
HAL Id: hal-01404320
https://hal.science/hal-01404320v2

Preprint submitted on 13 Nov 2017 (v2), last revised 14 Apr 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rate Adaptation for Secure HARQ Protocols
Mael Le Treust, Leszek Szczecinski, Fabrice Labeau

To cite this version:
Mael Le Treust, Leszek Szczecinski, Fabrice Labeau. Rate Adaptation for Secure HARQ Protocols.
2017. �hal-01404320v2�

https://hal.science/hal-01404320v2
https://hal.archives-ouvertes.fr


1

Rate Adaptation for Secure HARQ Protocols
Maël Le Treust, Leszek Szczecinski∗ and Fabrice Labeau†

ETIS UMR 8051, Université Paris Seine, Université Cergy-Pontoise, ENSEA, CNRS,

6, avenue du Ponceau, 95014 Cergy-Pontoise CEDEX, FRANCE
∗ INRS, Montreal, Canada

† McGill University, Montreal, Canada

mael.le-treust@ensea.fr, leszek@emt.inrs.ca, fabrice.labeau@mcgill.ca

Abstract—This paper investigates the hybrid-automatic repeat
request (HARQ) transmission over block fading channel in the
presence of an eavesdropper, where the secrecy of the transmis-
sion is ensured via introduction of dummy-messages. Since the
encoder only knows the statistics of the channel-state, the secrecy
and the reliability are defined in a probabilistic framework.
Unlike the previous works on this subject, we design a coding
strategy tailored to HARQ by splitting the dummy-message rate
over several rate parameters. These additional degrees of freedom
improve the match between the dummy-message rates and
the realizations of the eavesdropper channels. We evaluate the
performance in terms of secrecy outage probability, connection
outage probability and the throughput. Numerical examples
illustrate that, comparing to existing alternatives, splitting of
the dummy-message rate provides higher throughput and lower
expected duration/average delay.

Index Terms—hybrid automatic repeat request, physical layer
security, state-dependent wiretap channel, channel state informa-
tion, secrecy outage probability and secrecy throughput.

I. INTRODUCTION

This work is concerned with the transmission of information

over wireless block-fading channels, where the channel state

information (CSI), which captures the essence of channel

statistics, is not available at the transmitter but can be esti-

mated by the receivers. In such a scenario, the transmission

is inherently i) unreliable due to unpredictable fading, and

ii) unsecure due to possibility of eavesdropping when commu-

nicating over broadcasting medium. The successful communi-

cation and the secrecy can thus only be defined/guaranteed

in probabilistic terms. The principal question we want to

investigate is how the constraints on the secrecy and the

reliability are related when transmissions are carried out using

hybrid automatic repeat request (HARQ) protocol, and how

to construct the coding to take advantage of the additional

dimension offered by retransmissions.

A. State of art

Reliability and HARQ

Reliability is a key issue in modern communications and is

deeply related to the knowledge—by the transmitters—of the

Work supported by the government of Quebec under grant #PSR-SIIRI-
435 and ENSEA under grant BQR-HARQ-2014; conducted as part of the
project Labex MME-DII (ANR11-LBX-0023-01); presented in part at the
IEEE Information Theory Workshop, Sept. 2013 [1]. This work was carried
out, in part, when Maël Le Treust was a post-doctoral researcher with INRS
and McGill University.

channel statistics often summarized in one parameter, which

defines the CSI, e.g., the signal-to-noise ratio (SNR). When

both encoder and decoder know the CSI it is possible to design

an appropriate coding scheme that conveys information with

arbitrary reliability [2]. When the CSI is unavailable at the

transmitter, the successful transmission cannot be guaranteed

leading to the concepts of outage probability and throughput.

To deal with the unavoidable transmission errors, the so-

called hybrid automatic repeat request (HARQ) protocol is

often used: a single-bit acknowledgement feedback Ack/Nack

indicates whether the decoding was successful or not. Then,

the transmitter may transmit the same message many times,

till it is successfully received–the event indicated by the Ack.

HARQ protocols were analyzed in the literature from the point

of view of throughput, outage probability, and average delay,

e.g., [3]–[8].

Retransmissions in HARQ provide additional degrees of

freedom which can be exploited to design a code which

provides a suitable “match” between the transmission rate and

the channel realizations. For example, in [9]–[18], codewords-

length was varied throughout the retransmissions. A different

approach was taken by [19]–[25] which kept the codeword

length constant and rather relied on the design of new coding

schemes to increase the throughput.

Secrecy

Security is an issue in wireless communications due to the

broadcast nature of the transmission medium. An eavesdropper

within the communication range can “overhear” the transmit-

ted signals and extract some private information.

