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This paper collects results concerning global rates and large time asymptotics of a fractional fast diffusion on the Euclidean space, which is deeply related with a family of fractional Gagliardo-Nirenberg-Sobolev inequalities. Generically, self-similar solutions are not optimal for the Gagliardo-Nirenberg-Sobolev inequalities, in strong contrast with usual standard fast diffusion equations based on non-fractional operators. Various aspects of the stability of the self-similar solutions and of the entropy methods like carré du champ and Rényi entropy powers methods are investigated and raise a number of open problems.

Introduction

Recently many papers have been devoted to the extension of results involving second order partial differential operators to fractional operators. More specifically, fractional diffusion equations have been studied from the point of view of existence, comparison and regularity of the solutions, not only in the linear case but also in the framework of nonlinear models of porous medium or fast diffusion type. Concerning modeling issues, fractional diffusions are usually motivated by microscopic jump processes. One can refer to [START_REF] Bouchaud | Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications[END_REF][START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF] for an extended review of models arising from various areas of physics. We will not go in this direction. Relying on known theoretical results like the ones of [START_REF] Caffarelli | Regularity of solutions of the fractional porous medium flow[END_REF][START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF][START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF][START_REF] De Pablo | A general fractional porous medium equation[END_REF][START_REF] De Pablo | Classical solutions for a logarithmic fractional diffusion equation[END_REF], our approach aims at the description of fundamental qualitative properties of such equations in relation with closely associated, basic functional inequalities.

Standard fast diffusion or porous medium equations have simple features which arise from the homogeneity of the nonlinear term or from the fact that the diffusion operator is of second-order. These features explain the special role of selfsimilar solutions, known as Barenblatt-Pattle, in the large time regimes: see [START_REF] Vázquez | Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type[END_REF] for an historical presentation. Also remarkable is the fact discovered in [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] that the Barenblatt-Pattle solutions are optimal for some Gagliardo-Nirenberg-Sobolev inequalities, which are essential to measure the asymptotic stability of the selfa Jean Dolbeault, Email: dolbeaul@ceremade.dauphine.fr b Corresponding author: An Zhang, Email: zhang@ceremade.dauphine.fr similar solutions using relative entropy methods. Entropy functionals are indeed deeply connected with fast diffusion equations, as these equations can be seen as gradient flows of the entropies with respect to the Wasserstein's distance (see [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]).

In the context of fractional fast diffusion or porous medium equations, it is therefore very natural to question the role of self-similar solutions in terms of large time asymptotics and related functional inequalities. However, fractional order derivatives and nonlinearities do not combine well and this raises a number of difficulties. Self-similar solutions which generalize the Barenblatt-Pattle solutions to fractional diffusion have been studied in connection with large time asymptotics in [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF][START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF] and [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF][START_REF] Biler | The nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF][START_REF] Carrillo | Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure[END_REF]. There is a certain flexibility in the generalization of the standard nonlinear diffusion equations: this has been investigated in [START_REF] Huang | Explicit Barenblatt profiles for fractional porous medium equations[END_REF] and [START_REF] Stan | Transformations of self-similar solutions for porous medium equations of fractional type[END_REF].

In the present paper, we shall specifically rely on the fractional fast diffusion equation

∂u ∂t = ∇ • √ u ∇(-∆) -s u m-1 2
with m < 1, which seems particularly well adapted to entropy -entropy production inequalities as we shall see below. Such an equation has already been considered in [START_REF] Stan | Transformations of self-similar solutions for porous medium equations of fractional type[END_REF]Equation (MG)] from the point of view of self-similarity. Our purpose is to clarify the interplay of this equation with fractional Gagliardo-Nirenberg-Sobolev inequalities (see Section 2.3), and observe that, generically, optimal functions for these inequalities differ from self-similar solutions that are supposed to govern the large time behavior of the solutions of the evolution equation (Proposition 2.3). Beyond some results about, e.g., the existence of optimal solutions for the interpolation inequalities (Proposition 2.1), we raise a number of open questions concerning the large time asymptotics in Section 3 and the applicability of the Bakry-Emery, or carré du champ, method in Section 4.

