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Abstract— On-line parameter tracking is often an attractive 
option for advanced FDD/FTC systems that require a global 
monitoring in contrast with a local (component) one. This is the 
case for impaired aircraft, but also for under-equipped vehicles 
(UAVs, small airplanes), since an updated model is a prerequisite 
for many indirect adaptive or reconfigurable control algorithms. 
Many schemes have been proposed since the 80s to deal with the 
tricky problem of on-line estimation. However for aircraft, their 
computational burden is often incompatible with the constraints 
resulting from onboard implementation and certification issues. 
As a result, this paper relies on the well-known pros of frequency 
domain techniques, but proposes a fully recursive algorithm 
simple enough to comply with those requirements. The approach 
is applied to the parameter tracking of a civil aircraft on view of 
designing an adaptive gain-scheduled flight control law. 

I. INTRODUCTION 

This paper deals with the monitoring aspects related to 
FDD/FTC, and more precisely with the possibility to update 
the system modeling onboard, via a continuous estimation of 
its parameters. Actually, online tracking in near-real time is 
often the only alternative for some advanced FDD/FTC 
systems [13,23,31] that require a global (system-wide) 
monitoring of the system in contrast with a local (component) 
level monitoring. An example for aircraft is the detection of 
icing (de-icing off or faulty), in contrast with actuator failures 
that can be sensed by servo mechanisms simply by comparing 
control orders with surface deflections when measured. But a 
loss of actuator efficiency resulting from airframe damages 
might be also undetected by electrical/mechanical subsystems, 
and a global monitoring can also be beneficial for under-
equipped vehicles (UAVs, small airplanes).  

More generally, parameter estimation, also called 
Parameter IDentification (PID), refers to the task of 
updating the parameters of a mathematical model from i/o 
data. For aircraft, a batch or off-line version of PID is 
generally useful to adjust the prior initial modeling issued 
from CFD computations or wind tunnel testing. However, in 
abnormal conditions resulting from any impairment (fault, 
damage, etc.), that modeling can become unsuited again, and 
thus requires on-line adaptation, especially for FTC purposes 
since an updated model is a prerequisite for many indirect 
adaptive or reconfigurable control algorithms [4,27,28]. When 
a post-fault model is available with an updated set of para-
meters, the Fault Accommodation process can be completed 
by scheduling or redesigning the control laws [3,7,10].  

The approach presented in this paper is part of a FTC 
scheme based on indirect adaptive control whose principle is 
to estimate some of the model parameters and to adjust a 
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controller on-line in terms of the updated estimates. Actually, 
gain-scheduling is classically used to control an airplane 
along a trajectory, the controller gains depending on measured 
or estimated flight parameters, such as airspeed, Mach number, 
mass and so on. However, in abnormal situations (actuator 
faults, icing), or if a scheduling parameter is unavailable due 
to a sensor fault (e.g., airspeed), adaptive control is an 
attractive solution to recover closed loop performance by 
scheduling the gains w.r.t. the aerodynamic model coefficients 
instead. This requires to obtain a priori guaranteed stability 
and performance properties of the adaptive closed loop, and 
to decrease the computational time and complexity to make 
onboard implementation possible. A detailed description of the 
associated FTC scheme is given in the companion paper [8]. 

Regarding PID, the main issue is to develop a method for 
estimating the model parameters on-line, with a low compu-
tational burden and the capability to track time-varying para-
meters despite measurement noises, poor data information 
content (in cruise condition when variables are likely to be 
almost constant during long periods), and external disturbances 
(turbulence). Whatever method used, residual errors can 
sometimes be large and a measure of the parameter accuracy 
should also be provided, so that some logic can be introduced: 
if the estimated scheduling parameters are not reliable enough, 
one can switch to a robust back-up controller ensuring minimal 
performance properties. Due to possible ill-conditioning, the 
method should also include some form of regularization 
[22,29], although most on-line techniques are based on 
Equation Error (EE) minimizations [25] and involve only a 
few parameters in practical applications (e.g., via a tuned-
down modeling). A contrario, Output Error methods [13] 
usually involve an extended set of parameters that are likely 
to reinforce the implementation issues. They are also less 
robust to the effect of unmodeled disturbances (turbulence). 