Instead of using cryptographic methods to protect the mes-

sage, Wyner [26] proposed to exploit the difference between

the legitimate decoder and the eavesdropper channels, and

characterized the rate at which the legitimate users can com-

municate not only reliably but also guarantees the secrecy

of the transmitted message.1 These results were further gen-

eralized in [27], [28] under assumption of CSI knowledge,

which has a significant impact on security in wireless network

[29]. In [30], the authors proved that secure communication

is possible even when the eavesdropper has, on average,

a channel stronger than that of the receiver. However, the

legitimate users must have perfect knowledge of their CSI and

estimate the CSI of the eavesdropper. In [31], the problem

1Note that we use here, secrecy as a unique mean to guarantee the security
of a transmission, but secrecy can be combined with cryptography as well.
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of broadcasting confidential messages to multiple receivers

over parallel and fast-fading channels was investigated while

[32] characterizes the secrecy capacity of slow-fading wiretap

channel under different CSI assumptions. The ergodic secrecy

capacity was characterized in [33] assuming full CSI at both

legitimate transmitters.

The assumption of the knowledge of the eavesdropper’s

CSI is an idealization,2 so [34] studied the case where the

channel to the eavesdropper experiences fading not known to

the legitimate users. The effect of partial CSI on achievable

secure communication rates and on secret-key generation was

also investigated in [35], and [36] provided bounds on the

ergodic secrecy capacity. The case of transmission without

CSI at the encoder was investigated in [37], where the ergodic

secrecy capacity for fast fading wiretap channel was charac-

terized; and in [38], which proposed an alternative secrecy

outage formulation to measure the probability that message

transmission fails to achieve perfect secrecy.

Secrecy and HARQ

Retransmissions in HARQ may be used not only to increase

the reliability or the throughput, but also to increase the

secrecy. This issue was investigated in [39] using extension

of the Wyner code [26] with the introduction of dummy

messages. In the absence of the CSI, the coding parameters

were chosen using the statistics of the CSI. Then, receiving

a Nack feedback, the encoder retransmits the message but

has no guarantee of reliability nor secrecy which are then

characterized via random events of the secrecy outage and

the connection outage. Improvement of the secure HARQ

protocol was investigated in [40], [41] with variable-length

coding and in [42] using low-density parity-check (LDPC)

codes. In [43], the authors investigate secure HARQ protocols

based on multiple encoding, by using new dummy-messages

at each transmission.

It is worthwhile to mention that the notion of secrecy may

be defined in many different ways, including “perfect”, “weak”

and “strong secrecy” [29], “effective secrecy”, “privacy” and

“stealth” [44], “semantic security” [45], or “covert commu-

nications” [46], [47]. Each of these notions provide different

degrees of secrecy, based on probabilistic arguments or worst

case scenarios.

The goal of this work is not investigate the comparison

between these different notions but rather to develop a coding

scheme tailored for HARQ transmissions. We use the same

secrecy metric, namely “weak secrecy”, as in the previous

articles on that subject [39], [43] which also follow the

Wyner’s work [26].

B. Contributions and organizations

A natural trade-off arises between reliability and security in

the wiretap channel: when the dummy-message rate increases,

it decreases the secrecy outage probability but increases the

connection outage probability. One important drawback of

the coding schemes proposed in [39], is that the dummy-

message rate is unique and should guarantee the secrecy

2There is not reason while eavesdropper would collaborate with the
legitimate users.

for a large number of possible transmissions, even if the

expected duration/average delay of the transmission is much

lower. In this work, we address this issue upfront and design

an original wiretap code by splitting the dummy-message

rate over several rate parameters. These additional degrees

of freedom improve the match between the dummy-message

rates and the realization of the eavesdropper channels. The

contributions of this work are the following:

• We propose a new wiretap code, called “Adaptation-

Secrecy-Rate-code” (ASR-code) and we prove it has an

arbitrarily small error probability and an arbitrarily small

information leakage rate, for a whole set of channel states.

In our view, the ASR-code generalizes the coding scheme

presented in [39] in a most natural manner as, for a

particular choice of the dummy-message rates, ASR-code

is equivalent to the coding proposed in [39].

• We characterize the trade-off between connection and

secrecy outage probabilities and show the optimal rate

allocation for discrete channels and for Rayleigh fading

channels with one transmission.

• We present a numerical optimization for multiple trans-

missions over Rayleigh fading channel: using the splitting

of the dummy-message rate, we achieve a higher through-

put with a lower expected duration/average delay.