Preliminaries: a fractional interpolation inequality and a fractional fast diffusion flow

The fractional Sobolev inequality

According to [START_REF] Chen | Remainder terms in the fractional Sobolev inequality[END_REF], for any α ∈ (0, d), with q = 2 d d-α , the fractional Sobolev inequality in R d can be written as

w 2 H α 2 (R d ) ≥ S d,α R d |w| q dx 2 q ∀ w ∈ H α 2 (R d ) (1) 
where

H α 2 (R d ) is the space of all tempered distributions w such that ŵ ∈ L 1 loc (R d ) and w 2 H α 2 (R d ) := R d |ξ| α | ŵ| 2 dξ < ∞ .
Here ŵ denotes the Fourier transform of w and the optimal constant is given by

S d,α = 2 α π α 2 Γ( d+α 2 ) Γ( d-α 2 ) Γ( d 2 ) Γ(d) α/d .
Up to translations, dilations and multiplications by a nonzero constant, the optimal function is

w ⋆ (x) = 1 + |x| 2 -d-α 2 ∀ x ∈ R d .
It is easy to check that w ⋆ solves (-∆)

α 2 w ⋆ = C d,α w d+α d-α ⋆ where C d,α = 2 α Γ( d+α 2 ) Γ( d-α 2 ) . (2) 
With the notation D α := ∇ (-∆) α-1 2 , we get that (-∆)

α 2 = D * α/2 D α/2
and (1) can then be written as

w 2 H α 2 (R d ) = D α/2 w 2 L 2 (R d ) ≥ S d,α w 2 L q (R d ) ∀ w ∈ H α 2 (R d ) .
The case α = 2 was established in [START_REF] Aubin | Problèmes isopérimétriques et espaces de Sobolev[END_REF][START_REF] Talenti | Best constant in Sobolev inequality[END_REF], but one may refer to [START_REF] Rosen | Minimum value for c in the Sobolev inequality φ 3 ≤ c ∇φ 3[END_REF] in case d = 3 and even to [START_REF] Bliss | An integral inequality[END_REF] for some early considerations on optimal functions. In the fractional case α = 2, the dual form of the optimal inequality, i.e., the Hardy-Littlewood-Sobolev inequality, was established in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF], while considerations on the case α = 1 in connection with trace issues can be found in [START_REF] Escobar | Sharp constant in a Sobolev trace inequality[END_REF]. Later work include [START_REF] Swanson | The best Sobolev constant[END_REF] and [START_REF] Chang | Fractional Laplacian in conformal geometry[END_REF] among many other related papers. The issue of the symmetry of the optimal functions, up to translations, was considered in [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF] and established in [START_REF] Chen | Classification of solutions for an integral equation[END_REF] using the moving planes method.

A fractional Gagliardo-Nirenberg-Sobolev inequality

With q = 2 d d-α , a simple Hölder interpolation shows that

w L 2p (R d ) ≤ w 1-ϑ L p+1 (R d ) w ϑ L q (R d ) with ϑ = d p p -1 d + α -p (d -α) .
Together with Sobolev's inequality, this provides an interpolation inequality of Gagliardo-Nirenberg-Sobolev type. More precisely, we have the following statement.

Proposition 2.1 Assume that α ∈ (0, d) and p ∈ (1, q] with q = 2 d d-α . With the above notations, the following Gagliardo-Nirenberg-Sobolev inequality

w L 2p (R d ) ≤ C GNS w ϑ H α 2 (R d ) w 1-ϑ L p+1 (R d ) ∀ w ∈ D(R d ) (3)
holds with an optimal constant C GNS ≤ S ϑ/2 d,α . Moreover, there exists a positive optimal function in

H α 2 (R d ) ∩ L p+1 (R d ) which solves the Euler-Lagrange equation (-∆) α 2 w + w p -w 2 p-1 = 0 , x ∈ R d . (4) 
In the above statement D(R d ) denotes the space of smooth functions with compact support, but it is simple to extend it by density to the space w ∈ H α 2 (R d ) :

R d w p+1 dx < ∞ . See [26, Theorem 2.1] for details. When p = q 2 = d d-α , then ϑ = 1 and C GNS = S d,α
. The symmetry of the optimal functions is not considered here and the interested reader is invited to refer for instance to [27] for a related problem.

