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Abstract

Two topological parameters derived from pattern for-
mation theory are introduced, and their potential to
accurately describe the elasticity-induced coarsening
in the microstructure modeling of Ni-based single-
crystal superalloys at macroscale in 2D is investi-
gated. For that purpose, and given the primordial
role of the spatial arrangement of the precipitates
on microstructure evolution, two-dimensional phase-
field calculations of ideal microstructures undergoing
slight topological defects have been carried out. The
unstable and stable responses of the system respec-
tively against Eckhaus and zigzag instabilites is dis-
cussed and quantitatively described by means of the
developed topological parameters ψx and ψy.

Introduction

High pressure turbine (HPT) blades possess out-
standing mechanical properties at high temperature,
which stem from the microstructure of the single-
crystal nickel-base superalloy in which they are
designed. This two-phase microstructure consists of
cuboidal precipitates of the L12-ordered phase γ1,
coherently embedded in the disordered matrix phase
γ, and globally aligned along its cubic directions.
Considering the high volume fraction of γ1-phase in
these alloys (68% at room temperature for AM1),
the microstructure evolves into a cubic pattern of
cuboidal precipitates, only separated by narrow
channels of matrix phase.

During gas turbine operation, the size, morphology
and spatial arrangement of γ1-precipitates continu-
ously evolve due to the thermomechanical loading
seen by the blade, which impacts its mechanical
properties in return. In order to improve the service
life of HPT blades, and thus enhance the stability of
the microstructure, there is still a need for efficient
microstructural modeling at the scale of the blade.

Single-crystal superalloys are prone to complex mi-
crostructure evolution, due to the effects of elasticity
on precipitation kinetics. Without external loading,
elasticity arises from the γ/γ1 misfit, inducing co-
herency strains at the precipitate-matrix interfaces,
and thus long-range interacting elastic fields in
the alloy [1-5]. During coarsening, diffusion of the
alloying elements is strongly influenced by elasticity,
leading to complex evolutions such as morphological
changes [6-10] and precipitate alignment [11-14].
Though the involved mechanisms are well-known,
the main difficulty lies in their coupling. The latter
renders the understanding and modeling of this
microstructure a difficult task, especially when
designing at macroscale, at which precipitation is
usually modeled without elastic effects [15].

The coarsening kinetics in two phase solids with
elastic effects has successfully been modeled at
mesoscale through sharp [16-18] and diffuse [19,20]
interface approaches. The sharp interface approach
is very efficient at modeling coarsening with large
numbers of precipitates, and provides an exact
description of the interface motion. However, it
is not suitable for the modeling of high volume
fraction alloys, since it does not allow for topological
singularities such as precipitates merging. The
phase field, or diffuse interface approach, describes
interfaces as steep variations of a continuous field.
This theory allows one to catch complex topological
evolution during coarsening, even at high volume
fractions, though the requirement of a very fine
mesh prevents the modeling of large numbers of
precipitates.

Given the prominence of the spatial arrangement
of precipitates on microstructure evolution in these
alloys, our aim is to develop a simplified phenomeno-
logical model, based on a relevant topological
parameter, to account for the influence of elasticity



on coarsening at macroscale.

Previous studies have been carried out so as to
quantitatively describe both morphological and
topological changes during microstructure evolution.
A number of shape factors has been developed in
the literature, among which the aR2 coefficient has
been used to obtain the bifurcation diagram of an
isolated precipitate with a dilatational misfit in 2D
[9]. The energy-minimizing shape has been shown
to evolve from four-fold to two-fold symmetry for
a specific value of the elastic-to-interfacial energy
ratio. It was later used to assess the influence of
elastic interactions on precipitate morphology by
comparing the dispersion of its value with respect
to that of the isolated particle [17]. 2D and 3D
moment invariants have also been used as a means
to follow the morphological transition which the
precipitates undergo during rafting [21]. The au-
thors were able to define the onset of rafting in
microstructures with both negative and positive
lattice misfits. Regarding the description of spatial
arrangements, power spectra have mostly been used
to qualitatively describe the development of spatial
correlations, and were obtained by the Fourier
transformation of the microstructure itself [17,22].
Radial distribution and pair correlation functions
were able to provide a more quantitative descrip-
tion of precipitate alignment [17]. The authors
showed that the microstructure tends to evolve
towards a unique configuration, regardless of the
initial arrangement of precipitates, the only govern-
ing factor being the elastic-to-interfacial energy ratio.