The main differences with our previous work [1] are:

• We consider an arbitrary number of possible retransmis-

sions, whereas only one retransmission was considered in

[1]; this affects non-trivially the expressions of connec-

tion and secrecy outages probabilities.

• We consider a more practical case of Rayleigh block-

fading channels and analyze the corresponding solutions.

• We provide a full version of proof of Theorem 4, while

only a sketch was shown in [1].

The work is organized as follows. Sec. II presents the

channel model under investigation, the HARQ-code as well

as defines our new protocol called ASR-code. The main

result is Theorem 4 which proves that the error probability

and the information leakage rate converge to zero for large

block-length. The performance of the ASR-code is measured

by the secrecy throughput and the secrecy/connection outage

probability, defined in Sec. III-A. The example of a discrete

channel-state is shown in Sec. III-B whereas Rayleigh fading

channels are investigated in Sec. IV. Sec. V concludes the

paper and the proofs of the results are stated in the Appendix.

II. SECURE HARQ PROTOCOL

We consider a HARQ protocol with L possible transmis-

sions shown schematically in Fig. 1 for L = 2. Each transmis-

sion l ∈ {1, . . . , L} corresponds to a block of n ∈ N symbols.

Capital letter X denotes the random variable, lowercase letter

x ∈ X denotes the realization and Xn denotes the n-time

Cartesian product of the set X . The random message M ∈ M
is uniformly distributed and m ∈ M denotes the realization.

During the first transmission, the encoder C uses the se-

quence of input symbols xn
1 ∈ Xn in order to transmit the

message m ∈ M to the legitimate decoder D. The decoder

D (resp. eavesdropper E) observes the sequence of channel
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Fig. 1. State dependent wiretap channels Ti(yi, zi|xi, ki), with i ∈ {1, 2}.
The second transmission starts if the encoder C receives a Nack feedback
from the legitimate decoder. The state parameters k1 ∈ K1 and k2 ∈ K2 are
chosen arbitrarily, stay constant during the transmission and are available only
at the legitimate decoder D and at the eavesdropper E .

outputs yn1 ∈ Yn (resp. zn1 ∈ Zn) and tries to decode (resp. to

infer) the transmitted message m ∈ M. The decoder D sends

a Ack1/Nack1 feedback over a perfect channel that indicates

to the encoder, whether the first transmission was correctly

decoded or not.

If the encoder receives a Nackl−1 feedback after l − 1 ∈
{1, . . . , L} transmissions, then the message m ∈ M was

not correctly decoded yet. The encoder starts retransmitting

the message m ∈ M over transmission l ∈ {1, . . . , L}
with input sequence xn

l ∈ Xn. The decoder D (resp.

eavesdropper E) tries to decode (resp. to infer) the trans-

mitted message m ∈ M from sequences of channel outputs

(yn1 , y
n
2 , . . . y

n
l ) ∈ Y l×n (resp. (zn1 , z

n
2 , . . . z

n
l ) ∈ Z l×n), where

Y l×n =

l
︷ ︸︸ ︷

Yn × . . .× Yn is the l-time Cartesian self-product

of set Yn. If the maximal number of transmissions L is

attained, the encoder drops message m ∈ M and starts

sending the next message m′ ∈ M. The notation ∆(X ) stands

for the set of the probability distributions P(X) over the set

X . We assume that the channel is memoryless with transi-

tion probability T (y, z|x, k) depending on a state parameter

k ∈ K, for example a fading coefficient. The state parameters

(k1, k2, . . . , kL) ∈ KL stay constant during the transmission

of a block of n ∈ N symbols and are chosen at random with

i.i.d. probability distribution Pk ∈ ∆(K), from one block

to another. The state parameters (k1, k2, . . . , kL) ∈ KL are

observed by the decoder and the eavesdropper but not by the

encoder.

At transmission l ∈ {1, . . . , L}, the state-dependent wiretap

channel is given by

T n(ynl , z
n
l |x

n
l , kl) =

n∏

i=1

T (yl(i), zl(i)|xl(i), kl), (1)

where xl(i) (resp. yl(i), zl(i)) denotes the i-th symbol of the

transmission block xl (resp. yl, zl) of length n. The channel

statistics are known by both encoder C and decoder D.

Definition 1 A HARQ-code cn ∈ C(n,R, L) with stochastic

encoder is a vector of encoding and decoding functions cn =(

(fl)l∈{1,...,L}, (gl)l∈{1,...,L}), defined for each transmission

l ∈ {1, . . . , L} as follows:

fl : M×X (l−1)×n × {Ack,Nack}l−1 → ∆(Xn), (2)

gl : Y l×n ×Kl −→ M× {Ack,Nack}, (3)

where the rate R defines the cardinality |M| = 2nR of the set

of messages M and L is the maximal number of transmissions.

