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Abstract

We study linear properties of TU-games, revisiting well-known issues

like interaction transforms, the inverse Shapley value problem and poten-

tials. We embed TU-games into the model of cooperation systems and in-

fluence patterns, which allows us to introduce linear operators on games in a

natural way. We focus on transforms, which are linear invertible maps, relate

them to bases and investigate many examples (Möbius transform, interac-

tion transform, Walsh transform and Fourier analysis etc.). In particular, we

present a simple solution to the inverse problem in its general form: Given a

linear value Φ and a game v, find all games v′ such that Φ(v) = Φ(v′). Gen-

eralizing Hart and Mas-Colell’s concept of a potential, we introduce general

potentials and show that every linear value is induced by an appropriate po-

tential.
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de l’Hôpital, 75013 Paris, France. Tel. (33) 144-07-82-85, Fax (33)-144-07-83-01. Email:

michel.grabisch@univ-paris1.fr

1



1 Introduction

It is well known that finite TU-games with n players, and more generally set

functions on a set N of n = |N | elements, form a 2n-dimensional vector space.

Usually, particular attention is paid to two special bases: the set of unanimity

games ζS, S ∈ 2N , and the set of identity (Dirac) games δS . The coefficients of a

game in the basis of unanimity games are known as the Harsanyi dividends [14],

or the Möbius inverse [20]. But also other transforms (namely, invertible linear

operators) have been proposed and studied in the literature (e.g., the interaction

transform [8], the Walsh transform [23], which is also known as Fourier transform,

etc.).

Although recognized to be important in discrete mathematics, these transforms

are not very well known in the game theory community so far. In fact, it seems

that the linear properties of TU-games–while often used indirectly–have not yet

been fully exploited in game theoretic research in their own right. To the best of

our knowledge, the obvious correspondence between bases and linear transforms

has never been addressed explicitly, for example. As a consequence, the famous

“inverse problem” for TU-games, which asks for a description of all games v′

having the same Shapley value as a given game v, has been solved in a somewhat

tedious way (see Kleinberg and Weiss [17] or Dragan [3, 6]). We solve the inverse

problem for general linear values in Section 3.3.

In our present study of linear properties of game theoretic concepts it is con-

venient (and natural) to embed TU-games into the context of cooperation systems

and influence patterns of coalitions. We introduce this model in Section 2. Linear

transforms and their interplay with bases are investigated in Section 3 and illus-

trated with fundamental examples and applications and relate them to discrete

Fourier analysis.

Hart and Mas-Collel [15] have given an interpretation of the Shapley value

as a potential value which provides an interesting link to the (non-cooperative!)

potential games of Monderer and Shapley [18]. It turns out that a comprehensive

framework for linear potentials as generalizations of transforms exists in the con-

text of cooperation systems. We show in Section 4 how this general framework

allows us to exhibit every linear value as a potential value.
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2 Cooperation systems

In order to set up a suitable context for the analysis of transforms and values,

we extend the classical model of cooperative games to the model of cooperation

systems. We consider finite sets N of n = |N | ≥ 1 players, denoting by N = 2N

the collection of all subsets (or coalitions) S ⊆ N .

A cooperation system is a pair (N,F ), where F : N × N → R is a map

that reflects for every pair (S, T ) of coalitions, the amount F (S, T ) of influence

S exerts on T . We refer to F as the influence pattern of (N,F ). A valuation on

(N,F ) is a map v : N → R that assigns to every coalition S a value v(S). In the

terminology of classical cooperative game theory, a valuation v with v(∅) = 0 is

the characteristic function of a cooperative TU game (N, v).

The valuations v form the 2n-dimensional vector space RN , while the possible

influence patterns F define the vector space R
N×N . Mathematically, one may

think of a valuation v ∈ R
N as a parameter vector, indexed by the S ∈ N . We

denote the (euclidean) inner product of RN as

〈v, w〉 =
∑

S∈N

vSwS =
∑

S∈N

v(S)w(S).

F ∈ R
N×N corresponds to a matrix [fST ] with rows and columns indexed by

the members of N and coefficients fST = F (S, T ). We denote by fS the row

vector of F that corresponds to S ⊆ N and interpret it as the associated influence

function fS : RN → R with values

fS(T ) = fST = F (S, T ) (T ⊆ N).

2.1 Examples

Counting pattern. Let C = [cST ] ∈ R
N×N be the pattern defined by

cST = |S ∩ T |.

Here the individual players act independently. The influence of a coalition S on

another coalition T depends only on the number of players in S that are also

members of T .
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Parity pattern. Let Π = [πST ] ∈ R
N×N be the pattern with coefficients

πST = (−1)|S∩T |.