To our knowledge, none of these topological param-
eters has ever been used to predict microstructural
evolution. Their use has been restricted to the
description of spatial correlations, since they do not
seem relevant to the building of evolution laws.

The purpose of the present work is to introduce new
topological parameters, derived from pattern forma-
tion theory, and evaluate their potential to account
for elastic effects in the modeling of microstructure
evolution. We use phase field calculations as vir-
tual experiments of microstructures undergoing an
isothermal heat treatment in the absence of mechan-
ical loading. The initial conditions are set in simple
topological situations which are then easier to ana-
lyze.

Topological parameters

Pattern formation theory focuses on systems which
evolve from spatially uniform to patterned struc-
tures when driven away from equilibrium [23].
Geometrical patterns emerge as a result of complex
nonlinear evolution, and may be analyzed regardless
of the phenomenons or of the nature of the system
(e.g. Rayleigh-Bénard convection rolls [24], Faraday
waves, solidification fronts, etc.).

The general idea behind pattern formation is
to prescind from what the authors in [23] call
”microscopic” considerations (i.e. the elementary
mechanisms involved) so as to investigate dynamical
systems from a more general standpoint. Within
this scope, this field provides theoretical tools for the
phenomenological description of spatially modulated
structures.

With the ambition to apply this framework to the
study of microstructure evolution, we define a refer-
ence state for a 2D γ{γ’ microstructure as a perfectly
periodic square network of identical precipitates. We
assume the following form for the Al concentration
field :

cal “ c0al `
∆c

2

`

cospkx` ψxq ` cospky ` ψyq
˘

“ c0al ` fxpx, y, tq ` fypx, y, tq
(1)

where k is a constant wave number, and λ “ 2π{k
is the wavelength of the modulated square structure
(λx “ λy “ λ). ψx and ψy are phases, which respec-
tively represent horizontal and vertical deviations
from the reference positions in the square lattice,
and are either of a topological or a morphological
nature. ψx and ψy are the relevant parameters to be
extracted, insofar as they provide valuable informa-
tion on the spatial arrangement of precipitates.

We calculate ψx and ψy from the image of a mi-
crostructure obtained by M. Cottura et al. through
phase field modeling [20], as shown in Figure 1.
Since phase values range from 0 to 2π (0 and 2π
being the same phase value), ψx and ψy phase maps
in Figure 1 are represented in periodic gray-scale
for easier readability. ψx (resp. ψy) is spatially
uniform for horizontally (resp. vertically) regular
patterns, and varies as the horizontal (resp. vertical)
regularity is lost near topological defects. Thus,
topological and morphological imperfections in the
precipitate arrangement are highlighted by phase



ψx Microstructure [20] ψy

fx fx ` fy fy

Figure 1: Phase-based approach of microstructural analysis : example of calculated phases and associated
1D-periodic functions of a microstructure.

variations.

With the knowledge of k, ψx and ψy, the concentra-
tion field can be decomposed into two contributions
fx and fy, which physically correspond to its hori-
zontal and vertical modulations. These 1D-periodic
functions make the quantitative analysis of period
modulations, channel branches or terminations an
easier task. Since most of the topological defects are
”forks” or ”dislocations” in the pattern (as clearly
visible on fx and fy), the question as to why they are
present in the microstructure will be discussed in the
following sections. Eventually, the microstructure
can be reconstructed simply by adding fx and fy.

Even if ψx and ψy have been shown to hold great
potential with regards to the topological description
of 2D microstructures, the question of their evolu-
tion through time still needs to be addressed in or-
der to build a phase-based model for microstruc-
ture evolution. In pattern formation, phase evolu-
tion is commonly described by a diffusion equation
[23]. The phase equation, or phase diffusion equa-
tion, was first introduced by Pomeau and Manneville
to phenomenologically investigate the consequences
of long-wavelength distortions on a spatially periodic

convective flow [25]. By analogy, we postulate the fol-
lowing low-order diffusion equations for ψx and ψy:

Bψx
Bt

“ Dxx
B2ψx
Bx2

`Dxy
B2ψx
By2

Bψy
Bt

“ Dyx
B2ψy
Bx2

`Dyy
B2ψy
By2

(2)

where Dxx and Dxy (resp. Dyx and Dyy) are the
phase diffusion coefficents associated to ψx (resp.
ψy), and depend on the physical parameters of
the system. Their signs govern the stability of the
pattern respectively against horizontal and vertical
perturbations of ψx and ψy. If the system is unstable
(i.e. negative phase diffusion coefficient) against a
specific phase perturbation, higher-order terms must
be added in the phase equations to properly control
the system evolution [23].