Sketch of the proof. This result is out of the scope of the present paper and the proof is relatively standard, so let us give only a simple sketch. A reader interested in further details is invited to refer to [START_REF] Trabelsi | Optimal functions in fractional Gagliardo-Nirenberg-Sobolev inequalities[END_REF] and [START_REF] Hajaiej | Existence of minimizers of functionals involving the fractional gradient in the absence of compactness, symmetry and monotonicity[END_REF] for further details in similar cases. The above result can actually be seen as a special case of those dealt with in [START_REF] Hajaiej | Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms[END_REF]. The convergence of sequences in the critical case has been analyzed in details in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]. We can therefore assume that p ∈ (1, q).

An optimal function for (3) can be obtained by considering

I M := inf w 2 H α 2 (R d ) + w p+1 L p+1 (R d ) : R d w 2p dx = M . An optimisation on λ > 0 of w λ = λ d 2p w(λ•)
shows that the minimization of I M is equivalent to the characterization of the optimality case in (3), and also that

I M = M γ I 1 with γ = d + α -p (d -α) d -p (d -2 α) < 1 .
With these preliminary observations, a concentration-compactness analysis can be done as follows. Let us consider a sequence (w n ) n∈N of nonnegative function such that R d w 2p

n dx = M for any n ∈ N and

lim n→∞ w n 2 H α 2 (R d ) + w n p+1 L p+1 (R d ) = I M .
1) The following result has been stated in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case. II[END_REF]

, Lemma I.1, p. 231]. Lemma 2.2 Let R > 0 and p ∈ [1, 2 * /2). If (w n ) n is bounded in H 1 (R d ) and if lim sup n→∞ BR(x) |w n | 2p dy = 0 for any x ∈ R d , then lim n→∞ w n L r (R d ) = 0 for any r ∈ [2, 2 * ).
Here 2 * = ∞ if d = 1 or 2, and 2

* = 2 d/(d -2) if d ≥ 3
. By an analogue of this result in H α 2 (R d ), with 2 * /2 replaced by q, vanishing cannot occur, which means that, after eventually replacing w n by w n (• + y n ) for some unbounded sequence (y n ) n∈N of points in R d , we have lim

R→∞ lim n→∞ BR(0) |w n | 2p dy > 0 .
2) Since γ < 1, it is straightforward to check that

I M1+M2 ≤ I M1 + I M2 ,
which prevents dichotomy. As a consequence, for any ε > 0, there exists some R > 0, large enough, such that lim n→∞ BR(0)

|w n | 2p dy ≥ M -ε .
In other words, this means that the sequence (w 2p n ) n∈N is tightly relatively compact in the sense of measures.

3) Concentration is forbidden by Sobolev's inequality [START_REF] Bouchaud | Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications[END_REF]. Altogether, this proves that (w n ) n∈N is weakly relatively compact in L 2p (R d ) (see for instance [START_REF] Autuori | Elliptic problems involving the fractional laplacian in n[END_REF]Lemma 2.2]) and the conclusion holds by lower semi-continuity.

Let us take the logarithm of both sides in (3). An optimal function is a minimizer of the functional

w → ϑ log w H α 2 (R d ) + (1 -ϑ) log w L p+1 (R d ) -log w L 2p (R d ) .
A variation shows that

ϑ (-∆) α 2 w w H α 2 (R d ) + (1 -ϑ) w p w L p+1 (R d ) - w 2 p-1 w L 2p (R d ) = 0 .
Using the homogeneity in (3) and a multiplication by a constant, the coefficients can be adjusted so that w solves (4).

