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High order variational numerical schemes with
application to Nash - MFG vaccination games

Laetitia LAGUZET

Abstract.
This paper introduces high-order explicit Runge-Kutta numerical schemes

in metric spaces. We show that our approach reduces to the corresponding
Runge-Kutta schemes if the ambient space is Hilbert.

We apply these schemes to compute the Nash equilibrium in a Mean Field
vaccination Game. Numerical simulations show improvement in the speed of
convergence towards the Nash equilibrium; the numerical scheme has high
order (two to four) in time.

1 Introduction

1.1 State of the art and motivation

The games with a continuum of agents have been widely studied during the last
decade thanks to the Mean Field Games (MFG) theory, introduced by Lasry-
Lions ([34, 35, 36]) and Huang-Caines-Malhamé ([28, 26, 27]). An application
of this framework is the modeling of the vaccination decision in a population
where an individual has the choice between only two pure strategies: to get
vaccinated or not.

This decision is a part of the behavioral epidemiology, which takes into
account the interplay between human behavior and spread of infectious diseases
(see [38] for a detailed presentation and [30, 47, 40] for other examples). In
particular, risk perception and spread of information (on vaccination risk or
probability of infection) can influence at a large scale the population behavior
and thus the spread of the disease. As detailed in [38], a well-known example is
Measles-Mumps-Rubella (MMR) vaccination coverage decrease between 1998
and 2003. This caused a decline in herd immunity and a measles resurgence
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2 L. LAGUZET

after the publication of an hypothesis linking MMR vaccination and autism.
Behavioral responses to the threat of a pandemic event can influence the spread
of the disease in several ways: people can choose preventive protection (by
vaccination as presented below) or limit the disease spread by isolation and
quarantine (e.g., school closures). Since then, many epidemiological models
have been developed to include individual response (see [47] for a review); on
the contrary see [1, 6, 39, 42] for the treatment of compulsory (as opposed to
voluntary) vaccination.

We use the family of compartmental models in order to describe the spread
of the disease in the population. This supposes that all individuals are the
same and the population is divided into several exclusive classes; the trans-
mission between two classes is modeled through a time-dependent rate. As
each compartment represents the status of an individual, it means that the
structure of model with immunity is not the same as that of a disease with-
out immunity. SIR terminology usually represents a disease with immunity
against re-infection, indicating that the passage of an individual is from the
susceptible class S to the infectious class I and then to the recovered class R.
If the re-infection is possible, then the terminology used can be SIS, which
means that an individual in the infected class I goes back to the susceptible
class S. If temporary immunity is given by the disease, the compartmental
structure can be SIRS, meaning that after infection, individual stays in R
class before going back to the susceptible class. Other well-known compart-
mental models can include an exposed class (E) that represents the period
between being infected and becoming contagious, like in the SEIR or SEIS
models. The evolution of the size of the compartments is given by ordinary
differential equations (for more details see for instance [25, 10, 15]).

In order to model individual vaccination decision in the spread of the dis-
ease, vaccination coverage can depend on available information (see [11, 18, 19])
or be determined by a vaccination game. The evolution of the vaccination cov-
erage could be determined by an imitation dynamics depending (or not) of the
available information (see [16, 17, 3, 41, 32, 16]), or be the solution of a Nash
equilibrium determined at the beginning of the game, as described below. The
Nash-MFG equilibrium corresponds in this case to a strategy where nobody
has interest to change his own vaccination strategy. Therefore the existence
and the determination of an equilibrium is central.

Before the development of the Nash-MFG theory, some work have been
proposed to couple game and epidemiology. Three well-known methods that
introduced specific models are presented in the next paragraph with their ad-
vantages and limitations. The compartmental model used in [5] includes five
classes (Susceptible, Exposed, Infected, Recovered, Vaccinated), the dynamics
is presented in equation (1) where the population is divided into the following
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classes: S (susceptible), I (infected), R (recovered) and V (vaccinated). In
this case preventive vaccination for the smallpox is available: the model is used
to determine the probability of an individual to choose preventive vaccination.
To do so, explicit individual payoffs for the two pure strategies (vaccination
before or after the outbreak) are defined. Then the existence and uniqueness
of the Nash equilibrium is obtained using properties of such payoffs.

dS

dt
= −βSI − f(S, t),

dE

dt
= βSI − ρE,

dI

dt
= ρE − γI,

dR

dt
= γI,

dV

dt
= f(t, S),

(1)

Another method introduced in [5] uses the same methodology as previously
but on the stationary state of the system (2) (or equivalently system (2bis) that
distinguishes immunity given by the disease and immunity given by the vac-
cine) because of the possible non extinction of the disease. This allows to
determine the probability of vaccination when disease is already present in the
population with a compartmental system where vital dynamics is considered.
As in previous case, the probability p to vaccinate is not time dependent and
properties of payoff are used to prove existence and uniqueness of the equi-
librium. Finally, solutions for other incidence rate (term βI is replaced by a
function λ(I)) are given in [43] by using Markov Decision Process. Analytical
solutions for the vaccination probability at the Nash equilibrium can be found
with these approaches but it supposes constant probability of vaccination.

dS

dt
= µ(1− p)− βSI − µS

dI

dt
= βSI − γI − µI

dR

dt
= µp+ γI − µR

(2)
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dS

dt
= µ(1− p)− βSI − µS

dI

dt
= βSI − γI − µI

dR

dt
= γI − µR

dV

dt
= µp− µV

(2bis)

The third and last model being detailed here describes numerical approach
when two SEIR models (see for example (1)) are used in order to separate two
age classes (see [24]) to obtain the vaccination probability of each age class. The
evolution of the probability of vaccination can be modeled by introducing a rule
of thumb (see [3, 4]) to study the epidemiological stationary state and the role
of parameters like vaccination and infection costs. But reaching the stationary
state of the epidemiological system can take a long time as explained in [29]. To
avoid this problem, [20] considers a SIRS model where the transmission rate β
is a periodic function, causing the same property for the incidence. Economic
approach (see [21]) based on the epidemiological model (3) (where notations
are the same as above and V(t) is the instantaneous vaccination rate) allows to
determine the vaccination and no vaccination region (depending on the state
of the disease) by equalization of the two payoffs but no proofs of optimality
(existence or uniqueness) are provided.

dS(t)

dt
= −βS(t)I(t)− V(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t)dt

dV (t)

dt
= V(t)

(3)

Within the MFG framework, article [33] proposes analytic solutions in some
particular cases. Furthermore, finding an equilibrium becomes more compli-
cated if the model has specific behaviour with network interaction or epidemic
spread for example ([23, 14]). Thus finding the equilibrium can quickly become
time consuming. One commonly used method is based on finding a fixed point
of some function, which can be formulated as the attractor of an evolution
system.