This formalism has recently been used in the case of
1D-periodic patterns, to investigate the stability of
lamellar eutectic growth [26].

The variations of ψx and ψy are slow in space and
time, as compared to that of the concentration field.
Therefore, a phase-based calculation would require



a smaller number of meshing points, possibly al-
lowing the transition of microstructural modeling to
macroscale. Investigating the relevance of the phase
equations (2) to the modeling of microstructure evo-
lution in Ni-based single-crystal superalloys is a work
still in progress.

Phase field model

To better understand how elasticity affects coars-
ening kinetics through the spatial arrangement of
precipitates, we conduct a perturbative analysis on
the 2D reference state defined above, by using phase
field calculations as virtual experiments.

The superalloy is modeled as an effective binary
alloy, and the local concentration field cpr, tq en-
sures the description of the microstructure. The
four translational variants of the γ’ phase, usually
described by three non-conservative structural fields,
have not been implemented. Consequently, the
ordered crystal structure of the precipitates is not
taken into account in our calculations, restricting
their relevance to the instant preceding coalescence.

The mesoscopic free energy functional F is decom-
posed into a chemical Fch and an elastic Fel contri-
bution :

F “ Fchpcq ` Felpc, εεε
elq (3)

where εεεel is the elastic strain tensor. The evolution
of the conserved concentration field with time is gov-
erned by the Cahn-Hilliard equation which, assuming
a linear constitutive relationship, is written :

Bc

Bt
pr, tq “M∇2 δF

δcpr, tq
(4)

where the kinetic coefficient M is such as to recover
the interdiffusion coefficent DAl{Ni in γ, and as-
sumed constant. The chemical free energy of the
system is written as :

Fchpcq “

ż

V

´

fhompcq `
α

2
|∇c|2

¯

dV (5)

where V is the volume, fhom is the homogeneous free
energy density and the gradient term accounts for
the energy cost of the interfaces. α is the gradient
energy coefficient related to the value of the interface
energy, which was chosen isotropic. Since the value
of the non-dimensional gradient energy coefficient
α̃ governs the discretization of the diffuse inter-
faces, α was chosen to ascertain their sufficient width.

The homogeneous free energy density fhom is taken
as a conventional double-well function of the follow-
ing form :

fhompcq “ 4

«

´
1

2
pc´ cmq

2 `
pc´ cmq

4

pc0γ1 ´ c0γq
2

ff

(6)

where c is the concentration field, c0γ “ 0.15 and
c0γ1 “ 0.231 are the equilibrium concentrations
identified on the Ni-Al phase diagram at 9500C, and
cm “ pc

0
γ1 ` c0γq{2.

In the framework of linear elasticity, and assuming
small strains, the elastic energy is written :

Felpc, εεε
elq “

1

2

ż

V

CCCpcq : εεεel : εεεeldV (7)

whereCCC is the local elastic tensor, assumed to linearly
depend on cprq. The local elastic strain εεεelprq can be
decomposed into :

εεεelprq “ εεεprq ´ εεε0prq (8)

where εεεprq is the total strain, and εεε0prq is
the eigenstrain which is related to the misfit
δ “ 2paγ1 ´ aγq{paγ1 ` aγq, and thus accounts for
the lattice parameter change during the γ Ñ γ1

transformation. Moreover, the elastic constants of
γ’ were chosen to provide a specific value of elastic
inhomogeneity in the coherent mixture (∆C 1 “ 50%)
[20]. Further details on the computation of the
mechanical equilibrium are available at [20,27].

With the aim of modeling an alloy close to AM1,
we set the volume fraction of precipitates in our
calculations at 70%. This choice compelled us to
implement a very fine mesh so as to avoid spurious
coalescence, which might have resulted from poorly
descretized matrix channels with respect to interface
width.

To conduct perturbative analysis on a microstruc-
ture during coarsening, we considered the reference
state as the starting point of our calculations, thus
ignoring the nucleation and growth stages. This was
achieved by modeling perfectly periodic arrays of
precipitates, whose shapes were set to be four-fold
in order to approach their equilibrium morphology.
This ”relaxation” stage lasted until the energy
levels in the system were stabilized, at which time
these ideal microstructures had remained stable and
perfectly regular.