Π is called the parity pattern. Two coalitions S and T exert a positive (“+1”) or

negative (“−1”) influence on each other depending on whether they have an even

or an odd number of players in common. Π plays a major role in the Fourier anal-

ysis of RN (see Section 3.2 below), which is based on the following fundamental

observation.

Lemma 2.1 For all S, T ⊆ N , one has the orthogonality property

〈πS, πT 〉 =
∑

K⊆N

πSKπTK =

{

2n if S = T ,

0 if S 6= T .

Proof. In the case S = T , one has

〈πS, πT 〉 =
∑

K∈N

(−1)|S∩K|(−1)|S∩K| =
∑

K⊆N

1 = 2n.

So we may assume the existence of some t ∈ T \ S without loss of generality. In

this case, we observe

∑

K⊆N\t

(−1)|S∩K|(−1)|T∩K| = (−1) ·
∑

K∋t

(−1)|S∩K|(−1)|T∩K|

and hence

〈πS, πT 〉 =
∑

K⊆N

(−1)|S∩K|(−1)|T∩K| = 0.
�

Containment pattern. Let Z = [ζST ] ∈ R
N×N be the pattern with the coeffi-

cients

ζST =

{

1 if S ⊆ T

0 otherwise.

Z is the containment pattern, where a coalition S is thought to be able to exert an

influence on any coalition T containing it. For any S ∈ N , the influence function

ζS is (0, 1)-valued. If S 6= ∅, (N, ζS) is commonly known as a unanimity game.

4



Influence in voting In Grabisch and Rusinowska [12], influence is studied in

terms of voting dynamics as follows. Let S be the set of ’yes’-voters at time t and

let mST be the probability for T to be the set of ’yes’-voters at time t + 1. The

transition S → T is the result of a round of discussion among voters. So mST is a

measure for the influence the constellation S exerts on the constellation T . Here,

the pattern matrix M = [mST ] is row-stochastic and defines a Markov process on

N .

2.2 Influence spaces, bases and additive games

We define the influence space F of F as the collection of all linear combinations

of influence functions:

F = {v ∈ R
N | v =

∑

S∈N

λSfS, λS ∈ R}.

F is a subspace of RN and corresponds to the row space of the matrix F . We

think of parameters vectors λ as a row vectors and can therefore have in matrix

notation

F = {λF | λ ∈ R
N} = R

NF.

We state a well-known fundamental linear algebraic fact.

Lemma 2.2 (Basis lemma) Equality F = R
N holds if and only if the 2n influ-

ence functions fS are linearly independent and hence form a basis of RN .

It is easy to see (see Ex. 2.1 below) that the 2n influence functions (unanimity

games) ζS of the containment pattern Z are linearly independent and hence form a

basis of RN . The inverse pattern is given by the Möbius matrix Z−1 = [µST ] = M
with the coefficients (cf. Rota [20])

µST =

{

(−1)|T\S| if S ⊆ T ,
0 otherwise.

(1)

On the other hand, the influence functions cS of the counting pattern C are not

linearly independent. Indeed, setting ζi = ζ{i}, we have

ζi = c{i} and cS =
∑

i∈S

ζi for all i ∈ N and S ∈ N \ {∅}. (2)

5



It follows that the n influence functions ζi form a basis of the influence space C
of the counting pattern C. In other words, C is the vector space of all characteristic

functions v of the form

v =
∑

i∈N

v({i})ζi or v(S) =
∑

i∈S

v({i}) ∀S ⊆ N.

So C is the n-dimensional space of all additive cooperative games on N .

Example 2.1 Let F = [fST ] be such that for all S, T ∈ N , one has fSS 6= 0 and

fST = 0 unless S ⊆ T . Label the rows and columns of F so that S precedes T
whenever S ⊂ T . This exhibits F as (upper) triangular with non-zero diagonal.

So the 2n influence functions fS are seen to be linearly independent (see Grabisch

et al. [10] and Denneberg and Grabisch [2] for a detailed treatment of this type

of matrix in the context of interaction).

2.3 Linear values

In game theoretic terminology, a value is a function Φ : RN → R
N that evaluates

the strength (or power or reward etc.) of player i ∈ N relative to the valuation v as

Φi(v). The value Φ can be considered as a mapping Φ from R
N to C, the influence

space of the counting pattern, which assigns to any valuation v an additive game

Φv defined by

Φv(S) =
∑

i∈S

Φi(v) for any S ∈ N \ {∅} (3)

with the convention Φv(∅) = 0. Φ is linear if it is a linear map. A classical linear

example is Shapley’s [22] value ΦSh, defined by

ΦSh
i (v) =

∑

S∈N\{∅}

(n− |S|)!(|S| − 1)!

n!