A fractional fast diffusion equation

Let us consider the case

α = 2 (1 -s) .
Any nonnegative solution u of

∂u ∂t = ∇ • √ u ∇(-∆) -s w with w = u m-1 2 (5) 
which is smooth enough and has good decay properties as |x| → ∞ is such that

E ′ = 2 m (1-m) 2 m-1 I , (6) 
where the entropy E and the Fisher information I are defined respectively by

E[u] := R d u m dx and I[u] := R d ∇ (1-s) u m-1 2 2 dx ,
and ∇ (1-s) is defined by

∇ (1-s) w := ∇(-∆) -s/2 w .
Above we consider E[u(t, •)] as a function of t if u solves ( 5) and

E ′ denotes the t-derivative of E[u(t, •)].
Because the right hand side in ( 5) is in divergence form, we know that

M := R d u dx
is independent of t ≥ 0 for any solution u which is smooth enough, and with enough decay as |x| → +∞. Let us assume that

m ≥ m 1 := 1 2 + 1 q = 1 - α 2 d . If m = m 1 and v ⋆ := w q ⋆ , then v ⋆ (x) = 1 + |x| 2 -d satisfies v m1-1 2 ⋆ = w ⋆ and (-∆) 1-s v m1-1 2 ⋆ = C d,α v d+α 2 d ⋆ = C d,α 1 + |x| 2 s-1 √ v ⋆
according to [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF]. Assume now that m ∈ [m 1 , 1). If we introduce a generalized Rényi entropy power functional F as in [START_REF] Savaré | The concavity of Rényi entropy power[END_REF][START_REF] Dolbeault | Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays[END_REF], defined by

F := E σ with σ := 2 ϑ 1 -ϑ p + 1 + 1 = m -m c 1 -m , p = 1 2 m -1 and m c := 1 - α d ,
then by applying Proposition 2.1 to w = u m-1 2 we obtain that

F ′ ≥ κ using (6)
, where the constant κ depends only on d, s (or α), m and M, and can be computed as

κ := 2 m (1 -m) 2 m -1 σ M C 2p GNS 1 p ϑ = 2 m 2 m -1 (m -m c ) M C 2p GNS d+α-p (d-α) d (p-1)
.

Self-similar solutions

Let us introduce the time-dependent change of variables

u(t, x) = 1 R d v log R, x R (7) 
where R = R(t) is given by the ordinary differential equation

R µ-1 dR dt = 1 , R(0) = 1 , (8) 
and the parameter µ is defined by

µ := d (m -m c ) with m c = 1 - α d .
If m is in the range [m 1 , 1), it is straightforward to check that µ is positive and the scale R has the explicit expression

R(t) = (1 + µ t) 1/µ ∀ t ≥ 0 .
If u solves [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF], it is then easy to check that v is a solution of

∂v ∂t = ∇ • √ v ∇(-∆) -s v m-1 2 + x √ v . (9) 
This change of variable is classical in case of non-fractional operators but has also been considered in the case of the fractional Laplacian, for instance in [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF][START_REF] Biler | The nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF]. A detailed analysis of self-similar profiles is available in [START_REF] Stan | Transformations of self-similar solutions for porous medium equations of fractional type[END_REF]. In the fast diffusion case, for an equation related with [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF], we refer to [START_REF] Vázquez | Optimal estimates for fractional fast diffusion equations[END_REF], where the role of Barenblatt type solutions for regularization effects has been clarified.

Proposition 2.3 Let p = 1 2 m-1 .
Under the assumptions of Proposition 2.1, if w is an optimal function for (3), then v = w 2p is not a bounded, positive, stationary solution of [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] 

such that I[v] is finite, unless s = 0, α = 2 or m = d+1 d+2 (1-s) .
In other words, we claim that (4) does not provide stationary solutions of (9) as it is the case in the non-fractional case, except in the special case corresponding to m = d+1 d+2 (1-s) , which was observed in [START_REF] Huang | Explicit Barenblatt profiles for fractional porous medium equations[END_REF][START_REF] Stan | Transformations of self-similar solutions for porous medium equations of fractional type[END_REF].