We then proceeded to drive the system away from
equilibrium by applying slight topological defects
in the precipitate arrangements, and monitored
the elasticity-driven evolution. We focused on
two specific topological perturbations, namely the
Eckhaus and zigzag instabilities.

By means of combined attractive and repulsive elastic
interactions, we expected the simulated topological
perturbations to relax over time, and the microstruc-
ture to stabilize itself in order to evolve back towards
the reference arrangement.

Results and Discussions

In this section, the consequences of Eckhaus and
zigzag instabilities on the stability of a micrsotruc-
ture during isothermal heat treatment at T “ 9500C
and without external loading are investigated. In
view of our hypothesis, the evolution of the mi-
crostructure is followed until the instant preceding
coalescence, and compared to the variation of ψx
and ψy.

For both topological defects, the size of the simula-
tions is 9.6 ˆ 0.6 µm2, descretized with 2048 ˆ 128
nodes (grid spacing d “ 4.7 nm).

If the phase maps in Figure 1 are in periodic gray-
scale for clearer representation, the following phase
maps are designed in regular gray-scale. Therefore,
extreme phase values (0 and 2π for ψi“x,y P r0 ; 2πs,
´π and π for ψi“x,y P r´π ;πs) will respectively ap-
pear black and white, though representing the same
phase value.

Eckhaus instability

An Eckhaus instability corresponds to a horizontal
modulation of the precipitate positions by a sine, re-
sulting in axial variations of the precipitate spacing
λx, and thus of the γ1 volume fraction. The Eckhaus
instability applied on the reference microstructure at
the initial time is written as the following phase per-
turbation :

ψxpx, t “ 0q “ AEcos
´

KEpx´ x
0q

¯

(9)

where the dimensionless amplitude AE “ 0.47,
and the wave number KE “ 2π{ΛE was taken so
that the wavelength ΛE “ 9.6 µm. The Eckhaus
amplitude AE was chosen with great care in order
to avoid overlapping of the diffuse interfaces of

neighboring precipitates, which could have led to
spurious coalescence.

The resulting evolution of the reference microstruc-
ture is presented in Figure 2, and compared to that
of ψx and ψy.

t “ 0 h
cal

ψx

ψy

t “ 1.6 h
cal

ψx

ψy

t “ 3.2 h
cal

ψx

ψy

Figure 2: Evolution with time of the Eckhaus
instability imposed on an ideal microstructure
and associated ψx and ψy maps.

At t “ 0 h, the very slight variation in precipitate
spacing λx resulting from the Eckhaus instability is
difficult to visualize on the microstructure alone, but
it can be followed more easily as a modulation of ψx
of moderate amplitude along x axis. ψy is uniform
throughout space at this instant. The variations of
λx amplify with time, and the precipitates gather in
groups of two and three. Simulatneously, additional
fluctuations of ψx gradually emerge along x axis,
and ψy remains steady during the simulation.

As clearly visible in Figure 2, the microstructure
is unstable against the Eckhaus instability. Con-
trary to what was initially expected, a horizontal
modulation of precipitate positions does not relax
over time. Rather, the Eckhaus instability amplifies,
disturbing the regularity of the arrangement further
until precipitates coalesce. This progressive loss
of horizontal regularity of the pattern is traced by
additional fluctuations of ψx, locally arising along
x axis. The vertical regularity of the arrangement
is conserved during the simulation, and thus ψy
remains uniform in space through time.



t “ 0 h
cal

ψx

t “ 3.2 h
cal

ψx

ψx

x pµmq

Figure 3: Profile of ψx along x : amplification
of the Eckhaus instability over 3.2 h.

The use of ψx as a means to witness the amplification
of the Eckhaus instability is completed by the study
of its profile over time, as shown in Figure 3. The
red curve corresponds to the initial profile of ψx
along x, while the blue curves are the same profile
but taken at subsequent times.

The long wavelength modulation of ψx along x
is centered around the mean phase value, which
corresponds to that of the undisturbed pattern. This
moderate variation ranges over the entire simulated
microstructure, and is consistent with the definition
of the Eckhaus instability. The amplification of this
instability is traced by additional modulations of ψx,
whose growth over the already disturbed topology
accelerates with time.