Algorithms for recursive parameter estimation have been 
developed for real-time applications in various fields such as 
industrial processes, robotics and aerospace [14,15,22]. Most 
theoretical aspects were covered by early reference 
publications [1,21]. In aeronautics, the early attempts to 
benefit from on-line PID date back to the 80s, but they were 
limited by the available computational power of onboard 
processors. The common Time Domain (TD) methods are 
usually based on recursive/sequential Least-Squares (LS), or 
Extended Kalman Filters to cope with nonlinearities [5,12,20]. 
More recently, this challenge has also been addressed by 
recursive subspace identification of linear or LPV models. 
However, the relevance of such advanced multi-model or 
nonlinear schemes for on-board implementations is dubious 
due to the present limitations of on-board computers, especially 
for A/C because of certification issues and code verification. 
To give an example, these limitations preclude the use of any 
iterative algorithm which would result in some unbounded 
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computation loop through the data. Hence complex operations 
like non analytical matrix inversions should be banned. That 
is why we look in this paper for a simple enough approach, 
more likely to satisfy those real time constraints, and that 
could constitute a viable alternative for updating the models 
required by the most advanced FDD/FTC schemes. 

Considering the implementation issues, TD algorithms 
could seem preferable at first sight, as the basic ones only 
involve very simple operations (e.g., by replacing matrix 
inversion with a scalar division). However, advanced 
strategies are usually required for regularizing the estimation 
process, and some of their advantages can thus be wasted 
(see [14] for an overview of the pros and cons of TD 
methods). By contrast, Frequency Domain (FD) techniques 
have many desirable features for on-line applications that 
other (TD) estimation methods do not have. The computation 
time is greatly reduced by processing only a limited amount 
of frequencies within the bandwidth of interest, and the 
resulting indirect filtering of the wide-band disturbances 
(e.g., LF mismatch and HF noise) improves the estimation 
accuracy [11,13,18]. The standard deviation of the estimation 
errors can also be evaluated without any additional cost. 
Furthermore, the availability of efficient tools making the 
transition from TD to FD possible, such as the recursive 
Fourier Transform (FT), greatly facilitates their use, and this 
was stressed in many publications during the last 20 years 
[2,11,18,24-26,30]. Fig. 1 gives a schematic representation of 

the way the FD information is linked to the PID process. 
Moreover, many issues specific to on-line PID are mitigated 
when using FD approaches instead of TD ones: estimates are 
nearly unbiased even in the presence of noisy i/o data in case 
of collinearity in the regressors, the estimation errors do not 
require to be improved afterwards due to possible colored 
residuals, and so on (see [25] for all these practical aspects). 
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Fig. 1. The FD identification process 

Otherwise, TD and FD estimation schemes can rely on a 
fully recursive algorithm (making use of measurements as soon 
as they are available), or alternatively on a kind of sequential 
procedure, processing moving data windows with a lower 
rate to get a succession of piecewise constant values [4,14]. 
In [13], a sequential estimation process was proposed for 
monitoring a civil aircraft, that permits pre and post-
processing stages to be included in the procedure to prevent 
from and to filter out inaccurate estimations. Hence, those 2 
categories of methods have their own pros and cons [16], 
even if recursive schemes should be favored for on-line 
implementation. However, FD approaches are again more 
suitable to define hybrid recursive/sequential procedures 
because the information naturally accumulates in the signals' 
FT, which behave like storing memories and can be managed 

with more flexibility (truncation, forgetting, resetting). 

Finally, one of the major reasons for which recursive TD 
algorithms are more popular than FD ones comes from some 
additional computation complexity, which has prevented 
from developing a fully recursive formulation of the FD 
approach, unlike TD case. This paper improves the state-of-
the-art existing approaches and proposes a recursive procedure 
from start to finish, permitting the practical implementation 
constraints to be satisfied, and the algorithm to be possibly 
embedded in aircraft computers. Other minor issues in the FT 
expressions of the signal derivatives are also properly settled, 
which are often disregarded for sequential processing thanks 
to the detrending achieved prior to FT computations, but 
which cannot as far as recursive algorithms are concerned. 
To sum up, the point is that FD approaches can also be 
simplified in order to reduce their computational complexity, 
similarly to what is done for TD formulations, and they can 
also include similar advanced mechanisms like data forgetting 
[14,21]. To cover these aspects, §II outlines the characteristics 
of the proposed recursive FD method. §III depicts the 

performances achieved in realistic flight conditions using the 
industrial non linear simulator of the RECONFIGURE 
project. §IV draws conclusions and gives some prospects. 