Proof. We argue by contradiction and consider a solution of

∇ • √ v ∇(-∆) -s v m-1 2 + x √ v = 0 . We deduce that w = v m-1 2 solves 0 = ∇(-∆) -s v m-1 2 + x √ v = ∇(-∆) -s w + x w p
where p = 1/(2 m -1) and, as a consequence,

-(-∆) 1-s w + ∇ • (x w p ) = 0 .
With α = 2 (1 -s), if w simultaneously solves (4) up to a multiplication by a constant, a scaling and a translation, this means that w p = v is such that

∇ • (x w p ) = a w 2 p-1 -b w p
for some positive constants a and b that can be adjusted. With

a = p p -1 and b = p p -1 -d ,
we find that

w(x) = 1 + |x| 2 1 1-p ∀ x ∈ R d .
The result follows from [14, Theorem 3.1].

The case m = m 1 is almost explicit. In order to illustrate Proposition 2.3, let us give some details. With the notations of Section 2.1, if we choose

v m1-1 2 ⋆ = w ⋆ ⇐⇒ v ⋆ = w we obtain that ∇ (-∆) -1 (-∆) 1-s v m1-1 2 ⋆ + x √ v ⋆ = ∇ (-∆) -1 C d,α w d+α d-α ⋆ + x √ v ⋆ = ∇ (-∆) -1 C d,α v d+α 2 d ⋆ -C d,2 v d+2 2 d ⋆ = 0 unless α = 2.
For later purpose, let us define the self-similar profile B as the unique radial solution of

∇(-∆) -s B m-1 2 + x √ B = 0 such that R d B dx = M.
We recall that these solutions are the so-called Barenblatt profiles when s = 0 and refer to [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for more details. It is straightforward to check that

u ⋆ (t, x) = 1 R d B log R, x R
is a self-similar solution of ( 5) if R = R(t) is given by (8).

Global rates of convergence and formal large time asymptotics

The generalized Rényi entropy power functional defined as in Section 2.3 by [START_REF] Caffarelli | Asymptotic behaviour of a porous medium equation with fractional diffusion[END_REF] with initial datum u 0 on the one hand, and a direct computation shows that the self-similar solution u ⋆ satisfies the relation

F[u] = R d u m dx σ is such that F[u(t, •)] ≥ F[u 0 ] + κ t ∀ t ≥ 0 if u solves
F[u ⋆ (t, •)] = F[B] (1 + µ t) ∀ t ≥ 0 .
Corollary 3.1 With the above notations and under the assumptions of Proposition 2.3, we have the estimate

κ < κ ⋆ := µ F[B] .
Proof. The inequality κ ≤ κ ⋆ is a straightforward consequence of the above computations, with u 0 = B. The strict inequality follows from Proposition 2.3. Now let us investigate the large time asymptotics at formal level. Inspired by [START_REF] Vázquez | Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type[END_REF][START_REF] Vázquez | Optimal estimates for fractional fast diffusion equations[END_REF], we expect that for any m ∈ [m 1 , 1), u(t, x) ∼ u ⋆ (t, x) as t → +∞ as in [START_REF] De Pablo | Nonlocal filtration equations with rough kernels[END_REF]Theorem 1.4], and thus

F[u(t, •)] = κ ⋆ t 1 + o(1) = F[B] (1 + µ t) 1 + o(1) .
Using the self-similar change variables ( 7)-( 8), the equivalence u ∼ u ⋆ amounts to

v(t, •) → B as t → +∞ .
So far this question is open. Next let us investigate at formal level the question of the attraction of the solutions by the self-similar solutions.