The initial phase modulation owing to the Eckhaus
instability is conserved until the last instant, and
the developing fluctuations highlight the existence
of pattern-destabilizing phase modes, which activate
with time. In this situation, the following form for
ψx may be assumed :

ψxpx, tq “
N
ÿ

i“1

AipKiqe
Ωitcos

´

Kipx´ x
0
i q

¯

(10)

where Ai, Ωi and Ki are the amplitude, growth
rate and wave number of the ith phase mode. The
expression of ψx in Eq. (10) unveils the involvement
of various wavelengths in phase evolution and may
allow for the definition of phase modes related to the
coalescence of precipitates. The modes which are
most threatening for the reference microstructure

are expected to be those of lowest wavelength and
highest growth rate, since they lead to local and fast
fluctuations in the regularity of the pattern.

Eventually, the precipitates which had gathered
coalesce, leaving the microstructure as an irregular
structure of two-fold-shaped precipitates, and bring-
ing forward the question of a potential stabilization
of the pattern at a new λ1x ą λx. Considering the
postulated diffusion equation (2) for the temporal
evolution of ψx and ψy, we may assert that Dxx ă 0
(and by symmetry, Dyy ă 0) since the system is
unstable against Eckhaus-type distortions of its
pattern, revealing the probable need for higher-order
phase diffusion equations to appropriately describe
phase evolution [23].

Eckhaus instabilities have been reported to be re-
sponsible for the existence of topological defects in
a number of modulated systems [23,28,29], be it for
their creation, drift or annihilation. In convection-
roll patterns, forks and dislocations in the structure
are a direct result of Eckhaus instabilities, which
brings forward the question of their involvement in
the presence of those visible in fx and fy in Figure 1.

Zigzag instability

A zigzag instability consists in a transverse modula-
tion of the precipitate positions by a sine, which leads
to a wavy configuration of the microstructure. The
zigzag instability initially applied to the reference
state is written as the following phase perturbation :

ψypx, t “ 0q “ AZZcos
´

KZZpx´ x
0q

¯

(11)

where the dimensionless amplitude AZZ “ 1.5, and
the wave number KZZ “ 2π{ΛZZ is such that the
wavelength ΛZZ “ 9.6 µm in our simulations. The
evolution of the microstructure subjected to this
topological defect is presented in Figure 4, along
with the corresponding phase maps.

At t “ 0 h, the applied zigzag instability causes
the vertical regularity of the microstructure to
strongly vary along x axis. At subsequent time, the
wavy configurations of precipitates has decreased
in amplitude, and the zigzag is almost completely
realigned, proving the perfect alignment of the
precipitates to be an energetically-favorable config-
uration of the microstructure in the first instance.
At the final instant, the relaxation of this instability
is complete and the horizontal periodicity of the



t “ 0 h
cal

ψx

ψy

t “ 2.5 h
cal

ψx

ψy

t “ 3.8 h
cal

ψx

ψy

Figure 4: Evolution with time of the zigzag
instability imposed on an ideal microstructure
and associated ψx and ψy maps.

square structure has begun to fluctuate along x.
Simultaneously, while initially modulated along x,
ψy is almost uniform in space at t “ 3.8 h and
horizontal variations in ψx arise, though it was
uniform at the early stages of the simulation.

The elasticity-driven realignment of the instability
proves that the microstructure is stable against
zigzag-type distortions of its regularity. Fluctuations
in λx appear once the vertical periodicity is found
again, highlighting the development of an Eckhaus
instability subsequent to the zigzag relaxation. The
combined use of ψx and ψy allows for a precise track-
ing of the topological evolution of the microstructure
undergoing this defect in the arrangement of its
precipitates.

Since the precipitates alignment is traced by the tem-
poral variations of ψy along x, we study the evolution
of its profile over time in Figure 5, prior to the devel-
opment of the Eckhaus instability (which could also
have been followed by analyzing ψx along x). The
red and blue curves respectively correspond to the
initial profile of ψy along x, and to the same profile
at subsequent times.