II. PRINCIPLES OF THE FREQUENCY DOMAIN PID 

A. From time domain to frequency domain 

The transition to the FD is classically realized by means 
of the standard FT of the TD signals. As these ones are only 
available over a limited period of time ],0[ T , the finite FT is 
used instead, which leads to the following relations for a 
signal )(tx , its time derivative )(tx& , and a constant value b  
(associated to a bias for instance): 
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Practically, from the sampled values of )(tx , the finite 
FT can be computed via a rectangular numerical integration: 
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using N  values equally spaced over ],0[ T , with a sampling 
period t∆  (see for instance [18]). The term )(

~ ωX  represents 
the Discrete Fourier Transform (DFT) of the samples 
{ 1,,0),( −=∆ Nntnx K }. Efficient tools are available for 
computing this quantity, namely the Fast Fourier Transform 
(FFT) and the Chirp z-transform (CZT). The latter permits a 
desired frequency resolution to be chosen independently of 
the length of the time interval used, but is less effective as far 
as the computation time is considered. If we assume that the 
DFT is computed via standard FFT, from N  data samples 
equally spaced over the time interval ],0[ T , this algorithm 
calculates N  values of the DFT over the frequency interval 

]/2,0[ TNπ , equally spaced too with a step T/2π=ω∆ . 

More elaborated algorithms are available to reduce the 
inaccuracy resulting from (2), but these refinements are 
generally not useful when the sampling period is higher 
enough [24]. Otherwise, we will see in the sequel that the 



  

recursive algorithm can provide FT at any selected frequency 
without the extra computational cost of CZT. 

B. Standard formulation of a sequential algorithm 

From now, we will consider a general formulation of the 
problem, leading to other types of parameters being 
considered in addition to the stability and control derivatives. 
When applying PID techniques, it is generally advisable to 
estimate initial conditions and state/output biases in order to 
cope with i/o measurement offsets or model structure 
uncertainties. Consequently, the dynamics will be expressed 
in state-space form by the following linearized equation: 





+Θ+Θ=
+Θ+Θ=

y

x
btuDtxCty
btuBtxAtx

)()()()()(
)()()()()(&  (3) 

with the initial condition given by 0)0( xx = . Matrices 
DCBA ,,,  include the stability and control derivatives Θ  to 

be estimated, that are assumed to be constant or at least to 
vary slowly during the flight with respect to the PID process 
and updating rate. In the case of aircraft for instance, the 
states of vector x  are the airplane speeds and angular 
velocities in body axis, as well as Euler angles. The vector u  
collects the surface deflections, whereas the measurement 
vector y  includes state components, air data angles and load 
factors. xb  and yb  represent the state and output biases. 

Thanks to (1), if ω  is chosen to be a multiple of the 
frequency step ω∆ . (which happens for instance when using 
the FFT), by omitting the dependencies on Θ  and by 
denoting )(),(),( ω≡ω≡ω≡ YYUUXX , (3) becomes [13]: 
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where )(ωδ  denotes a Dirac function in the FD, such that 
1)( =ωδ  for 0=ω , and 0)( =ωδ  for 0/2 ≠π=ω Tk  (since 

0for0and,0for/)1( ≠==ω− ω− kkTje Tj ).  