The existence of an equilibrium in the general case of MFG is of utmost
interest (see for instance [7, 9] for an entry point to this literature). Several
approaches were developed, inspired by the general framework of gradient flows
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(see [31]) where the procedure is iterative.

1.2 Mathematical framework

Let us recall that in a gradient flow framework (which is not necessarily related
to a MFG model !) the equation to be solved is written symbolically (see [2]
for an introduction):

d

dτ
ξ +∇F (ξ) = 0 (4)

where the function F is given but ∇F cannot be computed. The numerical
counterpart of (4) is the famous JKO numerical scheme (introduced by Jordan,
Kinderleher and Otto in [31]) which, for ξk an approximation of ξτk , can be
written as:

ξk+1 ∈ argmin
η

{
d(ξk, η)2

2∆
τ + F (η)

}
. (5)

This scheme can be seen as the variational implicit Euler scheme and has
been used for the heat equation as a gradient flow of the entropy in the Wasser-
stein space. Second order in time methods have been proposed very recently
(see [37]).

On the other hand, a MFG equilibrium has no associated function ’F ’ and
it is likely that no such function exists. For each τ , ξτ is a probability law.
Rather, the search for an equilibrium takes the form of a fixed point:

ξ = J(ξ). (6)

In practice, inspired by the Fictitious Game (see [12]) and Best Reply (see
[9, 8]) procedures, a new algorithm has been introduced in [44, Eq 3.2] and
[46] with the following form:

ξk+1 ∈ argmin
η

{
d(η, ξk)

2

2∆τ
+ P(η, ξk)

}
. (7)

In the limit τ → 0 the equation (7) describes a curve which under some
assumptions on P will be called a solution of the evolution equation:

d

dτ
ξτ +∇1P(ξτ , ξτ ) = 0. (8)

On the other hand, the MFG framework provides a natural function P(·, ·) even
when ξ does not belong to a Hilbert space but only to a metric space. Thus
we are led to consider evolution equations in metric spaces with semi-explicit
numerical schemes (see [46, 9]).
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1.3 Scope and structure of the paper

The purpose of this work is to introduce variational Runge-Kutta explicit meth-
ods of high order in a metric space using a generalization of linearity (presented
in [13]).

These approaches are applied to the control of epidemic spread with vol-
untary vaccination as in [44].

The paper is structured as follows: Section 2 is dedicated to the Runge-
Kutta method recalling its general form (subsection 2.1) and then the intro-
duction of variational Runge-Kutta methods (subsection 2.2). The equivalence
of the two approaches in a Hilbert space is proved in subsection 2.3. Then Sec-
tion 3 gives the epidemiological model used in the numerical application given
in Section 4. An economical application is proposed in Section 5. Some con-
siderations are discussed in Section 6.

2 Runge-Kutta methods

2.1 In a Hilbert space

LetH be a Hilbert space, f : [0, T ]×H → H a regular function and y : [0, T ]→
H satisfying (in some sense to be specified):

d

dτ
y(τ) = f(τ, y(τ)) (9)

The Runge-Kutta approach is an iterative method using temporal dis-
cretization in order to obtain a numerical solution of an ordinary differential
equation of type (9). The time horizon T is supposed to be finite and can be
discretized in (NT + 1) time instants τ0 = 0, τ1 = ∆τ, τ2 = 2∆τ, ..., τNT = T
where ∆τ is the time step. Let yk ∈ H be an approximation of y(τk).

Runge-Kutta method is based on the evaluation at intermediate points in
time. Equation (10) presents the general form of the Runge-Kutta method for
(9).

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a1,s

. . . . . . . . . . . . . . .

b1 b2 . . . bs

yk+1 = yk + ∆τ
s∑
i=1

bipi,

pi = f

(
τn + ciτ, yk + ∆τ

i−1∑
j=1

ai,jpj

)
.

(10)

Figure 1: Runge-Kutta method. Left: Butcher tableau. Right: Equation.
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A method is defined by the values of the coefficients bi, ci and ai,j, often
presented in the Butcher tableau (see table in figure 1). Consistency of such a
method is ensured if and only if

∑s
i=1 bi = 1.

We will present below some particular schemes that will later be formulated
in a metric space.

2.1.1 Explicit Euler scheme

The Explicit Euler (denoting EE) scheme is a Runge-Kutta method with only
one step. It is defined in figure 2 by the Butcher tableau or equivalently by
equation (11). In this case, this scheme is of order one in time.

0 0

1

yk+1 = yk + ∆τf(τk, yk). (11)

Figure 2: Explicit Euler method. Left: Butcher tableau. Right: Equation.

2.1.2 Heun scheme

Heun scheme uses an approximate value p1, in order to compute yk+1, see the
figure 3. This scheme is of order two in time.

0 0 0

1 1 0

1/2 1/2

p1 = yk + ∆τf(τk, yk),

yk+1 = yk +
∆τ

2

[
f(τk, yk) + f(τk+1, p1)

]
.

(12)

Figure 3: Heun method. Left: Butcher tableau. Right: Equation.