If u solves ( 5) and u ⋆ is the self-similar solution with same mass, we define the relative entropy by

E[u] = 1 m-1 R d u m -u m ⋆ -m u m-1 ⋆ (u -u ⋆ ) dx .
A straightforward computation shows that

d dt E[u(t, •)] = m m-1 R d u m-1 -u m-1 ⋆ ∂u ∂t dx -m R d u m-2 ⋆ (u -u ⋆ ) ∂u ⋆ ∂t dx = -m m-1 R d ∇ u m-1 -u m-1 ⋆ • √ u ∇(-∆) -s u m-1 2 dx + m R d ∇ u m-2 ⋆ (u -u ⋆ ) • √ u ⋆ ∇(-∆) -s u m-1 2 ⋆ dx .
At formal level, we investigate the limit as ε → 0 of

u ε = u ⋆ 1 + ε u 1 2 -m ⋆ f .
First, let us notice that

√ u ε = √ u ⋆ + 1 2 ε u 1-m ⋆ f + o(ε) , u m-1 2 ε = u m-1 2 ⋆ + m -1 2 ε f + o(ε) , u m-1 ε = u m-1 ⋆ + (m -1) ε f √ u ⋆ + 1 2 (m -1) (m -2) ε f 2 u m ⋆ + o(ε 2 ) .
As a consequence, we find that

E[u] = m 2 ε 2 R d u 1-m ⋆ f 2 dx + o(ε 2 )
and

d dt E[u(t, •)] = -m 2 ε 2 Q u⋆ [f ] + o(ε 2 )
where the quadratic form Q u⋆ is defined by

Q u⋆ [f ] := R d ∇ f √ u⋆ • (2 m -1) √ u ⋆ ∇(-∆) -s f + u 1-m ⋆ f ∇(-∆) -s u m-1 2 ⋆ dx + (m -2) R d ∇ f 2 u m ⋆ • √ u ⋆ ∇(-∆) -s u m-1 2 ⋆ dx .
If s = 0, we observe that

1 2 m-1 Q u⋆ [f ] = R d u ⋆ ∇ f √ u⋆ 2 dx -1-m 2 R d (2 -m) |∇u ⋆ | 2 u 2 ⋆ - ∆u ⋆ u ⋆ f 2 dx .
To characterize the asymptotic stability of u ⋆ , the point is to notice that

Q u⋆ [f ] controls R d u 1-m ⋆ f 2 dx.
Proposition 3.2 With the previous notations, if s = 0 and m 1 ≤ m < 1, there exists a positive constant C which depends on only on m and d such that

Q u⋆ [f ] ≥ 2 1 -m C R µ R d u 1-m ⋆ f 2 dx for any smooth function f such that R d u ⋆ dx)) such that Q u⋆ [f ] is finite for any t ≥ 0.
Proof. The result follows from the change of variables [START_REF] De Pablo | Classical solutions for a logarithmic fractional diffusion equation[END_REF] and [38, Corollary 1]: the above inequality can be rewritten in the form of a spectral gap inequality with a constant which is independent of t. Also see [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for earlier spectral gap computations.

In self-similar variables, Proposition3.2 shows that B is linearly stable, and this is enough to prove that u ⋆ is asymptotically linearly stable when s = 0. Actually one also knows that B is globally stable when s = 0, with explicit global rates, which is a far deeper issue. Proposition 3.2 immediately raises two open questions:

(i) Is u ⋆ asymptotically linearly stable for any s ∈ (0, n) ? (ii) Can we prove that u ⋆ is, under the appropriate mass normalization, a global attractor and deduce that the asymptotic rate of convergence of any solution towards u ⋆ is determined by the spectral gap Λ associated with the inequality

Q B [g] ≥ Λ R d B 1-m g 2 dx
for any admissible function g such that

R d B 3 
2 -m g dx = 0 ?

4. On the Bakry-Emery method applied to the fractional fast diffusion equation and generalized Rényi entropy powers

In this section we do a computation based on the generalized Rényi entropy powers in case s = 0 and emphasize the points which differ when s > 0. So far such a computation has been done using the so-called pressure variable u m-1 as, for instance, in [START_REF] Savaré | The concavity of Rényi entropy power[END_REF][START_REF] Dolbeault | Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays[END_REF]. Here we base our computations on

f := u m-1 2 .
With this simple change of variables, we obtain that

∂f ∂t = u m-1 m -1 2 ∆f + 1 2 |∇f | 2 f
and compute the time derivative of the Fisher information

I[u] = R d |∇f | 2 dx
as

I ′ = -2 R d (∆f ) ∂f ∂t dx = -(2 m -1) R d u m-1 (∆f ) 2 dx - R d u m-1 ∆f |∇f | 2 f dx .
The computation of the r.h.s. relies on two identities. Here we assume that integrations by parts can be taken without any special precautions. A detailed discussion of this issue can be found in [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF].