We denote by C(n,R, L), the set of HARQ-code with stochastic

encoder.

Definition 2 For each vector of state parameters

(k1, . . . , kL) ∈ KL, the error probability Pe and

the information leakage rate Le of the HARQ-code

cn ∈ C(n,R, L) are defined by:

Pe

(
cn
∣
∣k1, . . . , kL

)
= P

(

M 6= M̂
∣
∣
∣ cn, k1, . . . , kL

)

,

Le

(
cn
∣
∣k1, . . . , kL

)
=

I
(

M ;Zn
1 , . . . , Z

n
L

∣
∣
∣ cn, k1, . . . , kL

)

n
.

The random variable M̂ denotes the output message

of the legitimate decoder. Depending on the number of

transmissions l ∈ {1, . . . , L}, it is given by M̂ =
gl(Y

n
1 , . . . , Y n

l , k1, . . . , kl). The non-zero leakage rate means

that the eavesdropper can infer some information about the

message M , which is undesirable.

In [39], the authors prove the existence of a HARQ-code

that has small error probability and small information leakage

rate for a whole range of channel states (k1, . . . , kL) ∈ KL.

The coding scheme is based on Wyner’s coding for the wiretap

channel [26] and involves two parameters: the rate Rs ≥ 0,

which is called the “secrecy rate” and corresponds to the

amount of secret information to be transmitted to the legitimate

decoder; and the rate R0 ≥ 0 which corresponds to the total

size of the codebook. The difference R0 − Rs ≥ 0 is called

the “dummy-message rate” and corresponds to the amount of

randomness that will be introduced in the codebook, in order

to confuse the eavesdropper.

Then, the conditions which are sufficient for the transmis-

sion to be reliable and secure, given by

R0 ≤

L∑

j∈1

I(Xj ;Yj |kj), (4)

R0 − Rs ≥
L∑

j∈1

I(Xj ;Zj |kj), (5)

define “the secure channel set” [39, Definition 2].

We note that (5) enforces high value of the dummy-message

rate R0−Rs which must guarantee the secrecy for the maximal

number of transmissions L. This, in turn, prevents the first

transmissions to be reliable, especially when the number of

possible transmission L is large.

From this observation stems the main contribution of our

work which consists in splitting the dummy-message rate R0−
Rs over L different parameters denoted by R1,R2, . . . ,RL.

Splitting the dummy-message rate makes the first transmis-

sions more reliable, since the first dummy-message rates can

be smaller than R0 − Rs in [39]. The price is paid by a more
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complex encoding/decoding; also the outage analysis is more

involved, since the L dummy-message rate parameters induce

L constraints, stated in equations (7) - (9) of Definition 3.

Definition 3 (Channel States) For fixed number of transmis-

sions l ∈ {1, . . . , L}, fixed parameters ε, R, R1, . . . ,RL and

a fixed probability distributions P⋆
x ∈ ∆(X ), the set of secure

channel states, denoted by Sl(ε,R,R1, . . . ,RL,P
⋆
x ), is the

union of channel states (k1, . . . , kl) ∈ Kl that satisfy the

following set of equations:

R +

l∑

j=1

Rj ≤

l∑

j=1

I(Xj ;Yj |kj)− ε, (6)

l∑

j=1

Rj ≥

l∑

j=1

I(Xj ;Zj |kj)− ε, (7)

l−1∑

j=1

Rj ≥

l−1∑

j=1

I(Xj ;Zj |kj)− ε, (8)

...

R1 ≥ I(X1;Z1|k1)− ε. (9)

Equation (6) guarantees the correct decoding whereas equa-

tions (7) - (9) guarantee that the secrecy condition is satisfied

at each transmission l = {1, . . . , L}. We note that (6) - (9) gen-

eralize equations of [39]. That is, using R2 = . . . = RL = 0,

R1 = R0 − Rs and R = Rs we obtain (4) and (5).3

These conditions are represented graphically in Fig. 2 for

L = 2 transmissions.

I(X1;Y1|k1)
I(X1;Z1|k1)

I(X2;Y2|k2)
I(X2;Z2|k2)

b

b

b

b

b

b

R1

(6)

(7), (8)

R2

R1 + R2

R + R1 + R2

R + R1

Ack1Nack1

Fig. 2. Decoding and secrecy regions corresponding to the rates (R,R1,R2),
for L = 2 transmissions. The second transmission starts only if there
is a Nack1, hence we disregard the dashed region of Ack1. The green
upper region corresponds to the decoding constraint of equation (6) for the
mutual informations I(X1;Y1|k1) and I(X2; Y2|k2). The red lower region
corresponds to the secrecy constraints of equations (7), (8) for the mutual
informations I(X1;Z1|k1) and I(X2;Z2|k2).