As a result, the initial and final conditions )(),0( Txx  are 
translated into a bias that impacts on all frequencies: localized 
effects in the TD are translated into broadband effects in the 
FD, and vice versa. A contrario, the biases act as broadband 
inputs in the TD but just modify the zero frequency. To get 
the most out of these specificities, it is generally worthwhile 
to discard the zero frequency during the identification stage, 
which avoids the state and output biases having to be 
estimated. Thus, (4) is further simplified and reduces to: 
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Hence, the discrepancies between the initial and final 
conditions of the states should be estimated in addition to the 
other parameters Θ , if not zero. However, this issue has not 
been paid much attention and is often ignored in practice 
[13,19], which could be only justified in a pinch if a suitable 
preprocessing is inserted in a sequential algorithm. Otherwise, 
the vector of parameters should be conveniently extended to 
include the )dim(x  corresponding values. If we also assume 
that all the state components are measured, in addition to the 
i/o ones, an EE approach can be used, that consists in 
minimizing a set of cost functions [24-26]: 
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where the subscript i  corresponds to the i th state equation, 
and kω  to one of the M  frequencies available from the TD 
to FD transformation ( NM ≤ ). ii BA ,  are the i th rows of 
matrices A  and B , whereas )( kix ω  is the i th component of 
the vector )( kX ω  and )()0( Txxb iii −= . The same kind of 
expression can also be established for each output equation, 
permitting the parameters included in matrices DC,  to be 
estimated.  

By collecting the different frequencies in vector and 
matrix forms, to make the summation of (6) disappear and by 
denoting Ξ  the extended vector of unknown parameters in 

iA , iB  and ib , the cost (6) turns to the LS criterion [26]: 
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where †  is the complex conjugate transpose operator. In (7), 
the conditioning of the resulting optimization has been possibly 
improved by introducing some a priori knowledge about the 
expected value of the parameters. This form of regularization 
can be especially useful for weakly identifiable parameters, 
by softening their variations and improving the convergence. 
The principle of this Bayes-like estimation consists in adding 
a penalty term to the LS criterion to weight the Ξ  increments 
w.r.t. prior values 0Ξ  through a corresponding covariance 

0Σ  (usually a diagonal matrix). (7) is nothing but a standard 
LS regression with complex data instead of real ones. The 
well-known solution to this problem and the estimated error 
covariance are given by [18,26]: 
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where ()R  is the real part of a complex value. Practically, to 
compute the covariance matrix from the available data, 
especially the diagonal terms giving access to the parameter 
errors, the EE variance 2σ  is usually evaluated a posteriori 
from the residual errors, resulting in [26]: 

)](dim[)ˆ()ˆ(ˆ 2 Ξ−Ξ−Ξ−=σ M† ////XYXY  (9) 

C. Towards a fully recursive algorithm 

As regards practical aspects for on-board implementation, 
it should be noticed that the summation of (2) makes very 
simple operations possible, as mentioned for instance in [24]: 
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to evaluate the DFT at time tn∆  from its previous value at 
time tn ∆− )1( . For a given frequency ω , the quantity 

)exp( tj ∆ω−  is constant, so that the updating of the DFT just 
requires two multiplications and one addition, resulting in a 
very low computational effort. As the estimation process is 
also likely to involve state derivatives, the measurements of 
which are usually not available, a recursive formulation 
similar to (10) can be worthwhile for signals )(tx&  to avoid a 
pseudo-derivation from the available signal )(tx , but also to 



  

avoid the extra ib  to be estimated. The idea is to derive LS 
costs similar to (6), but involving )( kX ω&  directly in the 
computation of the error terms as this is the case for a measu-
rement )( kY ω . This idea is new and differ from the two usual 
ways consisting either in computing an estimate of )(tx&  in 
the TD or in replacing )(ωX&  by )(ωω Xj  in the FD, which 
is incorrect whenever 0≠ib . From (1)-(2), we easily get: 
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with )(
~

)( ω∆≈ω nn XtX . Hence, recursive expressions can 
be implemented (for any signal )(tx  even if it is not a state 
component consistent with the general formulation of §II.B), 
by denoting )(),(),( tnxxXXXX nnnnn ∆≡ω≡ω≡ && : 
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When using these coupled recursive updates for on-line 

purposes, older information can be overweighted regarding to 

recent ones, which can result in much delay in the adaptation 
process. That’s why data forgetting can be used in conjunction 
with (10), to remove the effect of oldest data by working on a 
limited time window [26]. In that case, the choice of the 
window width results from a trade-off between the amount of 
information available from the data and the sensitivity of the 
detection method to A/C parameter variations. This remark 
also applies to a pure sequential approach, where a non 
recursive form of FT is applied to the data [13], resulting in a 
succession of piecewise constant values, updated only after 
some seconds and hence delayed w.r.t. the varying parameters.  