2.1.3 Explicit Runge-Kutta 3 scheme

In the same way, we introduce the Runge-Kutta 3 (denoted RK3) method.
It calculates two intermediate values (p2, p3) to obtain yk+1. See figure 4 for
the value of coefficients in the Butcher table and equation (13) for the explicit
equations. In this case, the method is of order three in time.
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0 0 0 0

1/2 1/2 0 0

1 -1 2 0

1/6 2/3 1/6

yk+1 = yk +
∆τ

6

(
p1 + 4p2 + p3

)
,

p1 = f(τk, yk),

p2 = f(τk+1/2, yk +
∆τ

2
p1),

p3 = f(τk+1, yk + ∆τ(−p1 + 2p2)).
(13)

Figure 4: Runge-Kutta 3 method. Left: Butcher tableau. Right: Equation.

2.1.4 Explicit Runge-Kutta 4 scheme

The last method is the celebrated Runge-Kutta 4 (denoted RK4) where three
intermediate values (p2, p3, p4) are computed to determine yk+1. The value of
coefficients is presented in figure 5 and its application to equation (9) is given
in equation (14). This method is of order four in time.

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

yk+1 = yk +
∆τ

6

(
p1 + 2p2 + 2p3 + p4

)
,

p1 = f(τk, yk),

p2 = f(τk+1/2, yk +
∆τ

2
p1),

p3 = f(τk+1/2, yk +
∆τ

2
p2),

p4 = f(τk+1, yk + ∆τp3).
(14)

Figure 5: Runge-Kutta 4 method. Left: Butcher tableau. Right: Equation.

2.2 Variational approach

Unfortunately, none of the schemes presented in Section 2.1 can be used for
finding a MFG equilibrium. Firstly because the problem is not really presented
that way, and secondly because the space of the unknowns is, in general, not
a vector space but a metric space. Therefore we need first to generalize the
Runge-Kutta schemes to metric spaces and then to apply them to the MFG
setting.

Let (A, d) be a metric space. The definition 2.1 below gives the properties
of a geodesic space (see [37] for additional details).
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Definition 2.1. A curve γ : [0, 1] → A is called a (constant speed) geodesic
provided that d(γ(s), γ(τ)) = |s − τ | · d(γ(0), γ(1)) and the space is called
geodesic if, for any couple of points (X, Y ) ∈ A2, there exists at least a geodesic
γ connecting them, that is, γ(0) = X, γ(1) = Y .

From now on we assume that (A, d) is a geodesic space. Consider P :
A×A → R a function with the following properties:

(H1) ∀n ≤ 4, ∀r > 0, ∀ξ, Y1, . . . , Yn ∈ A, the set of vectors {(P(z, Y1), . . . ,P(z, Yn)); z ∈
A, d(z, ξ) ≤ r} is compact as a subset of Rn,

(H2) for any point Y ∈ A and any X0, X1 ∈ A a constant speed geodesic γ
exits such that γ(0) = X0, γ(1) = X1 and the function τ 7→ P(γ(τ), Y )
from [0, 1] to R is linear.

Examples:

• If H is a Hilbert space, f : H → H a function then (x, y) → 〈x, f(y)〉
satisfies hypothesis (H1) and (H2), see proof of Proposition 2.2.

• Let A be the set of probability measures on [0, T ]; F be the set of Lipschitz
functions with constant less than 1 and the metric of weak convergence d
is defined, for a1, a2 ∈ A by (see [45]): d(a1, a2) = supf∈F |

∫ T
0
f(t)a1(dt) −∫ T

0
f(t)a2(dt)|. For Y ∈ A, t ∈ [0, T ] we define gY (t) =

[
sin(t)

∫ T
0

cos(s)Y (ds)
]2

and for z, Y ∈ A, Q(z, Y ) =
∫ T

0
gY (t)z(dt).

Let (zk)k∈N be a sequence of elements in A converging weakly to z ∈ A then,

for f ∈ F ,
∫ T

0
f(t)zk(dt) converges to

∫ T
0
f(t)z(dt). As (A, d) is compact (see

[45]) and the application z ∈ A → (Q(z, Y1), . . . ,Q(z, Yn)) ∈ Rn continuous,
Q satisfies (H1).

Consider a1 and a2 ∈ A and for s ∈ [0, 1], γs = sa1 + (1 − s)a2. Then

d(γs, γτ ) = supf∈F |
∫ T

0
f(u)γs(du)−

∫ T
0
f(u)γτ (du)| = supf∈F |

∫ T
0
f(u)(τ −

s)a1(du)−
∫ T

0
f(u)(τ−s)a2(du)| = |τ−s| supf∈F |

∫ T
0
f(u)a1(du)−

∫ T
0
f(u)a2(du)| =

|τ − s| · d(γ(0), γ(1)). It shows that γ is a (constant speed) geodesic.

Then, the function s → Q(γs, Y ) of the form s → s
∫ T

0
gY (u)a1(du) + (1 −

s)
∫ T

0
gY (u)a1(du) is linear.

• Note that previous example also works with the total variation distance.

The evolution equation that we want to solve has the form of equation
(8) (but note that this is only a formal expression as d

dτ
ξτ does not have a

well-defined meaning in a general metric space, see [46]).
This section develops a variational Runge-Kutta method in a metric space.

We propose a method that does not assume any vector calculus but uses the
hypothesis (H2) which defines the notion of linear application in a metric
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space (see also [13, Section 8, Definition 8.1 page 480] for more details). As
∆τ tends to zero equation (7) describes a curve. The purpose of the scheme
is to describe this evolution faster and more precisely that is to say to obtain
high order schemes.

2.2.1 Variational Explicit Euler scheme

The first scheme of that form was introduced in [44, Eq 3.2]. Formally, we
define the variational Explicit Euler scheme (VEE ) by:

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2∆τ
+ P(η, ξk)

}
. (15)

2.2.2 Variational Heun scheme

The variational Heun scheme (VH ) introduces, as in vector space, an inter-

mediate value ξ̃k+1 (equation (16a)) and uses it to compute ξk+1 (equation
(16b)).

ξ̃k+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2∆τ
+ P(η, ξk)

}
, (16a)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2∆τ
+

1

2
P(η, ξk) +

1

2
P(η, ξ̃k+1)

}
. (16b)

Note that two minimizations are required in order to obtain ξk+1.