We now prove the existence of a HARQ-code such that

the error probability Pe and the information leakage rate Le

3Where, formally, ε should also be added as in (6) - (9).

converge to zero, for all tuples of channel states (k1, . . . , kL)
that belong to

⋃L
l=1 Sl(ε,R,R1, . . . ,RL,P

⋆
x ).

Theorem 4 (Compound Wiretap Channel) Fix the param-

eters R, R1, . . . ,RL and the input probability distribution

P⋆
x ∈ ∆(X ). For all ε > 0, there exists a length n̄ ∈ N

such that for all n ≥ n̄, there exists a HARQ-code c⋆n ∈
C(n,R, L) that satisfies equations (10), for all channel states

(k1, . . . , kL) ∈
⋃L

l=1 Sl(ε,R,R1, . . . ,RL,P
⋆
x ).

Pe

(

c⋆n

∣
∣
∣
∣
k1, . . . , kL

)

≤ ε, Le

(

c⋆n

∣
∣
∣
∣
k1, . . . , kL

)

≤ ε. (10)

We note that the proof of Theorem 4, stated in Appendix A,

involves multiples random binning schemes and cannot be

obtained as a generalization of the coding scheme of [39,

Appendix A].

In the rest of this article, the optimal sequence of HARQ-

codes c⋆ = (c⋆n)n≥1 is called “Adaptation-Secrecy-Rate-code”

(ASR-code) with parameters R,R1, . . . ,RL. The additional

degrees of freedom R2, . . . ,RL will be exploited to increase

the secrecy throughput and to lower the expected number of

transmissions and the connection and secrecy outages.

III. SECRECY THROUGHPUT, CONNECTION AND SECRECY

OUTAGES

A. Definitions

The channels under investigation are controlled by a state

parameter k ∈ K observed by the decoder and by the

eavesdropper but not by the encoder. We investigate the secure

transmission over this state-dependent wiretap channel based

on the outage approach. In this setting, the quality of the

channel of the eavesdropper is not known by the legitimate

encoder and decoder. We introduce the events (Al)l∈{1,...,L}

corresponding to the correct decoding (11) and the events

(Bl)l∈{1,...,L} corresponding to the secret transmission (12).

Al =

{

R +
l∑

j∈1

Rj ≤
l∑

j∈1

I(Xj ;Yj |kj)

}

, (11)

Bl =

{ l∑

j∈1

Rj ≥
l∑

j∈1

I(Xj ;Zj|kj)

}

, (12)

Definition 5 The connection outage probability Pco and se-

crecy outage probability Pso are defined by:

Pco = P

( L⋂

l=1

Ac
l

)

, Pso = P

( L⋃

l=1

Bc
l

)

. (13)

A connection outage occurs if for all transmissions l ∈
{1, . . . , L}, the decoding event Al is not satisfied. A secrecy

outage occurs if there exists a transmission l ∈ {1, . . . , L},

for which the secrecy event Bl is not satisfied.

Remark 6 Notation Ac stands for the complementary of A.

Letting the parameters R2 = . . . = RL = 0, this implies that

Al−1 ⊂ Al, Bl ⊂ Bl−1 and the definitions of Pco and Pso

reduce to those shown in [39, Eqs. (21), (22)].
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Proposition 7 Suppose that the random events (Bl)l∈{1,...,L}

are independent of the random events (Al)l∈{1,...,L}. The
secrecy outage probability writes:

Pso = 1−

L−1
∑

j=2

P

( j
⋂

i=1

Bi

)

·

(

P

( j−1
⋂

i=1

A
c
i

)

− P

( j
⋂

i=1

A
c
i

)

)

− P

(

B1

)

· P

(

A1

)

− P

( L
⋂

i=1

Bi

)

· P

(L−1
⋂

i=1

A
c
i

)

. (14)

Proof of Prop. 7 is stated in App. B. This formulation will be

used for discrete channels in Sec. III-B and Gaussian channel

in Sec. IV. We denote by L ∈ {1, . . . , L}, the random number

of transmission that depends on channel states parameters

(k1, . . . , kL) and rate parameters (R,R1, . . . ,RL).