Whatever approach followed, a time history of the past 
data could be required to enable those calculations. To avoid 
such a storage, and to develop a recursive algorithm, it is still 
possible to benefit from the linearity of the FT w.r.t. the signals 
to implement a forgetting process similar to the one of TD 
exponential forgetting [14], and that simply involves multi-
plying the previous FT by a forgetting factor λ  )1( <λ  [26]. 
Applying this trick to (12) yields (denoting tj

nn exx ∆ω−∗ = ): 
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We are now going to address a key feature of the proposed 
algorithm. With TD methods, the arrival of a new sample only 
results in the addition of a new row in the regression matrix 
[14]. So, the information matrix (or its inverse) can be updated 
via simple (and light) computations thanks to the Woodbury 
formula. With FD methods, a new sample contributes to 
modify all the M  rows of the matrix X  through the FT 
updates of (12). That is why the usual algorithms often rely 
on a sequential estimation of the parameters, due to the lack 
of a recursive update of the matrix )( XXR †R =  or of its 
inverse. However, a recursive version can still be derived, 
almost similar to the TD ones, by noticing that: 
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As a result, denoting ][ 1 tnjtnj
n

Mee† ∆ω∆ω= LE , we can 
set the basis of a time-recursion as: 
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As 1mR ×∈1B , we also benefit from: 
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Hence 
1−

nM  (or 
1−

nR ) can be computed recursively by applying 
the matrix inversion lemma 3 times to the 3 additions of (16): 

1111111 ][)( −−−−−−− +−=+ ADCBADBAABCDA  (19) 

with: 








+=++λ=
+=+λ=

λ=

−

−

−

22222221111
2

3

11111111
2

2

1
2

1
)20(

DCBADCBDCBMA
DCBADCBMA

MA

n

n

n
 

resulting in the following sequence of computation steps: 
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Finally, (17)-(21) permit the direct updating of 1−
nR  to be 

computed without requiring onboard a tricky matrix inversion, 
by using only a series of matrix additions and products. For 
the sake of simplicity, 1

0
−Σ  was assumed to be 0 in the 

previous expression of nM . Dealing with a priori knowledge 
is however possible by achieving at first a series of m  rank 1 
corrections to 1

1
−A  with the diagonal values of 1

0
−Σ . 
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Figure 2: Computational costs of the recursive and blockwise inversions 

Given that standard algorithms do not comply with certi-
fication and implementation constraints, another solution for 
computing 1−

nR  when 3)dim( >nR  would consist in resorting 
to a blockwise inversion by iteratively partitioning nR  into a 
series of submatrices of lower dimensions till analytical 



  

inverses can be got whenever dimensions 2 or 3 are reached. 
However, it is noteworthy that this approach requires the R  
matrix to be computed in addition to the matrix products of 
the blockwise inverse. Fig. 2 compares (for different values 
of m  and M ) the computational costs, expressed in terms of 
the number of floating-point operations, associated to the 
recursive algorithm (17)-(21) (including a priori knowledge) 
and to a blockwise inversion. For the usual values we are 
concerned with for on-line estimation ( 63 ≤≤ m , 50≈M ), 
the recursive algorithm proposed in this paper is clearly 
attractive: in the application case presented in §III, the cost is 
decreased more than twofold. Moreover, the blockwise 
algorithm would require the submatrices (and their Schur 
complement) to be invertible, a property that cannot be a 
priori guaranteed. 

III. RESULTS AND DISCUSSION 

In §III, the recursive FD estimator described in §II is 
used to develop an indirect adaptive control strategy in the 
framework of the EU-FP7 funded project RECONFIGURE 
(REconfiguration of CONtrol in Flight for Integral Global 
Upset REcovery). The goal of this project is to investigate 
and to evaluate aircraft guidance and control technologies 
that facilitate the automated handling of off-nominal/abnormal 
events, alleviate the pilot workload, and optimize the aircraft 
status by automatically reconfiguring the aircraft to an optimal 
flight condition (see http://reconfigure.deimos-space.com/). 
A detailed description of the benchmark model and of the 
fault/failure scenarios is given in [9,17]. The V&V process 
involves a nonlinear highly representative model of a generic 
AIRBUS civil aircraft. The benchmark contains a baseline 
gain scheduled PI controller, plus actuator and sensor models, 
measurement filters, as well as the control law protections. 