2.2.3 Variational Runge-Kutta 3 scheme

The variational Runge-Kutta 3 scheme (VRK3 ) is defined by equation (17).

Two intermediate values are computed in this case (ξ̃1
k+1 with equation (17a)

and ξ̃2
k+1 with equation (17b)) in order to obtain ξk+1 using equation (17c).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2∆τ
+

1

2
P(η, ξk)

}
, (17a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2∆τ
− P(η, ξ̃1

k+1) + 2P(η, ξ̃2
k+1)

}
, (17b)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2∆τ
+

1

6
P(η, ξk) +

2

3
P(η, ξ̃1

k+1) (17c)

+
1

3
P(η, ξ̃2

k+1)

}
.
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2.2.4 Variational Runge-Kutta 4 scheme

The variational Runge-Kutta 4 scheme is presented in equation (18). Three

intermediate values (ξ̃1
k+1 with equation (18a), ξ̃2

k+1 with equation (18b) and

ξ̃3
k+1 defined by equation (18c)) are computed in order to obtain ξk+1 by using

equation (18d).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2∆τ
+

1

2
P(η, ξk)

}
, (18a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2∆τ
+

1

2
P(η, ξ̃1

k+1)

}
, (18b)

ξ̃3
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2∆τ
+

1

2
P(η, ξ̃2

k+1)

}
, (18c)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2∆τ
+

1

6
P(η, ξk) +

1

3
P(η, ξ̃1

k+1) (18d)

+
1

3
P(η, ξ̃2

k+1) +
1

6
P(η, ξ̃3

k+1)

}
.

Note that four minimizations are needed in order to obtain ξk+1.

See section 4.2 for a numerical application and the study of the order in
time of these schemes.

2.3 Property of variational scheme

In this subsection we prove that using hypotheses (H1) and (H2), the varia-
tional schemes introduced above are well-defined (Prop. 2.1) and correspond,
when the ambient space is Hilbert, to the Runge-Kutta method presented in
section 2.1 (Prop. 2.2).

Prop 2.1. Under the hypothesis (H1) and (H2), the equations (15), (16),
(17) and (18) defining respectively the VEE, VH, VRK3 and VRK4 schemes
admit a solution, i.e., the schemes are well defined.

Proof. As the argumentation is very similar for all schemes, we present the
general case where ξk+1 ∈ argminη∈A{F (η)} with F : A → R, for fixed

ξ ∈ A,F (η) = d(η,ξ)2

2∆τ
+ l(η) where l satisfies hypothesis (H2) and the following

hypothesis (H1bis):

(H1bis) ∀r > 0, ∀ξ ∈ A, the set {l(z); z ∈ A, d(z, ξ) ≤ r} is compact as a
subset of R.
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We will prove that the application F attains its minimum in A.
Let (zk)k∈N ∈ A be a sequence such that limk→∞F (zk) = m with m =

infη∈AF (η). We show that d(zk, ξ) is bounded then we find a minimizer.
Suppose d(zk, ξ) = λ > 1 and let γ be the geodesic connecting ξ and zk

(γ(0) = ξ and γ(1) = zk) satisfying (H2). Consider an element z = γ(t) on
the geodesic γ such that d(z, ξ) = 1. By definition of a geodesic, d(z, ξ) =
d(γ(t), γ(0)) = |t−0| ·d(γ(0), γ(1)) = td(zk, ξ) = λ, implies necessarily t = 1/λ
and using hypothesis (H2), we obtain:

l(z) = l(γ(t)) = tl(γ(1)) + (1− t)l(γ(0)),

= (1− 1

λ
)l(ξ) +

1

λ
l(zk).

(19)

For k large enough, zk is such that F (zk) < 2m that is λ2

2∆τ
+ l(zk) < 2m.

Rearranging equation (19) gives l(zk) = λl(z) − (λ − 1)l(ξ), note that l(ξ) is
constant and as d(z, ξ) = 1, hypothesis (H1bis) insures that l(z) is bounded,
so l(zk) is also bounded (by M ∈ R). Consequently, there exists a constant C,
depending on m, τ and M such that λ < C.

As d(zk, ξ) is bounded, there exists a converging subsequence, (xk)k∈N ∈ A
such that d(xk, ξ) → d1, and l(xk) converges to m− d21

2∆τ
. Starting from some

index k, xk ∈ B(ξ, d1) (the ball with center ξ and radius d1) and if it is not
the case, we replace xk by the element at the intersection of the ball and the
geodesic γ linking xk and ξ. This operation does not change the limit of l(zk):
noting temporarily x̃k the obtained sequence, as l satisfies hypothesis (H2),
we have l(x̃k) = (1− d1

d(xk,ξ)
)l(ξ)+ d1

d(xk,ξ)
l(xk) with d(xk, ξ)→ d1. By hypothesis

(H1bis), the set l(xk) is closed, so there exists an element Z ∈ B(ξ, d1) such

that l(Z) = m − d21
2∆τ

with, of course, d(Z, ξ) ≤ d1. In this case, F (Z) =
d(Z,ξ)2

2∆τ
+m− d21

2∆τ
≤ m, so Z is a minimizer.

Let n ≤ 4, Y1, . . . , Yn ∈ A, λ1, . . . , λn ∈ R and P satisfying (H1) and
(H2). We define the linear combination l of P by: l(η) =

∑n
i=1 λiP(η, Yi). It

is immediate that l satisfies (H2); we prove below that if P satisfies (H1) then
l satisfies (H1bis). As all elements of the sum are in a compact set, the sum
is bounded. Let (zk)k∈N ∈ A be a sequence such that limk→∞ l(zk) = α. Using
(H1), there exists a subsequence of zk (also noted zk) such that the element
(P(zk, Y1), . . . ,P(zk, Yn)) ∈ Rn converges to (α1, . . . αn) so l(zk) converges to
l(z) with l(z) =

∑n
i=1 λiαi = α.