P(L = 1) = P

(

A1

)

, (15)

P(L = l) = P

( l−1⋂

j=1

Ac
j ∩Al

)

, ∀l ∈ {2, . . . , L− 1}

= P

( l−1⋂

j=1

Ac
j

)

− P

( l⋂

j=1

Ac
j

)

, (16)

P(L = L) = P

(L−1⋂

j=1

Ac
j

)

. (17)

The expected number of transmissions E
[
L
]

is given by:

E
[
L
]

=

L∑

l=1

l · P(L = l) = 1 +

L−1∑

l=1

P

( l⋂

j=1

Ac
j

)

. (18)

Since the number of transmissions L is a random variable,

the expected number of bits correctly decoded is given by the

Renewal-Reward Theorem as in [48], [4].

Definition 8 The secrecy throughput η is defined as the ex-

pected number of bits correctly decoded by the legitimate

decoder per channel use and can be obtained from the

renewal-reward approach

η = max
R,

R1,...RL,

E[R]

E[L]
= max

R,

R1,...RL,

R · (1− Pco)

1 +
∑L−1

l=1 P
(⋂l

j=1 A
c
j

) ,

u.c.

{

Pco ≤ ξc,

Pso ≤ ξs.
(19)

The maximum is taken over the parameters R,R1, . . . ,RL,

such that the connection outage probability and the secrecy

outage probability are lower than ξc and ξs, which are the

constraints defined according to the requirements on the se-

crecy and reliability.

B. Example: Discrete Channel States

To illustrate the definitions we introduced we consider the

scenario represented by Fig. 3, in which the channel states of

the legitimate decoder and of the eavesdropper are discrete and

uniformly distributed over {ky, k′y} and {kz, k′z}. We define

the operating point as ξc = 0.25 and ξs = 0.125, and assume

the maximum number of transmission is L = 2. We investigate

First Transmission

I(X1;Z1|k
z
1
) = 2

I(X1;Z1|k
′z
1
) = 3.5

C

C

E

E

P(kz
1
) = P(k′z

1
) = 1/2

I(X1;Y1|k
y
1
) = 4

I(X1;Y1|k
′y
1
) = 5

C

C

D

D

P(ky
1
) = P(k′y

1
) = 1/2

Second Transmission

I(X2;Z2|k
z
2
) = 2

I(X2;Z2|k
′z
2
) = 3.5

C

C

E

E

P(kz
2
) = P(k′z

2
) = 1/2

I(X2;Y2|k
y
2
) = 4

I(X2; Y2|k
′y
2
]) = 5

C

C

D

D

P(ky
2
) = P(k′y

2
) = 1/2

Fig. 3. In both transmissions, the capacity of the channel to the legitimate
decoder takes two possible values {4, 5} with probability (1/2, 1/2) and the
capacity of the channel to the eavesdropper takes two possible values {2, 3.5}
with probability (1/2, 1/2).

the secrecy throughput of the ASR-code whose existence is

stated in Theorem 4 and we compare its performance to the

protocols shown in [39] and in [43].

• The secure HARQ protocol of [39] is a particular case

of the ASR-code in which the dummy-message rate R2 = 0
is zero. As depicted on fig. 4, after L = 2 transmissions, the

decoding is correct if:

R + R1 ≤ I(X1;Y1|k1) + I(X2;Y2|k2), (20)

and the transmission is secret if:

R1 ≥ I(X1;Y1|k1) + I(X2;Y2|k2). (21)

I(X1;Y1|k1)
I(X1;Z1|k1)

I(X2;Y2|k2)
I(X2;Z2|k2)

b b

b

b

R1

(D)

(S)

R1

R + R1

R + R1

Ack1Nack1

Fig. 4. Regions of correct decoding (D) and secret transmission (S) of [39],
corresponding to equations (20) and (21).

• The S-HARQ protocol of [43, Sec. V] involves multiple

dummy-message rates (R1,R2). As depicted on fig. 5, after

L = 2 transmissions, the decoding is correct if:

R ≤ max
(

I(X1;Y1|k1)− R1, 0
)

+ max
(

I(X2;Y2|k2)− R2, 0
)

, (22)
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and the transmission is secret if:

R1 ≥ I(X1;Y1|k1), R2 ≥ I(X2;Y2|k2). (23)

Fig. 2, 4 and 5 show that the decoding and the secrecy

regions are different for the ASR-code and for the protocols

of [39] and [43].

I(X1;Y1|k1)
I(X1;Z1|k1)

I(X2;Y2|k2)
I(X2;Z2|k2)

b

b

b

b

b

R1

R2

R + R2

R + R1 + R2

R + R1

Ack1Nack1

(D)

(S)

Fig. 5. Regions of correct decoding (D) and secret transmission (S) of [43],
corresponding to equations (22) and (23).
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Fig. 6. Secrecy throughput for L = 2 possible transmissions and the
constraints ξc = 0.25, ξs = 0.125.

