〉 where CU (the vector representing the cost of all
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pure strategies ”vaccination sure at time t”) is defined by:

CU(tn) =

{
rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIϕ

V,I
n ) + rIf(ϕI∞ − ϕIn) for n < N,

rIϕ
I
∞ for n = N.

(19)
Here ϕV,In = 1−∏Θ

k=n

(
1− βk∆Tαk−n−1Ik

)
, with the convention α−1 = 1 and

ϕIn = 1−∏n
k=0

(
1− βk∆T Ik

)
(for n = 0, ..., N −1), ϕI∞ = 1−∏N

k=0

(
1− βk∆T Ik

)
.

The equilibrium between individual dynamics and global dynamics (17) is
attained when Un = λnSn.

The purpose of an individual is to minimize Jindi(ξ;U) under the constraint
ξ0 + ξ1 + ...+ ξN−1 + ξ∞ = 1 and ξk ≥ 0.

A.3 Numerical values

This section describes the numerical values used in the two cases presented
in this paper: Short persistence, large efficacy and Long persistence, 100%
efficacy. These values are sensibly similar to the ones used in [9, Subsec 4.2
and 4.3].

For the epidemic parameters, we consider a total simulation time at one
year (T = 1); three time instants by day (N = 365 ∗ 3); a recovery rate
γω = 365/3.2 (Ω = 20); the reproduction number R0 = 1.35 thus β = γR0;
tβ2 = 1/2 such that β(t) = β for t ≤ tβ2 and then β(t) = βmin for t > tβ2 where
βmin = γ/S0; the relative cost of the epidemic is rI = 1.

Finally, we introduce tα1 , tα2 and set αθ = 1 − 1[tα1 ,t
α
2 ]. For the case Short

persistence, large efficacy, tα1 = 5/365 and tα2 = 1/12 (Ω = 93). For the case
Long persistence, 100% efficacy, tα1 = 0 and tα2 = 1/2 (Ω = 549). We suppose
a failure rate f = 0, and the relative cost of the vaccination rV = 0.005.
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