Prop 2.2. Let H be a Hilbert space, f : H → H be a function and P(x, y) =
〈x,−f(y)〉. Then the schemes VEE (equation (15)), VH (equation (16)),
VRK3 (equation (17)), and VRK4 (equation (18)) correspond to Explicit Eu-
ler (equation (11)), Heun (equation (12)), Runge-Kutta 3 (equation (13)) and
Runge-Kutta 4 (equation (14)) schemes respectively for the evolution equation
(9).
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Proof. We prove hypothesis (H1) in the case n = 1, the proof for the gen-
eral case is left to the reader. We show that, for ξ ∈ H, D = {〈z,−f(ξ)〉 ; z ∈
H, d(z, ξ) ≤ r} is bounded and closed. Denoting ||·|| the norm of H, by the tri-
angular inequality when x ∈ B(ξ, r), ||x|| ≤ r+||ξ||. For x ∈ D, || 〈x, f(ξ)〉 || ≤
||x|| · ||f(ξ)|| ≤ (r+ ||ξ||) · ||f(ξ)|| <∞, so D is bounded. Let z be an element of
B(ξ, r) and x ∈ H such that z = ξ+x with ||x|| ≤ r, by linearity 〈z,−f(ξ)〉 =
〈ξ,−f(ξ)〉 + 〈x,−f(ξ)〉. Furthermore, 〈x,−f(ξ)〉 ≤ ||x|| · ||f(ξ)|| ≤ r||f(ξ)||
so {〈z,−f(ξ)〉 , z ∈ B(ξ, r)} is included in the closed interval [〈ξ,−f(ξ)〉 −
r||f(ξ)||, 〈ξ,−f(ξ)〉 + r||f(ξ)||]. If we take x = −λ f(ξ)

||f(ξ)|| with λ ∈ [−r, r] then

〈x,−f(ξ)〉 = λ||f(ξ)|| which implies 〈z,−f(ξ)〉 = 〈ξ,−f(ξ)〉+λ||f(ξ)||. There-
fore {〈z, f(ξ)〉 , z ∈ B(ξ, r)} is exactly [〈ξ, f(ξ)〉− r||f(ξ)||, 〈ξ, f(ξ)〉+ r||f(ξ)||]
and is closed as a closed interval of R.

To prove hypothesis (H2), consider x0, x1 ∈ H and for t ∈ [0, 1], γ(t) =
tx1 + (1− t)x0 the segment between x0 and x1. For t, s ∈ [0, 1], with straight-
forward computation, we have d(γ(t), γ(s)) = |t − s| · d(γ(0), γ(1)), show-
ing that γ is a (constant speed) geodesic. In this case, we can also prove
the uniqueness of the geodesic. In fact, assume that there exists another
geodesic γ2 linking x0 and x1. Let z = γ2(t) be an element only on γ2; using
the triangle inequality and that γ is the segment linking x0 and x1 we have
d(x0, z) + d(z, x1) > d(x0, x1). Furthermore as γ2 is a geodesic, left member of
previous equation is td(x0, x1)+(1−t)d(x0, x1) = d(x0, x1). We obtain a contra-
diction thus there does not exist another geodesic. The function t→ P(γ(t), Y )
has the form t→ 〈tx1 + (1− t)x0,−f(Y )〉, so is linear.

We now prove the equivalence of schemes. The scheme VEE is defined by
the following equation:

ξk+1 ∈ argmin
η∈H

{
||η − ξk||2

2∆τ
+ 〈η, f(ξk)〉

}
.

The application F : H → R, F (η) = ||η−ξk||2
2∆τ

+ 〈η, f(ξk)〉 is differentiable

and its derivative F ′ : H → H is F ′(η) = η−ξk
∆τ

+ f(ξk). The minimizer of
F is a critical point, the minimum noted ξk+1, satisfies F ′(ξk+1) = 0. After
trivial rearrangement, we obtain ξk+1 = ξk − ∆τf(ξk), that is the Explicit
Euler scheme presented in (11) for equation (9). Arguments are similar for
other schemes.

3 Epidemiological model

From now on, all variables can have a double dependence: on the real time t
which will be subscript and on the iteration time τ (previously k in equation
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(7)) which will be a superscript l.
This section reproduces a short presentation of the epidemiological model

and of the cost computing as introduced in [44, Sec 2]. Please refer to the
original article for more details and proof.

3.1 Spread of the disease

The model simulates the dynamics of an epidemic in a population. The final
time period T is supposed finite, and the time horizon can be discretized in
(N + 1) time instants, noted t0 = 0, t1 = ∆T, ..., tN = T .

The model is compartmental, and the population is divided into several
classes: susceptible individuals (Sn) is the proportion of individuals suscepti-
ble to catch the disease at time instant tn; infected individuals regroups indi-
viduals who are infected, more precisely, Iωn is the proportion of individuals
who have been infected at time instant tn−ω (with ω ∈ {0, 1, ...,Ω}) and In is
the sum of all Iωn ; recovered individuals (Rn) is the proportion of individuals
who have exited from one infected class; vaccinated individuals (V θ

n where θ
counts the time between vaccination time instant and current time instant with
θ ∈ {0, 1, ...,Θ}) is the proportion of vaccinated individuals at time instant tn
and not infected since; failed vaccinated individuals (Fn) is the proportion of
individuals who were vaccinated at some time t ≤ tn but whose vaccination
failed and have not been infected since. As individuals can only take vacci-
nation once, V Ω represents individuals who have lost immunity. Lastly Un
represents the proportion of individuals vaccinated between tn and tn+1, a
proportion f of them will never develop any immunity and go to the failed
vaccination class.