• First identity: we use an integration by parts to obtain

- R d u m-1 ∆f |∇f | 2 f dx = R d ∇f • ∇ u m-1 |∇f | 2 f dx = R d (∇u m-1 ) • ∇f |∇f | 2 f dx + 2 R d u m-1 Hf : ∇f ⊗ ∇f f dx - R d u m-1 |∇f | 4 f 2 dx
where Hf denotes the Hessian matrix of f . After integrating by parts again, we obtain

- R d u m-1 ∆f |∇f | 2 f dx = 2 R d u m-1 Hf : ∇f ⊗ ∇f f dx-1 2 m-1 R d u m-1 |∇f | 4 f 2 dx (10) using ∇ u m-1 = 2 (m-1) 2 m-1 u m-1 ∇f f . (11) 
• Second identity: using again [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF], we find that

-(2 m -1) R d u m-1 (∆f ) 2 dx = (2 m -1) R d ∇f • ∇ u m-1 ∆f dx = 2 (m -1) R d u m-1 ∆f |∇f | 2 f dx + (2 m -1) R d u m-1 ∇f • ∇∆f dx .
Next we use the identity ∇f • ∇∆f = 1 2 ∆ |∇f | 2 -Hf 2 and obtain

-(2 m -1) R d u m-1 (∆f ) 2 dx = 2 (m -1) R d u m-1 ∆f |∇f | 2 f dx -(2 m -1) R d u m-1 Hf 2 dx + m -1 2 R d u m-1 ∆ |∇f | 2 dx
where, using twice [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF], we obtain that

R d u m-1 ∆ |∇f | 2 dx = 2 (m-1) 2 m-1 R d |∇f | 2 ∇ • u m-1 ∇f f dx = 2 (m-1) 2 m-1 R d u m-1 ∆f |∇f | 2 f dx + 2 (m-1) 2 m-1 2 (m-1) 2 m-1 -1 R d u m-1 |∇f | 4 f 2 dx = 2 (m-1) 2 m-1 R d u m-1 ∆f |∇f | 2 f dx -2 (m-1) (2 m-1) 2 R d u m-1 |∇f | 4 f 2 dx .
Notice that the above computation will cause trouble for a generalization to the case of a function f which is defined as a non-local expression of u m-1 2 . Hence

-(2 m -1) R d u m-1 (∆f ) 2 dx = 3 (m -1) R d u m-1 ∆f |∇f | 2 f dx -(2 m -1) R d u m-1 Hf 2 dx -m-1 2 m-1 R d u m-1 |∇f | 4 f 2 dx .
We can evaluate R d u m-1 ∆f |∇f | 2 f dx using [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] and get that

-(2 m -1) R d u m-1 (∆f ) 2 dx = -3 (m -1) 2 R d u m-1 Hf : ∇f ⊗ ∇f f dx -1 2 m-1 R d u m-1 |∇f | 4 f 2 dx -(2 m -1) R d u m-1 Hf 2 dx -m-1 2 m-1 R d u m-1 |∇f | 4 f 2 dx .
This provides the second identity

-(2 m -1) R d u m-1 (∆f ) 2 dx = -(2 m -1) R d u m-1 Hf 2 dx -6 (m -1) R d u m-1 Hf : ∇f ⊗ ∇f f dx + 2 (m-1) 2 m-1 R d u m-1 |∇f | 4 f 2 dx . ( 12 
)
Collecting terms of our two identities [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] and ( 12), we have found that

I ′ = -(2 m -1) R d u m-1 Hf 2 dx -2 (3 m -4) R d u m-1 Hf : ∇f ⊗ ∇f f dx -3-2 m 2 m-1 R d u m-1 |∇f | 4 f 2 dx ,
that we can also write as