(

v(S)− v(S \ i)
)

(i ∈ N). (4)

In applications, one is often interested in values Φ that satisfy additional con-

ditions. For example, Φ might be required to be efficient in the sense

∑

i∈N

Φi(v) = v(N) for all valuations v ∈ R
N .
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3 Bases and linear transforms

Consider a cooperation system (N,F ) with a full-dimensional influence space

F = R
N . Hence, by Lemma 2.2, F is invertible, and the rows fS, S ∈ N , of F

form a basis of RN , yielding for any v ∈ R
N a unique representation

v =
∑

S∈N

wSfS,

or in matrix notation v = wF with w the row-vector [wS]S∈N , and consequently

w = vF−1. Following some tradition, one may view the mapping v 7→ w as a

transform, namely a linear and invertible operator on R
N with F−1 as its stan-

dard matrix representation (see below for such examples). Letting Ψ be any such

transform v 7→ Ψv, the above observations yield the well-known one-to-one cor-

respondence between bases and transforms:

Lemma 3.1 (Equivalence between bases and transforms) For every basis F =
[fS]S∈N of RN , there is a (unique) transform Ψ such that for any v ∈ R

N ,

v =
∑

S∈N

Ψv(S)fS, (5)

whose inverse Ψ−1 is given by v 7→ (Ψ−1)v =
∑

T∈N v(T )fT = vF .

Conversely, to any transform Ψ there corresponds a unique basis F of RN

such that (5) holds, given by fS = (Ψ−1)δS , where δS is the identity game with

δS(T ) = 1 if S = T and 0 otherwise.

Game theoretic investigations have traditionally been restricted to the use of

mainly two bases: the basis of identity games and the basis of unanimity games.

For the latter, it is well-known the coordinates of a game are its Harsanyi divi-

dends (see the next section). Lemma 3.1 above, although straightforward from an

abstract linear algebraic point of view, exhibits the general duality between bases

and transforms, which, to the best of our knowledge, has never been noticed nor

exploited game theoretically. As a first consequence of the lemma, the use of the

various transforms already existing in the fields of game theory, operations re-

search and computer science, puts at our disposal a variety of new bases for the

analysis of games. It is well known that the choice of a “good” basis can be of

crucial importance. Recall, for example, that the characterization of the Shapley

value by linearity, symmetry, null player and efficiency can be established in a few

lines with the basis of unanimity games. So the knowledge of new bases can be
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of considerable help in the study of cooperative games. Sections 3.1 and 3.2 give

many examples of transforms and their associated bases.

A second important consequence is that the solution of the well-known “in-

verse problem”, which asks for finding all games having the same Shapley value

(or other linear value), can be obtained in an elegant way (see Section 3.3 below).

3.1 Examples

Harsanyi dividends and Möbius transform. Harsanyi [14] has shown that a

valuation v admits coefficients mv
S (the so-called Harsanyi dividends in game-

theoretic language) such that one has

v(T ) =
∑

S⊆T

mv
S =

∑

S⊆N

mv
SζS(T ) for all T ⊆ N . (6)

To see that such coefficients exist indeed, just observe that the second equality in

(6) defines the the so-called Möbius transform v 7→ mv relative to the containment

pattern Z:

v =
∑

S⊆N

mv
SζS.

The inverse (Möbius) pattern Z−1 = [µST ], therefore, yields the representation

mv =
∑

S⊆N

v(S)µS

and hence the explicit formula for the Harsanyi dividends:

mv(S) =
∑

T∈N

v(T )µT (S) =
∑

T⊆S

(−1)|S\T |v(T ). (7)

The commonality transform. The commonality coefficients m̌v
S of a valuation

v were studied by Shafer [21] (see also Grabisch et al.[10]) as parameters with the

property

v(S) =
∑

T⊆N\S

(−1)|T |m̌v(T ). (8)

To demonstrate their existence, we set ṽ(S) = (−1)|S|v(N \S) and conclude from

(7) that the numbers ṽ(S) must be the Harsanyi dividends of m̌v:

ṽ(S) =
∑

T⊆S

(−1)|S\T |m̌v(T ).
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In view of (6), we thus find

m̌v(S) =
∑

T⊆S

ṽ(T ) =
∑

T⊆S

(−1)|T |v(N \ T ). (9)

The commonality transform (or co-Möbius function) is the operator v 7→ m̌v.

From (8), we infer immediately that the basis of the commonality transform con-

sists of the valuations fS with values

fS(T ) =
∑

B⊆N\S

(−1)|B|δS(B) =

{

(−1)|S| if S ∩ T = ∅,
0 otherwise.