During this project, an adaptive gain-scheduled flight 
control law has been designed off-line at first, by using a 
state-space modal technique to synthesize a LFT controller 
which would only depend on the major model aerodynamic 
parameters (see the companion paper [8]). The FD PID is 
implemented to track those time-varying parameters on-line, 
and to schedule the controller w.r.t. the provided estimates. 
In this paper, we only consider the longitudinal motions, and 
we focus on the A/C lift, pitch and load factor equations that 
characterize the short-period dynamics. Hence, about a given 
flight condition, the stability derivatives to be tracked 
(physical parameters of the aerodynamic model) appear as 
pseudo-constants in a linearized state-space model (3)-type: 
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where the states α  and q  are the angle of attack and the 
pitch rate, V  is the airspeed, mδ  is the elevator input, and 

zN  is the load factor output. The influence of the altitude 
variations ( z ) are neglected, as the aerodynamic coefficients 
only indirectly depend on z . Accordingly, (22) reduces to: 

[ ] TT
lon

T
lon

T uxNzq ][Θ=α &&  (23) 

where the Θ  matrix includes the 12 parameters to be tracked 
and estimated, lonx  denotes the longitudinal states of interest 
and lonu  reduces to the elevator control mδ . In the context 
of the adaptive scheme, the main goal of the on-line estimator 

is to update the values of the five main stability derivatives 
αδαα NMMMZ q ,,,,  used to schedule the controller [8], 

although the twelve coefficients of (22) have to be estimated. 

To evaluate the proposed approach, the simulated scenario 
corresponds to a 380 sec. realistic flight profile including 4 
successive stages (Fig. 3): a first steady flight at ft,12500( =z  

kts)240=cV , followed by a climb for ]215,65[∈t  up to 
ft20000  and an acceleration for ]300,215[∈t  up to kts335 , 

and finally a new steady flight condition at ft,20000( =z  
kts)335=cV . The fault scenario which is considered is a loss 

of airspeed information; hence it is assumed that cV  is no 
more available throughout the flight. The testing maneuvers 
selected by Airbus for the industrial validation of the 
controllers involve joystick doublet-type signals. So, to check 
the performances of the adaptive process, usual stick inputs 
are applied to the czN  set points (in blue) during the 1st and 
4th parts of the flight with autopilot and auto-throttle switched 
off. The aircraft mass is 260t and the CoG is located at 28% 
(of the mean chord).  
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Figure 3: Time history of the longitudinal aircraft flight parameters 



  

Regarding the tuning of the FD Algorithm (FDA) described 

in §II, the frequency band chosen for the FT computations 
comprises 43=M  frequency samples equally spaced in the 
range 0.1-0.52 Hz with a frequency resolution of 0.01 Hz, to 
include the rigid-body modes of the airplane and to filter out 
low frequency phenomena. It is worth noting that the spacing 
does not need to be uniform for this FDA since no standard 
FFT is used. All the data are high-pass filtered prior to 
performing FT to comply with the assumption of linearization 
about a trim condition, and to filter out low frequencies. A 1st 
order filtering is implemented with a time constant of 3 sec. 
After encoding the algorithm with operators compliant to the 
SCADE software (Safety Critical Application Development 
Environment), the resulting computational burden evaluated 
by Airbus is about 1.5ms, which is acceptable and could be 
further improved by updating the estimates at a lower rate. 
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Figure 4: Time history of the estimated parameters 

The results achieved by the FDA are displayed with solid 
blue lines in Fig. 4, that only plot the 5 (out of 12) coefficients 

required for the adaptive control. The parameter uncertainties 
(3σ) are plotted in blue dashed lines and are used to freeze 
the estimates whenever they are too high (straight lines in the 
plots). While the estimates are invalid, the last valid estimated 
value is used to schedule the controller as long as the estimates 
are not declared reliable again. The green curves give an idea 
of the reference values drawn from the closest LTI model 
(just one of 25 for this mass/CoG). Due to a loose mesh of the 
models in the flight domain, these values are only plotted as a 
rough guide, and this must be kept in mind when judging the 
estimates (the true linearized values being unavailable). 