The specificities of disease are represented by the vector γ = (γ0, ..., γΩ) ∈
(R+)Ω+1 (which reflects the recovery of an infected individual); the function
β(t) (which characterizes the contact between an infected individual and a sus-
ceptible one at time t); and the vector α ∈ [0, 1] which quantifies the protection
provided by the vaccine in terms of the probability of infection.
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The model is defined by the following system of equations:

Sn+1 = (1− βn∆T In) (Sn − Un) (20a)

I0
n+1 = βn∆T

[
Fn + Sn +

N−1∑
θ=0

αθV
θ
n

]
In (20b)

Iω+1
n+1 = (1− γω∆T )Iωn ω = 0, . . . ,Ω− 1 (20c)

V 0
n+1 = (1− f) · (1− βn∆T In)Un (20d)

V θ+1
n+1 = (1− βn∆TαθIn)V θ

n , θ = 0, . . . ,Θ− 2 (20e)

V Θ
n+1 = (1− βn∆TαΘ−1In)V Θ−1

n + (1− βn∆T In)V Θ
n (20f)

Fn+1 = f · (1− βn∆T In)Un + Fn (1− βn∆T In) (20g)

with initial conditions:

S0 = S0− , Iω0 = Iω0− , V θ
0 = 0, ∀θ ≥ 0. (20h)

The continuous version of the previous discrete model is given by the fol-
lowing equations:

S(t) = −βS(t)I(t)− U ′(t) (21a)

I(t) = β

[
S(t) + F (t) +

∫ +∞

0

A(θ)V (t, θ)dθ

]
I(t)− γI(t) (21b)

∂tV (t, θ) + ∂θV (t, θ) = −βA(θ)V (t, θ)I(t) (21c)

F ′(t) = fU ′(t)− βF (t)I(t) (21d)

with initial and boundary conditions:

S(0) = S0− , I(0) = I0− , ∀t ≥ 0 : S(t) ≥ 0, F (0−) = 0,

∀θ ≥ 0 : V (0−, θ) = 0, V (t, 0) = (1− f)U ′(t).
(21e)

In this continuous time model, we use the following notation (refer to [44,
Appendix] for details):

• U : [0,∞]→ [0, 1] represents the vaccination, U(t) is the fraction of the
population that has been vaccinated by time t;

• constants β, γ, f and function A, have the same meaning as in the
discrete model;

• V (t, θ) is the fraction of individuals who have been vaccinated at time
t− θ and have not been infected since vaccination.
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3.2 Individual vaccination: as minimization of individ-
ual cost

The system (20) presents the spread of the disease at the population level. For
an individual, we consider the Markov chain Mn which describes, in terms of
transition probabilities (see [44, Eq 2.10]), the state of the individual (Mn ∈
{S,R, F, Ij, V l} with j ∈ {0, . . . ,Ω} and l ∈ {0, . . . ,Θ}).

In this subsection, we look for the global decision of vaccination Un which
corresponds to the sum of individual decisions, as shown by equation (24).
In order to reflect the decision of an individual, we introduce the probability
law µ defined on {t0, ..., tN−1}∪∞. In practice, before the epidemic starts, the
individual chooses his probability of vaccination at each time step tk, assuming
his non-infected status.

The collection of conditional rates λ = (λn)Nn=1 is given by the law µ:

∀n ≤ N − 1 : λn =


µn

µn + · · ·+ µ∞
, if µn + · · ·+ µ∞ > 0

0, otherwise
(22)

The individual in the susceptible class at time t0 (M0 = S) has the following
cost: Jindi(µ;U) = 〈µ,CU〉 where CU (the vector representing the cost of all
pure strategies ”vaccination sure at time t”) is defined by:

CU(tn) =

{
rIϕ

I
n + (1− ϕIn)(rV + (1− f)rIϕ

V,I
n ) + rIf(ϕI∞ − ϕIn) for n < N,

rIϕ
I
∞ for n = N.

(23)
Here ϕV,In = 1−

∏Θ
k=n

(
1− βk∆Tαk−n−1Ik

)
, with the convention α−1 = 1 and

ϕIn = 1−
∏n

k=0

(
1− βk∆T Ik

)
(for n = 0, ..., N −1), ϕI∞ = 1−

∏N
k=0

(
1− βk∆T Ik

)
.

The equilibrium between individual dynamics and global dynamics (20) is
attained when:

Un = λnSn. (24)

The purpose of an individual is to minimize Jindi(µ;U) under the constraint

µ ∈ ΣN+1 with ΣN+1 =
{
x ∈ RN+1

∣∣∣∑N
k=0 xk = 1 and xk ≥ 0, 0 ≤ k ≤ N

}
.

The numerical schemes give a sequence of probability laws µl; here the index
”l” means that µl is a numerical approximation of the solution ξ of (8) at the
time τl = l ·∆τ . For instance, if we consider the discrete model (20), each µl =
(µl0, µ

l
1, . . . , µ

l
N−1, µ

l
∞) ∈ ΣN+1 is a probability law on {t0; . . . , tN−1} ∪ {∞},

while if we consider the continuous time model (21), each µl is a probability
law on [0, T ]∪{∞}. Note that here a step of the numerical schemes increments
the ”l” index in order to converge to a Nash-MFG equilibrium.
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3.3 Numerical values

This section describes the numerical values used in the two cases presented
in this paper: Short persistence, large efficacy and Long persistence, 100%
efficacy. These values are sensibly similar to the ones used in [44, Subsec 4.2
and 4.3].

For the epidemic parameters, we consider a total simulation time at one year
(T = 1); an initial proportion of susceptibles S0 = 0.94 and infected I0 = 2.0−6;
three time instants by day (N = 365∗3); a recovery rate γω = 365/3.2 (Ω = 20);
the reproduction number R0 = 1.35 thus β = γR0; tβ2 = 1/2 such that β(t) = β
for t ≤ tβ2 and then β(t) = βmin for t > tβ2 where βmin = γ/S0; the relative cost
of the epidemic is rI = 1.

Finally, we introduce tα1 , tα2 and set αθ = 1 − 1[tα1 ,t
α
2 ]. For the case Short

persistence, large efficacy, tα1 = 5/365 and tα2 = 1/12 (Ω = 93). For the case
Long persistence, 100% efficacy, tα1 = 0 and tα2 = 1/2 (Ω = 549). We suppose
a failure rate f = 0, and the relative cost of the vaccination rV = 0.005.