The Shapley interaction transform. The Shapley (interaction) transform on

R
N is the function v 7→ Iv defined by

Iv(S) =
∑

K⊆N

|N \ (S ∪K)|!|K \ S|!

(n− |S|+ 1)!
(−1)|S\K|v(K).

It extends the Shapley value in the sense

Iv({i}) =
∑

T⊆N\i

(n− |T | − 1)!|T |!

n!

(

v(T ∪ i)− v(T )
)

= ΦSh
i (v). (10)

It was shown by Grabisch [8] that v can be recaptured from Iv:

v(S) =
∑

K⊆N

β
|K|
|S∩K|I

v(K), (11)

where

βl
k =

k
∑

j=0

(

k

j

)

Bl−j (k ≤ l),

and B0, B1, . . . are the Bernoulli numbers. The first values of βl
k are given in

Table 1.

Using Lemma 3.1, we find that the corresponding basis consists of the 2n

valuations bIT with values

bIT (S) = β
|T |
|T∩S| for all S ∈ N . (12)
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k \ l 0 1 2 3 4

0 1 −1
2

1
6

0 − 1
30

1 1
2

−1
3

1
6

− 1
30

2 1
6

−1
6

2
15

3 0 − 1
30

4 − 1
30

Table 1: The coefficients βl
k

The Banzhaf interaction transform. The well-known Banzhaf value of a co-

operative game (N, v) is the linear value defined as follows:

ΦB
i (v) =

1

2n−1

∑

T⊆N\i

[v(T ∪ i)− v(T )] (i ∈ N). (13)

REMARK. The value ΦB was introduced by Banzhaf [1] for voting games

(i.e., monotone cooperative games (N, v) with v : N → {0, 1}) and is commonly

known as the Banzhaf power index in the voting context.

Grabisch et al. [10] have extended the Banzhaf value to arbitrary coalitions

S ⊆ N via

IvB(S) =
(1

2

)n−|S| ∑

T⊆N

(−1)|S\T |v(T ), (14)

and thus the property IvB({i}) = Bv
i for all i ∈ N , and have shown that v can be

reconstructed from IvB:

v(S) =
∑

T⊆N

(−1)|T\S|

2|T |
IvB(T ) (S ⊆ N). (15)

It follows that the Banzhaf (interaction) transform v 7→ IvB is the linear transform

associated with the 2n basis functions bIBT with values

bIBT (S) =
(−1)|T\S|

2|T |
. (16)

The inversion relation (14) ↔ (15) can be verified by direct computation. We

will show below that it follows easily within the setting of game-theoretic Fourier

analysis (and the Walsh transform there, in particular).
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REMARK. There is a general theory of interaction values of cooperative games

that includes in particular Owen’s [19] local interaction values (”co-values”) and

their extension to arbitrary subsets by Grabisch and Roubens [11]. As it turns

out all these values are linear and hence fall into the scope of the present model.

We do not go into further details here but refer the reader to Faigle and Voss [7].

The conversion formulas between the transforms presented above were originally

established in [10] (see also a summary in [9]).

3.2 Fourier analysis

Roughly speaking, we mean with ”Fourier analysis” the analysis of valuations in

the context of the parity pattern Π = [πST ] and hence consider the parity transform

v 7→ P v with the property

v(S) =
∑

T∈N

P v(T )πT (S) =
∑

T∈N

(−1)|S∩T |P v(T ) (S ∈ N ). (17)

Because of Π−1 = 2−nΠ (cf. Lemma 2.1), we immediately find

P v(S) =
1

2n

∑

T∈N

(−1)|S∩T |v(T ) (S ∈ N ). (18)

REMARK. The equivalent Hadamard transform v 7→ Hv with Hv = 2n/2P v,

i.e.,

Hv(S) =
1

2n/2

∑

T⊆N

(−1)|S∩K|v(T ) (S ∈ N ) (19)

is self-inverse (i.e., H−1 = H). H is of particular importance in quantum com-

puting, for example, and known as an instance of the discrete (quantum) Fourier

transform (see, e.g., Gruska [13]).

The Walsh transform. Closely related to the parity transform is the Walsh

transform v 7→ W v relative to the modified parity basis functions wS = (−1)|S|πS

and hence the property

v(S) =
∑

T∈N

W v(T )wT (S) =
∑

T∈N

(−1)|T |W v(T )πS. (20)

The functions wS were introduced by Walsh [23] and have the values

wS(T ) = (−1)|S|(−1)|S∩T | = (−1)|S\T |.
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In view of the uniqueness of the transformation coefficients, we have equality

P v(T ) = (−1)|T |W v(T ) and hence deduce from (18):

W v(S) = (−1)|S|P v(S) =
1

2n

∑

T∈N

(−1)|S\T |v(T ) (S ∈ N ). (21)

Recalling the Banzhaf transform (14), we thus observe its intimate connection

with the Walsh transform:

IvB(S) = 2|S|W v(S) for all S ∈ N . (22)

Moreover, (20) can be re-written in the form

v(S) =
∑

T∈N

IvB(T )2
−|T |wT (S) =

∑

T∈N

IvB(T )b
IB
T (S)

with bIBT (S) = 2−|T |(−1)|T\S|, as claimed in (16).