Fig. 6 compares the secrecy throughput of ASR-code, and

of the protocols of [39] and [43]; we observe the following

• The ASR-code outperforms both protocols [39] and [43]

for the secrecy rate R = 1.5, dummy message rates

(R1,R2) = (3.5, 2) and outage probabilities (Pco,Pso) =
(0, 0.125).

• For the protocol of [39], the optimal dummy-message

rate R
[39]
1 = 7 corresponding to L = 2 transmissions is

high and prevents the first transmission to be decoded

correctly.

• For the protocol of [43], the optimal second dummy-

message rate R
[43]
2 = 3.5 is higher than R2 = 2 for ASR-

code. Hence, when the secrecy rate exceeds R ≥ 1.5, the

connection outage probability increases to Pco = 0.25
and reduces the secrecy throughput.

• In the example we show, the ASR-code provides more

than 33% of increase compared to the protocols of [39]

and [43]. However, we hasten to say that the improvement

depends on the adopted distribution of the channel gains.

In particular, if the values of the channels to the eaves-

dropper are replaced by {2, 3} (instead of {2, 3.5}), the

protocol of [43] provides the same secrecy throughput

η = 1.333 as the ASR-code, whereas the protocol of

[39] provides a lower secrecy throughput of η = 1.125.

Therefore, while we are sure our approach outperforms

[39], the direct comparison with [43] is not obvious as

also noted in [43, pp.1714]. Despite this cautionary state-

ment, we did not find any example where the throughput

of [43] is larger than the one offered by the ASR-code

we propose.

IV. RAYLEIGH BLOCK FADING GAUSSIAN WIRETAP

CHANNEL

A. Channel Model

We consider the Gaussian wiretap channel with Rayleigh

block fading represented in Fig. 7 and defined as

Y = hd ·X +Nd, Z = he ·X +Ne. (24)

where Nd and Ne are i.i.d. zero-mean, unit-variance Gaussian

variables.

We assume a normalized power constraint on the channel

input E
[
|X |2

]
≤ P = 1. The state parameters k = (hd, he) ∈

M
C D

M̂

E

X Y

Z

hd Nd

he Ne

Fig. 7. Gaussian wiretap channel with Rayleigh block fading (hd, he).

K are fading coefficients, distributed i.i.d. from one block

to another with Rayleigh probability distribution. Since the

mean of noise and power are normalized to 1, we introduce

the notation SNRd = |hd|
2 and SNRe = |he|

2. The mean

SNRs are denoted by γd = E[SNRd] = E
[
|hd|

2
]

and

γe = E[SNRe] = E
[
|he|

2
]
. For x ≥ 0, the probability density

function f(x) and the cumulative distribution function F (x)
of the SNRs are defined by

f(x) =
1

γ
· e−

x
γ , F (x) = 1− e−

x
γ . (25)

so the mutual informations write as

I(X ;Y |hd) = log(1 + SNRd), (26)

I(X ;Z|he) = log(1 + SNRe). (27)

and depend on the random fading coefficients k = (hd, he) ∈
K.
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The constraints ξc and ξs are not always compatible since

the outage constraints Pco ≤ ξc and Pso ≤ ξs may not be

satisfied simultaneously. We characterize the trade-off between

connection outage probability and secrecy outage probability

when only one transmission is allowed, i.e., L = 1.
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L = 1

ξs = 10−2

ξs = 10−4

ξs = 10−6

maximal R for ξc = 0.75 and ξs = 10−2

maximal R for ξc = 0.75 and ξs = 10−4

maximal R for ξc = 0.75 and ξs = 10−6

Optimal R for ξs = 10−2

Optimal R for ξs = 10−4

Optimal R for ξs = 10−6

Fig. 8. Secrecy throughput depending on the secrecy rate R ≥ 0, for
different secrecy constraints ξs ∈

{

10−2, 10−4, 10−6
}

and a single L = 1
transmission. Vertical dashed lines represents the maximal secrecy rate R

corresponding to the constraint ξc = 0.75.

Theorem 9 Consider the case of L = 1 transmission.