In Figure 5, the zigzag relaxation is traced by the
decreasing amplitude of the phase modulation,
whose decay decelerates over time. Contrary to
what was observed for the Eckhaus instability, this
result reveals the zigzag phase mode to be pattern-
stabilizing, since its decay corresponds to the

t “ 0 h
cal

ψx

t “ 3.8 h
cal

ψx

ψx

x pµmq

Figure 5: Profile of ψx along x : growth of the
Eckhaus instability over 3.8 h.

t “ 0 h
cal

ψy

t “ 3.8 h
cal

ψy

ψy

x pµmq

Figure 6: Profile of ψy along x : relaxation of
the zigzag instability over 3.8 h.

evolution of the wavy microstructure back towards
the regular state. We write ψy in the following form :

ψypx, tq “ AZZe
ΩZZtcos

´

KZZpx´ x
0q

¯

(12)

where the amplitude AZZ and wave number KZZ

are known, and ΩZZ is the decay rate.

We show in Figure 6 the evolution of the zigzag
amplitude AZZ with time, and the fitted data to a
decreasing exponential, from which we are able to
extract the decay rate ΩZZ “ ´1{τZZ .

Substituting Eq. (12) in Eq. (2) for ψy, we obtain
the following dispersion relation in the case of the



AZZ

t phq

Figure 7: Evolution of AZZ with time : relax-
ation of the zigzag amplitude over 3.8 h, fitted
by an exponential law AZZ „ e´t{τ (time con-
stant τZZ “ 4.37 h).

zigzag instability :

ΩZZ “ ´DyxK
2
ZZ (13)

We have confirmed the quadratic dependence of ΩZZ
on KZZ in (11) by means of additional simulations
of zigzag instabilities of various wavelengths, thus
supporting further the hypothesis of the diffusion
equations (2) for the temporal evolution of ψx and
ψy.

Eq. (11) allows for the phase diffusion coefficient Dyx

to be numerically evaluated in our calculations, and
the values obtained for zigzag instabilities of vari-
ous wavelengths are within the range of 150 nm2{s
to 350 nm2{s. These values are close to that of
the interdiffusion coefficient taken in our calculations
(DAl{Ni “ 217 nm2{s). Though the comparison of
the interdiffusion coefficient DAl{Ni with the phase
diffusion coefficient Dyx may seem premature, it ap-
pears to hold some significance since the alignment
of precipitates during the zigzag relaxation can only
occur by elasticity-induced diffusion of Al atoms, re-
sulting in the simultaneous dissolution and growth
of precipitates disposed at energetically-unfavorable
positions in the pattern.

Conclusions and Prospects

The phase-based analysis has been shown to be
both relevant and efficient as a means to topo-
logically describe microstructure evolution during
elasticity-induced coarsening. The response of a
perfectly regular microstructure undergoing Eck-
haus and zigzag instabilities has been investigated,
and measured with ψx and ψy. The system has
revealed itself to be respectively unstable and stable
against Eckhaus-type and zigzag-type distorsions

of its regularity. The amplification of the Eckhaus
instability leads to additional fluctuations of λx
which are traced by growing phase modes of various
wavelengths, until precipitates coalesce. The zigzag
instability relaxes at first, but the alignment pro-
cess brings about the development of an Eckhaus
instability whose growth becomes faster than the
zigzag decay, eventually leading to precipitates
coalescence before the complete relaxation of the
initial instability.

In this work, we presented the perturbative analysis
which we carried out on regular patterns with 1D
topological defects. Aside from the latters, we
also focused on 2D topological defects (”vacancy”
and ”dislocation” in the precipitates network, etc.)
whose complex evolution may be quantitatively de-
scribed using ψx and ψy as well. The transition from
2D to 3D topological analysis of microstructures
will require the introduction of a third phase ψz
and of the corresponding equation for its dynamic.
Therefore, three diffusion equations will be needed
for the temporal evolution of ψx, ψy and ψz, which,
if taken at low-order, will each possess one Eckhaus-
type and two zigzag-type terms. The relevance of
the phase-diffusion equations must be ascertained
beforehand.

We intend to further develop this work by investi-
gating the influence of the physical parameters of
the system (i.e. temperature, misfit, volume frac-
tion, elastic inhomogeneity, translational variants,
external loading, etc.) and of the features of the
topological defects (i.e. wavelength, amplitude,
position in the pattern, interactions with other
defects, etc.) on phases dynamics, in order to either
confirm or overturn the relevance of phase equations
for their temporal evolution.

In light of the results we have exposed in the present
work, the phase-based analysis of microstructures ap-
pears promising, and seems to open new prospects for
the modeling of microstructural evolution in these al-
loys at macroscale.
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