REMARK. The Fourier/Walsh approach is particularly appropriate in the con-

text of social choice theory when one thinks of a function f : N → {0, 1} as a

”social choice function”. For example, Kalai [16] has demonstrated that Arrow’s

theorem admits a short proof in this setting.

3.3 The inverse problem

In game theory, the following “inverse problem” is well-known: for a given linear

value Φ and game v, find all games v′ such that

Φ(v) = Φ(v′) or, equivalently, Φ(v − v′) = 0.

This problem was solved1 by Kleinberg and Weiss [17] for the Shapley value by

exhibiting a basis for the associated null space or kernel:

ker(Φ) = {v ∈ R
N | Φi(v) = 0 ∀i ∈ N}.

Our linear analysis provides adequate tools for solving the problem easily in

its full generality. We present two approaches, the first one being very simple

1See also Yokote et al. [24] for recent work on this topic, and Dragan [5], who solved this

problem for the Shapley value [3] and later for all semivalues [4] in a simpler way than Kleinberg

and Weiss.
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but requiring some extra condition to hold, while the second is applicable in any

situation.

The first construction requires a transform Ψ to be known such that the lin-

ear value Φ in question corresponds to the transform restricted to singletons, i.e.,

Φi(v) = Ψv({i}) for every i ∈ N and game v. Using the corresponding basis

{bΨT }T∈N , we can then write:

v =
∑

S∈N

Ψv(S)bΨS =
∑

i∈N

Φi(v)b
Ψ
{i} +

∑

|S|6=1

Ψv(S)bΨS ,

which implies

v ∈ ker(Φ) ⇐⇒ v =
∑

|S|6=1

Ψv(S)bΨS ,

i.e.,

ker(Φ) =
{

∑

|S|6=1

λSb
Ψ
S | λS ∈ R

}

. (23)

This method can be readily applied to the Shapley and Banzhaf values since

the Shapley and Banzhaf interaction transforms extend these values in the above

sense:

ΦSh
i (v) = Iv({i}), ΦB

i (v) = IvB({i}) (i ∈ N).

Example 3.1 Applying the first construction to the Shapley value by means of

the Shapley interaction transform, the representation (23) for valuations v ∈
ker(ΦSh) yields

v(S) =
∑

T⊆N,|T |6=1

λTβ
|T |
|S∩T | for all S ⊆ N .
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In the case N = {1, 2, 3}, one thus obtains

v(∅) = λ∅ +
1

6
(λ12 + λ13 + λ23)

v(1) = λ∅ −
1

3
λ12 −

1

3
λ13 +

1

6
λ23 +

1

6
λ123

v(2) = λ∅ −
1

3
λ12 +

1

6
λ13 −

1

3
λ23 +

1

6
λ123

v(3) = λ∅ +
1

6
λ12 −

1

3
λ13 −

1

3
λ23 +

1

6
λ123

v(12) = λ∅ +
1

6
λ12 −

1

3
λ13 −

1

3
λ23 −

1

6
λ123

v(13) = λ∅ −
1

3
λ12 +

1

6
λ13 −

1

3
λ23 −

1

6
λ123

v(23) = λ∅ −
1

3
λ12 −

1

3
λ13 +

1

6
λ23 −

1

6
λ123

v(123) = λ∅ +
1

6
(λ12 + λ13 + λ23).

The second approach allows us to construct a basis for the null space of an

arbitrary linear value Φ : RN → R
N . Moreover, while the constructions in the

literature often use the condition dimΦ(RN ) = n, our method is general and

needs no a priori assumption on dimΦ(RN ).

Let k = dimΦ(RN ) ≤ n be the dimension of Φ and recall the well-known

dimension formula for linear maps:

dimker Φ = dimR
N − dimΦ(RN ) = 2n − k. (24)

In the case k = 0, one has ker Φ = R
N . So any basis of RN solves the inverse

problem for Φ. Let us therefore investigate the non-trivial situation k ≥ 1.

Select a basisE = {e1, . . . , ek} for the range Φ(RN ) of Φ as well as k arbitrary

valuations b1, . . . , bk ∈ R
N such that

Φ(bi) = ei (i = 1, . . . , k).