Owing to the simulated scenario, the variations that should 
be tracked result either from a change in the flight condition 
or, at the start of the run, from a misknowledge of the initial 
parameter values. Both of them demonstrate the interest of 
the adaptation to cope with modeling uncertainties. It is worth 
noting that the continuous variation of V / z  is monitored by 
the estimation algorithm during level changes, and that the 
parameters accuracy can also be used to trigger a freeze of 
the estimates whenever the uncertainty becomes too high (not 
enough excitation or rapid changes in the flight condition). 
Hence, 2 options are available to manage the FDA results, 
and to feed the adaptive controller in case of ill-conditioning: 
� to proceed with a continuous estimation while reinforcing 
the regularization temporarily using a priori knowledge; � to 
lock the parameters to their last estimated values as long as 
they are unreliable.  

In addition, the forgetting mechanism of (13) can be 
activated during level changes to speed up the convergence 
of the parameters to their new steady values, or the FDA can 
be automatically reset as soon as the new flight condition is 
reached. Both strategies have their own pros and cons. The 
former requires the value of the forgetting factors to be tuned 
(which could depend on the rate of changes), but permits the 
new estimates to be updated as soon as some excitation is 
available about the new flight condition. The latter avoids any 
tuning and relies on frozen values during the dead zone, but 
slows down the updating about the new flight condition due 
to a transient phase after resetting the FDA. It is noteworthy 
that all these possibilities (reinforced regularization/locked 
parameters, forgetting/resetting) have been evaluated but 
cannot be displayed by lack of space; they result only in very 
slight differences in the performances plotted in Fig. 3.  

The point is that, thanks to a simple monitoring of the 
changes in flight condition and of the parameter uncertainty 
provided by the FDA itself, different strategies can be 
temporarily triggered resulting in different settings of the PID 
process: to activate the forgetting mechanism by switching to 
a 1<λ , to strengthen the regularization by decreasing some 
components of 0Σ , to freeze the values of the estimates 
delivered to the controller, and possibly to reset the 
procedure. On the other hand, owing to the properties of the 
recursive FT, it should be understood that the information 
provided by the data continuously accumulates and contributes 
to improve the parameter accuracy. Consequently, if excitation 
is lacking for a while, no parameter divergence is to be feared, 
except in case older information is progressively forgotten. 
That is why forgetting should not be permanently activated, 
and why the estimation accuracy is so valuable and should 
also be monitored to reconfigure the FDA whenever necessary. 



  

For example, in Fig. 4 the forgetting mechanism is (only) 
triggered when significant Vz /  changes are detected 
providing a way to adapt more rapidly to varying conditions. 
The results corresponding to the 2 previous options are 
illustrated: in blue color when the parameters are locked in 

case of unreliable estimates, in red dashdot lines when the 
regularization is reinforced instead. It should be pointed out 
that the latter was not used during the closed-loop simulation 
of Fig. 3, but is still plotted in Fig. 4 to evaluate the behavior 

of the estimates, should this option be used. However, 
regardless of the selected option, the closed loop responses of 
Fig. 3 are almost the same: the estimates are typically 
unreliable when closed loop excitation is poor, so that the gap 
between the performances is insignificant. 

It should also be pointed out that with such a poor 
excitation (see czN  in Fig. 3 during the 2nd/3rd stages), some 
parameters can't be estimated properly. Hence to prevent from 
correlation issues or ill-conditioning, a tuned-down modeling 
or some regularization is required. Here, a priori knowledge 
via the Bayesian formulation of (7) is introduced, w.r.t. the 
values of the damping coefficients qZ  (trickier to estimate 
even with proper excitation), and mostly of the speed 
derivatives VC  (the speed variations about the trim condition 
are very small). When the regularization needs to be 
reinforced, the variation of the pitching derivatives is also 
overweighted, especially to avoid data collinearity between 

qM  and δM . 