4 Numerical illustration

4.1 Framework

F. Salvarani and G. Turinici introduced an epidemiological model with possi-
bility of vaccine which has imperfect efficiency and limited persistence recalled
in the previous section 3. To model the spread of the disease in the population,
they use a compartmental model and a probability distribution to reflect the
individual decisions.

To find stable individual decision they define the problem as a Nash equilib-
rium. They find the probability distribution µ making an individual indifferent
to change his vaccination decision if all individuals have the same µ (see [44,
Theorem 2.1] for the proof of equilibrium existence).

Let Cµ be the cost of pure strategies ”vaccination happens at time t” when
all individuals choose as vaccination strategy µ. In that case 〈η,Cµ〉 represents
the cost of an individual with strategy η when others use strategy µ.

The definition of the mapping E(µ) as introduced in [44] is the maximum
gain obtained by an individual if he changes unilaterally his strategy and ev-
erybody else remains with the strategy µ; with mathematical notation:

E(µ) = 〈µ,Cµ〉 − min
η∈ΣN+1

〈η,Cµ〉 .

A minimum of the mapping µ → E(µ) is a Nash equilibrium. To find it
they introduce an iterative method depending on a step ∆τ (algorithm 1). In



18 L. LAGUZET

this algorithm, equation (25) is used. The following intuitive interpretation is
also provided: an individual in a population with strategy µl will, if necessary,
adjust his strategy to minimize his cost function η →

〈
η,Cµl

〉
while at the same

time keeping small the distance between the previous strategy µl and the new
µl+1. But algorithm 1 can also be seen as numerical resolution of an evolution
e.g., describing a curve in the metric space of the admissible strategies. That is
why we apply variational methods in the metric space ΣN+1 with the standard
Euclidean distance to obtain faster convergence to the Nash equilibrium. Here
P(x, y) = 〈x,Cy〉 and for the same reasons as in the proof of Prop. 2.2,
P satisfies hypotheses (H1) and (H2). Note that with high order schemes
VH, VRK3 and VRK4, we lose the intuitive idea but we increase the Nash
equilibrium computing.

Algorithm 1 Finding a Nash equilibrium (as introduced in [44])

1: Choose a step ∆τ > 0 and a starting distribution µ0 ∈ ΣN+1.
2: Set iteration count l = 1.
3: Compute µl+1 with following formula:

µl+1 ∈ argmin
η∈ΣN+1

{
d(η, µl)2

2∆τ
+
〈
η,Cµl

〉}
. (25)

4: If E(µl+1) is smaller than a given tolerance then stop and exit, otherwise
set l→ l + 1 and go back to step 3.

4.2 Results

In this section we test the variational schemes proposed in Section 2.2.
The reader is invited to refer to [44, Sec 4.6] or Section 3 for the numerical

values of the two studied cases Short persistence, large efficacy (with vaccine
persistence at one month with a delay of action at five days) and Long per-
sistence, 100% efficacy (with persistence of the vaccine at six months with no
delay of action).

In order to appreciate the convergence scheme for the case Short persistence,
large efficacy the evolution of the mapping E(·) is presented (see figure 6 for
VEE with ∆τ = 0.1), where the evolution for the four schemes with lower ∆τ
value is added to stabilize result of mapping E(·).
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Figure 6: The evolution of the mapping E(·) for the four schemes introduced
in section 2.2 in the case Short persistence, large efficacy for the model (20a)
- (20h). In [44] VEE with ∆τ = 0.1 is used.

For the Short persistence, large efficacy case, figure 7 presents the numeri-
cal estimation of the scheme error and order: only the VEE is of order one, the
others are of order two in ∆τ . Furthermore, figure 9 introduces the obtained
errors for each schemes depending of the number of minimizations. Recall that
a high order scheme needs a very regular functional to provide high order con-
vergence, but in our case the regularity of the function is completely unknown.
However, this case remains very interesting because it shows that even if the
regularity of the function is not enough to obtain order three or four, the VRK3
and VRK4 still improve the regularity of the function and have a better order
than the VEE scheme.

For the other example Long persistence, 100% efficacy, the convergence is
faster: figure 11 compares the evolution of mapping E(·) for the two cases. In
the second case, the graph in figure 8 shows that the scheme has high order
as it was expected previously. VH is indeed of order 2 and VRK3 and VRK4
are respectively order three and four. Furthermore, figure 10 introduces the
error for each scheme depending on the number of minimisations: this shows
the accuracy of the schemes.
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Figure 7: Numerical estimated error and order obtained for the four schemes
for the case Short persistence, large efficacy of the model (20a) - (20h). Refer-
ence solution (µ∆τref ) is given by a VRK4 scheme with ∆τref = 0.001. Other
steps used are ∆τ = 0.04, 0.06, 0.08, 0.10 and 0.12. Denote µ∆τ

n the proba-
bility of vaccination at time n/N given by the last iteration (10/∆τ) of the
numerical scheme (V EE, V H, V RK3 or V RK4) with parameter ∆τ . We plot:

(left) the error

√∑N
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Figure 11: Mapping E(·) for the case Short persistence, large efficacy and Long
persistence, 100% efficacy (of the model (20a) - (20h)), generated with VEE
scheme and ∆τ = 0.1.
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Figure 8: Numerical estimated error and order obtained for the four schemes
and the case Long persistence, 100% efficacy of the model (20a) - (20h). Ref-
erence solution is given by a VRK4 scheme with ∆τref = 0.005. Other steps
used are ∆τ = 0.04, 0.06, 0.08, 0.10 and 0.12. Denote µ∆τ,l

n the probability of
vaccination at time n/N given by the l− th iteration of the numerical scheme
(V EE, V H, V RK3 or V RK4) with parameter ∆τ . We plot: (left) the error
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Figure 9: Numerical estimated error obtained (see figure 7 for the definition of
the error) for the Short persistence large efficacy case of the model (20a) - (20h).
This figure shows for each of the four detailed schemes the error depending on
number of minimisations. Reference solution is given by a VRK4 scheme with
∆τref = 0.001. Other steps used are 0.04, 0.06, 0.08, 0.10 and 0.12.
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Figure 10: Numerical estimated error obtained (see figure 8 for the definition
of the error) for the Long persistence, 100% efficacy case of the model (20a)
- (20h). This figure shows for each of the four detailed schemes the error
depending on number of minimisations. Reference solution is given by a VRK4
scheme with ∆τref = 0.005. Other steps used are 0.04, 0.06, 0.08, 0.10 and
0.12.