Lemma 3.2 The set {b1, . . . , bk} of valuations is linearly independent.

Proof. Suppose the statement is false and there are non-trivial scalars λi such

that
k

∑

i=1

λibi = 0 ∈ R
N and hence Φ(

k
∑

i=1

λibi) = 0 ∈ R
N .
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The linearity of Φ then implies 0 =

k
∑

i=1

λiΦ(bi) =

k
∑

i=1

λiei, which contradicts the

independence of the set E ⊆ R
N , however. �

By Lemma 3.2 and basic facts from linear algebra, {b1, . . . , bk} may be com-

pleted to a basis

B = {b1, . . . , bk, bk+1, . . . , b2n}

for the domain R
N . Moreover, the basis E for the range Φ(RN ) guarantees, for

each bj ∈ B, j = k + 1, . . . , 2n, unique scalars ǫ
(j)
1 , . . . , ǫ

(j)
k such that

Φ(bj) =
k

∑

i=1

ǫ
(j)
i ei =

k
∑

i=1

ǫ
(j)
i Φ(bi).

Because Φ is linear, the valuations bΦj = bj −
∑k

i=1 ǫ
(j)
i bi, j = k + 1, . . . , 2n, are

in ker Φ:

Φ(bΦj ) = Φ(bj)− Φ(

k
∑

i=1

ǫ
(j)
i bi) = 0.

We have thus arrived at a solution of the inverse problem.

Theorem 3.1 Let BΦ = {b1, . . . , bk, bΦk+1, . . . , b
Φ
2n}. Then

(i) BΦ is a basis for RN .

(ii) BΦ
0 = {bΦk+1, . . . , b

Φ
2n} is a basis for ker Φ.

Proof. Every bj is a linear combination of vectors in BΦ:

bj = bΦj +
k

∑

i=1

ǫ
(j)
i bi (j = k + 1, . . . , 2n).

Because B generates RN , also BΦ generates R
N . Because of |BΦ| = 2n, BΦ is

linearly independent and, therefore a basis, which proves (i).

We have seen that BΦ
0 ⊆ ker Φ holds. Since BΦ

0 ⊆ BΦ is linearly independent

and |BΦ
0 | = 2n − k = dimker Φ, BΦ

0 must be a basis of ker Φ. �

We summarize the procedure to find a basis of the kernel:

(i) Select a basis E = {e1, . . . , ek} of the range Φ(RN ).
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(ii) Find valuations b1, . . . , bk ∈ R
N such that Φ(bi) = ei, i = 1, . . . , k.

(iii) Complete the independent set {b1, . . . , bk} to form a basisB = {b1, . . . , b2n}
of RN .

(iv) Compute the coordinates ǫ
(j)
1 , . . . , ǫ

(j)
k of Φ(bj) in E for j = k + 1, . . . , 2n.

(v) Compute bΦj = bj −
∑k

i=1 ǫ
(j)
i bi for j = k+1, . . . , 2n, which are the vectors

of the basis of the kernel.

Assume, for example, that Φ satisfies the null player axiom and that Φ(v) is the

null vector only if every player is null. Then Φi(ζ{i}) = αi for some αi 6= 0,

and 0 for every other player. It follows that the basis in step (i) can be chosen as

the set of all unit vectors ei and the vectors bi in step (ii) can be chosen as ζ{i}.

Consequently, it suffices to take the collection of all unanimity games ζS , |S| > 1
to complete the basis in step (iii). Clearly, this works for a large class of linear

values. We illustrate the method below with the Shapley value.

Application: The inverse Shapley value problem revisited. Our general con-

struction includes Dragan’s [3, 6] solution of the inverse problem for the (weighted)

Shapley value ΦSh as a straightforward special case. To see this, consider the basis

B = {ζS | S ∈ N} of RN . For each i ∈ N , we have

ΦSh(ζi) = ei = ith unit vector in R
N ,

which implies dim ker ΦSh = 2n − n. For each coalition S 6= ∅, we have

ΦSh(ζS) =
1

|S|

∑

i∈S

ei =
1

|S|

∑

i∈S

ΦSh(ζi) and thus ζΦ
Sh

S = ζS −
1

|S|

∑

i∈S

ζi,

which yields the following set BΦSh

0 as a basis for the null space ker ΦSh:

BΨSh

0 = {ζ∅} ∪ {ζΦ
Sh

S | S ∈ N , |S| ≥ 2}.

4 Potential functions and values

Given the cooperation system (N,F ) with influence functions fS , we associate

with every v ∈ R
N its F -potential

vF =
∑

S∈N

v(S)fS (= vF in matrix notation). (25)
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So the influence space F of F contains precisely the F -potentials:

F = {
∑

S∈F

λSfS | λS ∈ R} = {vF | v ∈ R
N}.