The plots of Fig. 4 deserve some comment. During the 3rd 
part of the scenario, for ]330,200[∈t , the excitation level is 
very low (remember that the data of Fig. 3 are high-pass 
filtered before being processed by the FDA), and hence the 
parameter inaccuracy results either in freezing or in strongly 
regularizing the estimation process (blue/red curves). This 
process is also not exactly the same for the different 
parameters as the lift, pitching and load factor equations are 
processed separately. Hence, the trends indicated by the 
(green) reference values cannot be mimicked by the estimates, 
and instead they are drawn towards the prior valid estimates 
or towards average reference values used as a priori knowledge 
(e.g., mean values for a given altitude). As soon as sufficient 
excitation is available again, and the accuracy is good enough 
(time to store information through the recursive updates of 
the FT), the estimates are freed again and converge rapidly to 
suitable values.  

In steady state conditions, the estimates provided by the 
FDA compare very favorably to their reference values. Thanks 
to the noise filtering outside the selected bandwidth, the FDA 
does not require much time to accumulate enough information 
and to recover proper estimates. In case of continuous 
estimation, the convergence delay is even shorter as the 
estimates may be reliable enough although their standard 
errors are not fully satisfying. 

As regards the performance of the adaptive controller, we 
have to refer to the plots of the load factors in Figs. 3 and 5 
( zN  vs czN ). Fig. 5 focuses on the responses during the first 
and last 40s of the flight. The blue line corresponds to the 

czN  stick input settings, and the black one to the zN  signals. 
As soon as new reliable estimates are available for the 
scheduling, much better performances are recovered thanks 

to the adaptive process resulting in proper overshoot and 
settling time (please refer to the companion paper [8] for a 
comprehensive description of the control aspects). Hence in 
faulty situations [9], the proposed strategy can avoid 
switching to a more robust but less efficient control law (e.g., 
when the airspeed data is missing for the usual scheduling 
process due to sensor faults). 
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Figure 5: Zooms in on the load factor responses 

IV. CONCLUSIONS AND PROSPECTS 

A fully recursive estimation scheme was developed in the 
frequency domain to track time-varying parameters, more 
likely to comply with the requirements of embedded A/C 
implementation than the standard existing algorithms. Some 
issues related to the computation of state derivatives are also 
properly settled to get recursive expressions of the Fourier 
Transforms. This recursive estimation algorithm is part of an 
indirect adaptation process, permitting an LFT flight controller 
to be designed and to be scheduled w.r.t. the estimated model 
coefficients when the airspeed information is missing. Non-
linear simulations, achieved via the industrial benchmark of 
the RECONFIGURE project, show the capability to control 
the airplane along a trajectory, a more difficult problem than 
controlling about a steady flight point since the time-varying 
parameters have to be estimated despite poor closed loop 
excitation. The computational burden and complexity of the 
global adaptive scheme are also compliant with an embedded 
implementation on existing computers.  

These results are very promising as regards a possible 
application to civil aircraft, but of course further industrial 
validation would be needed using extensive sets of simulations 
including a wide range of operational conditions (realistic 
flight scenarios, external disturbances, pilot maneuvers, and 
so on). Tools like the Functional Engineering Simulator, 
implemented during the RECONFIGURE project to achieve 
a traditional Monte Carlo analysis as a preliminary step of the 
industrial V&V process [17], should be extended to be suited 
to this need. Actually, to evaluate the proposed adaptive 
approach, longer operational scenarios are required to benefit 
from on-line parameter estimation, including changes in the 
flight conditions and unexpected faults occurring during the 
flight. A transient stage at the start of the simulation is also 
required to initialize the algorithm and to accumulate some 
information prior to delivering reliable estimates to the gain-
scheduling process. These constraints spring from the fact 
that the adaptive controller is not pre-computed once for all, 
and hence is not available at the initial starting time.  

To contribute to the V&V process, avenues do exist for 
such complex controllers; for instance, a practical approach 
for the worst-case validation of a similar adaptive scheme 



  

was already investigated by Airbus in [28]. On the other 
hand, this validation involves integrated estimation and 
control components, but some theoretical guarantees 
regarding the robustness to transient or asymptotic estimation 
errors can be proved at first using µ and IQC analysis 
techniques [8]. Stability and performance properties of the 
adaptive closed loop can also be enforced thanks to more 
elaborated strategies, e.g. by switching to a robust controller 
in some transient situations. More details are available in the 
companion paper [8]. 
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