5 Second application: an economical approach

5.1 Epidemiological and economic model

This numerical application is based on [22]. In order to model the spread of the
disease, three classes (as explained in Section 1.1) are introduced: Susceptible
(S), Infected (I), Recovered (R) with the following time evolution:

Ṡ(t) = −βS(t)I(t)

N
− r(t)

İ(t) = β
S(t)I(t)

N
− γI(t)

Ṙ(t) = r(t) + γI(t)

(26)

where S(t), I(t), R(t) represent respectively the number of susceptible, infected
and recovered individuals at time t, N the total number of individuals and r(t)
the rate of vaccination at time t. We also introduce the utility uH of a healthy
individual and the utility uS when sick.

The individual cost introduced is represented by the expected loss if in-

dividual is falling ill
(
EL = uH−uS

γ

(
1− S(∞)

S(0)

))
and the cost of vaccination

θ.
The computation that follows, taken from [22], is valid when the dynamics

(26) traverses at most two regions of vaccination / non vaccination. Under
this assumption, the expected payoff of the two pure strategies (vaccination or
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not) is equal on the frontier of the vaccination / non vaccination region, that

is: θ = uH−uS
γ

(
1− S(∞)

S(0)

)
.

Set w = θγ/(uH − uS). Rewrite previous equation under the following
form: w = 1− S(∞)/S(0), that gives S(∞) = S(0)(1− w). Using that, with
ρ = Nγ/β, d

dt
S(t)eR(t)ρ = 0 for r(t) = 0 ∀t ≥ 0, S(0)eR(0)ρ = S(∞)eR(∞)ρ

(see [1]), and after replacing of S(∞) by S(0)(1 − w), we obtain: R(0) =
ρ ln(1− w) + R(∞). As the total number of the population is constant equal
to N , we obtain equation (27). This last equation can be seen as a ”switching
curve” in the plane (S, I):

Γ =

{
(S, I)

∣∣∣∣I = −N γ

β
ln

(
1− θγ

uH − uS

)
− θγ

uH − uS
S

}
, (27)

where the individual is indifferent between being vaccinating and doing noth-
ing.

With this economical approach, there is no insurance that the curve Γ
generates a Nash-MFG equilibrium. In fact, [22] does not use Nash-MFG
framework but assumes equality between two payoffs, false in general cases
(see for example [24]).

Nevertheless we seek to replicate these results in order to benchmark the
performance of our numerical schemes. For each initial point, the algorithm
reports if vaccination is optimal or not, which can be compared to the region
given by the switching curve Γ.

We use the same approach as in Subsection 3.2 to determine the global
vaccination response r(t). The proportion of individuals vaccinated up to time
t is the cumulative function V (t) defined by:

V (t) =

∫ t

0

r(u)du, (28)

where r(u) is the instantaneous vaccination rate at time u with r(u) ∈
[0, rmax] and rmax <∞.

5.2 Numerical values

For the simulation, we use the following numerical values: an initial proportion
of susceptibles S0 = 0.75 and infected I0 = 0.1; a cost of the vaccine θ = 0.5;
an expected utility loss associated if illness γ

uH−uS
= 1; a recovery rate for an

infected individual γ = 365/10 and a transmission rate of the disease β = 73.
As in the Section 4, total simulation time is one year (T = 1) with L = 365×3
total time steps.
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5.3 Results

We obtain coherent results with the analytic solution by using the same ap-
proach as in Subsection 4.1. The equilibrium individual strategy is a mixed
strategy with ξ0 = 66% and ξ∞ = 33% and its cost is 0.51. This results are co-
herent with the analytic result that provides a mixed strategy with ξ0 = 34%,
ξ∞ = 66% and a cost at 0.5. Figure 12 presents the numerical estimation
errors and order for the four schemes and figure 13 the errors for each schemes
depending of the number of minimizations.
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Figure 12: Numerical error and order for the four schemes and the model (26).
Reference solution (µ∆τref ) is given by a VRK4 scheme with ∆τref = 0.005.
Other steps used are ∆τ = 0.04, 0.06, 0.08, 0.10 and 0.12. Denote µ∆τ,l

n the
probability of vaccination at time n/N given by the l− th iteration of the nu-
merical scheme (V EE, V H, V RK3 or V RK4) with parameter ∆τ . We plot:

(left) the error maxl≤10/∆τ

√∑N
n=1

(
µ∆τ,l
n − µ∆τref ,l

n

)2

+
(
µ∆τ,l
∞ − µ∆τref ,l

∞

)2

.

Right: Order of convergence.
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Figure 13: Numerical error obtained (see figure 12 for the definition of the
error) for the four schemes depending on the number of minimizations for the
model (26). Reference solution is given by a VRK4 scheme with ∆τref = 0.005.
Other steps used are 0.04, 0.06, 0.08, 0.10 and 0.12.

6 Perspectives

This work introduces three high order schemes to find a Nash equilibrium and
illustrates their use in an epidemiological application.

We show numerically that the schemes VH, VRK3 and VRK4 exhibit
better order than VEE and we can obtain, depending on the regularity of the
function, up to order four convergence. The approach based on the Runge-
Kutta method can be applied for other numerical schemes, for instance Mid
Point, Leap-Frog or Adams-Bashford methods. The presented algorithms are
not optimized, as minimizations can take a long time and need a high numerical
precision, so the time execution can be significant. A perspective of this work
is to provide an extension to bi-dimensional or tri-dimensional problems.
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