Note that v 7→ vF is a linear operator on R
N and is invertible (i.e., every v ∈ R

N is

uniquely determined by its F -potential) if and only if the influence functions form

a basis of RN . In such a case, the potential corresponds to an inverse transform

(and hence to a transform in its own right) in the sense of Section 3.

Potentials are closely related to linear values (see Section 2.3). Indeed, a pat-

tern F gives rise to the (linear) potential value ∂F , i.e., a linear map into R
N in

the sense of Section 2.3, where

∂F
i (v) = vF (N)− vF (N \ i) (i ∈ N).

Lemma 4.1 Every linear value Φ arises as the potential value ∂F relative to a

suitable influence pattern F .

Proof. Since v 7→ Φv is a linear map, there is an influence pattern F such that

Φv = vF = vF holds for all v ∈ R
N . Hence we find for all i ∈ N ,

Φi(v) = Φv(N)− Φv(N \ i) = vF (N)− vF (N \ i) = ∂F
i . �

Although also Lemma 4.1 is a straightforward consequence of linear algebra,

similarly to Lemma 3.1, it permits us a general view and a better understanding

of the theory of potentials (as initiated by Hart and Mas-Colell), relating them to

linear values. As a first consequence, we can derive Hart and Mas-Colell’s well-

known relation between the Shapley value and the potential, in a very simple way

(see Theorem 4.1 below). A second consequence is the insight that any linear

value can be obtained as the Shapley value of some F -potential (Theorem 4.2).

We consider the Shapley value and rewrite (4) in a more general form, where

the game is restricted to the coalitions T contained in S ⊆ N :

ΦSh
i (v, S) =

∑

T⊆S

(s− t)!(t− 1)!

s!
(v(T )− v(T \ i))

with s = |S| and t = |T |. It is well-known and easy to see that for the influence

functions ζU one has

ΦSh
i (ζU , S) =

{

1/u if i ∈ U ⊆ S,

0 otherwise.
(26)
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If i ∈ U , then ζU(T \ i) = 0. So the second sum term in the expression for

ΦSh(ζU , S) vanishes and we find for any coalition U 6= ∅,

∑

T⊆S

(t− 1)!(s− t)!

s!
ζU(T ) =

{

0 if U 6⊆ S,
1/u if U ⊆ S.

Since v 7→ ΦSh
i (v, S) is a linear map, the Shapley value (for player i) can be

equivalently defined as the linear functional with property (26) for all coalitions

U . Setting

P v(S) =
∑

T⊆S

(t− 1)!(s− t)!

s!
v(T ), (27)

we see:

Theorem 4.1 (Hart and Mas-Colell [15]) For every cooperative game (N, v) and

player i ∈ N one has

ΦSh
i (v,N) = P v(N)− P v(N \ i).

Proof. By the linearity of v 7→ ΦSh
i (v,N), it suffices to verify the Theorem for

potentials of the form v = ζU . If i ∈ U , we have P ζU (N \ i) = 0 and therefore

ΦSh
i (ζU , N) = 1/u = P ζU (N)− P ζU (N \ i).

If i /∈ U , we have P ζU (N \ i) = 1/u and thus

ΦSh
i (ζU , N) = 0 = P ζU (N)− P ζU (N \ i).

�

Let P = [pST ] be the pattern with coefficients

pST =







1 if S = T = ∅,
(t− 1)!(s− t)!/s! if T ⊆ S 6= ∅,

0 otherwise.

(28)

Then Theorem 4.1 says that the Shapley value is also a potential value in our

sense:

ΦSh
i (v,N) = P v(N)− P v(N \ i) = vP (N)− vP (N \ i) = ∂P (v). (29)

In fact, the Shapley value is the ”typical” linear value:
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Theorem 4.2 Let Φ be an arbitrary linear value on R
N . Then there exists a

pattern G such that Φ arises as the Shapley value relative to G:

Φi(v,N) = ΦSh
i (vG, N) for all v ∈ R

N , i ∈ N .

Proof. Notice that the pattern matrix P , given as in (28), admits an inverse

P−1. Indeed, arranging the rows and columns of P so that S always precedes T
if S ⊂ T holds, turns P into a triangular matrix with non-zero diagonal elements

pSS 6= 0.

By Lemma 4.1, Φ arises as the potential value relative to some pattern F .

Letting G = FP−1, we thus obtain for all i ∈ N ,

vF (N)− vF (N \ i) = (vG)P (N)− (vG)P (N \ i) = ΦSh
i (vG, N).