I ′ = -(2 m -1) 1 -m1 m R d u m-1 ∆f -1 2 m-1 |∇f | 2 f 2 dx -R with R := (2 m -1) m 1 m R d u m-1 Hf 2 dx -2 3 (1 -m 1 ) + m1 m R d u m-1 Hf : ∇f ⊗ ∇f f dx + 2 m (1-m1)+m1 m (2 m-1) R d u m-1 |∇f | 4 f 2 dx .
Recalling that m 1 = (d -1)/d, the reader is invited to check that

R = 2 m-1 m R d u m-1 Lf -1 2 m-1 Mf 2 dx using the notations Lf := Hf -1 d ∆f Id and Mf := ∇f ⊗ ∇f f -1 d |∇f | 2 f Id , so that Hf : ∇f ⊗ ∇f f = Hf : Mf + 1 d ∆f |∇f | 2 f = Lf : Mf + 1 d ∆f |∇f | 2 f and Lf 2 = Hf 2 -1 d (∆f ) 2 and Mf 2 = 1 -1 d |∇f | 4 f 2 .
Finally we introduce the Rényi entropy power F defined by

F := E σ with σ := 2 d 1 1 -m -1 . If 1 -1 d = m 1 ≤ m < 1,
proving that, as a function of t, F is concave amounts to proving that

G := 2 m-1 2 m (1-m) E 2-σ F ′′ = (σ -1) 2 m (1-m) 2 m-1 I 2 + E I ′
is nonpositive, because of (6). We observe that

R d u m-1 ∆f -1 2 m-1 |∇f | 2 f + 2 m 2 m-1 I E √ u 2 dx = R d u m-1 ∆f -1 2 m-1 |∇f | 2 f 2 dx -2 m 2 m-1 2 I 2 E
and, as a consequence,

G = -(2 m -1) 1 - m 1 m E R d u m-1 ∆f -1 2 m-1 |∇f | 2 f + 2 m 2 m-1 I E √ u 2 dx -2 m-1 m E R d u m-1 Lf -1 2 m-1 Mf 2 dx .
Summarizing, when s = 0 and by assuming that there are no boundary terms in the integrations by parts, we establishes that F is a concave increasing function, and shows that

F ′ ≥ κ = κ ⋆
with the notations of Sections 2.3 and Corollary 3.1. According to [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF], this is equivalent to the proof of Inequality (3). The main difference with [START_REF] Dolbeault | Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization[END_REF] is that the computations are done in terms of f = u m-1 2 instead of u m . When s = 0, it would be desirable to do a similar computation with f = (-∆) -s/2 u m-1 2 but there are several obstructions. First of all, according to Proposition 2.3, we cannot expect that κ = κ ⋆ . In other words, the self-similar solution u ⋆ is not optimal for Inequality (3). We can hope that monotonicity of F ′ holds for some non optimal constant as a consequence of the Bakry-Emery method applied to the fractional fast diffusion equation and generalized Rényi entropy powers: proving it is still open. Technically another obstruction arises from the computations as we have no identity equivalent to [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF]. As in [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF][START_REF] Biler | The nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF] in the porous medium case, one could expect that a Stroock-Varadhan identity [START_REF] Liskevich | Some problems on Markov semigroups[END_REF][START_REF] Stroock | On degenerate elliptic-parabolic operators of second order and their associated diffusions[END_REF][START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF] allows to give a proof of the optimality with non-optimal constants, and also characterize the stability of the self-similar solutions as t → +∞, but this is so far also an open question.
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d d-α ⋆ ⇐⇒ v ⋆ (x) = 1 + |x| 2 -d ∀ x ∈ R d ,

2 -m ⋆f dx = 0.We recall that R = R(t) is given by[START_REF] Vázquez | Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type[END_REF], and u ⋆ depends on t, so that the above inequality holds for any t ≥ 0. When s = 0, µ = d m -(d -2) and R µ (t) = 1 + µ t for any t ≥ 0. By density, it is easy to extend the above inequality to any function f ∈ L ∞ (dt, L 2 (R d , u1-m 
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