�

Monderer and Shapley [18] introduced (non-cooperative) potential games and

embedded the Shapley value into the value theory of this class, thus establishing

an important link between cooperative and non-cooperative game theory.

5 Concluding remarks

We have shown that basic models from linear algebra permit to revisit, extend and

put into perspective many results and concepts of cooperative game theory. In this

respect, the major achievements and “take-home messages” are:

• Bases of games and linear transforms acting on games (e.g., Möbius trans-

form, Shapley and Banzhaf interaction transforms, Fourier transform) are

two faces of the same coin (Lemma 3.1). Consequently, a plentitude of new

bases for games becomes available, each of them giving a specific repre-

sentation of games which can be useful in practice (e.g., representation of a

game through interaction indices, Fourier coefficients, etc. in Sections 3.1

and 3.2).

• The inverse problem can be solved in an easy way for any linear value. The

solution is particularly simple in the case of Shapley and Banzhaf values

(Section 3.3).

• The Hart and Mas-Colell potential can be generalized and related to any

linear value (Section 4).

19



Acknowledgment. The authors are grateful to the reviewers for their careful

reading of the manuscript and their constructive remarks. The second author

thanks the Agence Nationale de la Recherche for financial support under contract

ANR-13-BSHS1-0010 (DynaMITE).

References

[1] J.F. Banzhaf. Weighted voting does not work: A mathematical analysis.

Rutgers Law Review, 19:317–343, 1965.

[2] D. Denneberg and M. Grabisch. Interaction transform of set functions over

a finite set. Information Sciences, 121:149–170, 1999.

[3] I. Dragan. The potential basis and the weighted Shapley value. Libertas

Mathematica, 11:139–150, 1991.

[4] I. Dragan. On the inverse problem for semivalues of cooperative TU games.

International Journal of Pure and Applied Mathematics, 22(4):539–555,

2005.

[5] I. Dragan. The least square values and the Shapley value for cooperative TU

games. TOP, 14:61–73, 2006.

[6] I. Dragan. On the inverse problem for multiweighted Shapley values of coop-

erative TU games. International Journal of Pure and Applied Mathematics,

75:279–287, 2012.

[7] U. Faigle and J. Voss. A system-theoretic model for cooperation, interaction

and allocation. Discrete Applied Mathematics, 159:1736–1750, 2011.

[8] M. Grabisch. k-order additive discrete fuzzy measures and their representa-

tion. Fuzzy Sets and Systems, 92:167–189, 1997.

[9] M. Grabisch. Set function over finite sets: transformations and integrals.

In E. Pap, editor, Handbook of Measure Theory, pages 1381–1401. Elsevier

Science Publ., 2002.

[10] M. Grabisch, J.-L. Marichal, and M. Roubens. Equivalent representations of

set functions. Mathematics of Operations Research, 25(2):157–178, 2000.

20



[11] M. Grabisch and M. Roubens. An axiomatic approach to the concept of in-

teraction among players in cooperative games. Int. Journal of Game Theory,

28:547–565, 1999.

[12] M. Grabisch and A. Rusinowska. A model of influence based on aggregation

functions. Mathematical Social Sciences, 66:316-330, 2013.

[13] J. Gruska. Quantum Computing. McGraw-Hill, 1999.

[14] J. C. Harsanyi. A simplified bargaining model for the n-person cooperative

game. International Economic Review, 4:194–220, 1963.

[15] S. Hart and A. Mas-Colell. Potential, value and consistency. Econometrica,

57:589–614, 1989.

[16] G. Kalai. A Fourier-theoretic perspective on the Condorcet paradox and

Arrow’s theorem. Advances in Applied Mathematics, 29:412–426, 2002.

[17] N. L. Kleinberg and J. H. Weiss. Equivalent n-person games and the

null space of the Shapley value. Mathematics of Operations Research,

10(2):233–243, 1985.

[18] D. Monderer and L.S. Shapley. Potential games. Games and Economic

Behavior, 14:124–143, 1996.

[19] G. Owen. Multilinear extensions of games. Management Sci., 18:64–79,

1972.

[20] G. C. Rota. On the foundations of combinatorial theory I. Theory of Möbius

functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,

2:340–368, 1964.

[21] G. Shafer. A Mathematical Theory of Evidence. Princeton Univ. Press, 1976.

[22] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker,

editors, Contributions to the Theory of Games, Vol. II, number 28 in Annals

of Mathematics Studies, pages 307–317. Princeton University Press, 1953.

[23] J. Walsh. A closed set of normal orthogonal functions. American Journal of

Mathematics, 45:5–24, 1923.

[24] K. Yokote, Y. Funaki, and Y. Kamijo. Linear basis to the Shapley value.

Technical report, Waseda Economic Working Paper Series, 2013.

21