• The constraints ξc and ξs are compatible if and only if

ξs ≥

(

1− ξc

) γ
d

γe

⇐⇒

(

ξs

)γe

−

(

1− ξc

)γd

≥ 0. (28)

• For a fixed secrecy rate R ≥ 0, the contraints ξc and ξs are

compatible if and only if

R ≤ log2

(
1− γd · ln(1− ξc)

1− γe · ln(ξs)

)

. (29)

The proof of Theorem 9 is stated in App. C. Equation (28)

emphasizes that the trade-off between the connection and the

secrecy outage probability only depends on the ratio γd/γe,

i.e., the difference γd−γe in [dB]. Fig. 8 represents the secrecy

throughput for L = 1 transmission depending on the rate

parameter R, for different constraints (ξc, ξs). The shape of the

curve depends on the secrecy outage constraint Pso ≤ ξs. The

connection outage constraint Pco ≤ ξc truncates the secrecy

throughput at the dashed lines.

B. Multiple Transmissions

We propose a numerical optimization of the secrecy

throughput with respect to the rate parameters for the case

of L ≥ 2 multiple transmissions.

Since our objective is to demonstrate that the ASR-code out-

performs the HARQ-code of [39], we show a simple example

10
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ab
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it

y
:
P

s
o

Trade-off for L = 1 transmission

Trade-off for ASR-code

Trade-off for the protocol of [39]

Fig. 9. Trade-off between the connection Pco and secrecy Pso outage
probability, for zero rate R = 0 and number of transmissions L ∈ {1, 2, 4, 8}.

where the dummy-message rate parameters R2 = R3 = . . . =
RL are equal after the second transmission. This makes the

presentation easier and avoids the tedious optimization which

depends only on three parameters: (R,R1,R2).
For Rayleigh fading channels the protocol of [39] outper-

forms the one proposed in [43] as can be seen in [43, Fig. 6,

Fig. 7, Fig. 8]. Thus, we only need to compare the performance

of the ASR-code we proposed with the protocol of [39]. The

main difference is that the latter uses two parameters (R,R1),
while the ASR-code uses three rates (R,R1,R2).
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Performance of the ASR-code
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Fig. 10. Secrecy throughput depending on the secrecy rate R, under different
pairs of constraints (ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

. For each
setting, the ASR-code outperforms the protocol of [39].

Trade-off connection and secrecy outage probability
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As mentioned in Sec IV-A, the constraints ξc and ξs are not

always compatible. Fig. 9 represents the trade-off between the

connection Pco and the secrecy Pso outages, depending on

the maximal number of transmissions L ∈ {1, 2, 4, 8}, for

R = 0. For each setting, the trade-off for the protocol of [39] is

more restrictive than for the ASR-code. Splitting the dummy-

message rate over multiple transmission, i.e., with R2 > 0,

provides a small improvement for this trade-off. For a given

pair of constraints (ξc, ξs), there exists a minimal number of

transmission L such that the connection and secrecy outage

probability Pco ≤ ξc and Pso ≤ ξs satisfy the constraints.

Range of dummy-message rate R1 ∈ [Rmin
1 ,Rmax

1 ]
The minimal rate R1 should guarantee that during the

first transmission, the equation P
(
I(X1;Z1|k1) ≥ R1

)
=

ξs is satisfied with equality. If the inequality was strict

P
(
I(X1;Z1|k1) ≥ R1

)
< ξs, then it would be possible to

decrease the rate parameter R1 in order to increase the secrecy

rate R and the corresponding throughput. The minimal rate

R
min
1 ≤ R1 is defined by:

R
min
1 = log2

(

1− γe · log2(ξs)
)

. (30)

The maximal rate R1 should guarantee that the secrecy

outage probability for L possible transmissions, is equal to ξs.
A larger dummy-message rate R1 would be a waste of trans-

mission resources. This induces a maximal rate R
max
1 ≥ R1,

defined by:

R
max
1 s.t. P

( L∑

j∈1

I(Xj ;Zj|kj) ≥ R
max
1

)

= ξs. (31)

The dummy-message rate R
max
1 is optimal for the protocol of

[39], i.e., where second rate R2 = 0 is zero.
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Fig. 11. Optimal rates (R⋆
1,R

⋆
2) for the ASR-code and R

max
1 for the protocol

of [39], depending on the secrecy rate R under different pairs of constraints
(ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

.

Optimization of dummy-message rates (R1,R2)
We fixe the secrecy rate R ≥ 0 and for each rate R

min
1 ≤ R1 ≤

R
max
1 , we find R

⋆
2(R1) such that the secrecy outage constraint

Pso = ξs is satisfied with equality. Then, we optimize the

secrecy throughput regarding the pair of rates
(
R1,R

⋆
2(R1)

)

and the secrecy rate R.
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Fig. 12. Connection and secrecy outage probability for the ASR-code and
for the protocol of [39], depending on the secrecy rate R under different pairs
of constraints (ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

.

Numerical Results

Figure 10 compares the secrecy throughput for the ASR-code

and for the protocol of [39]. These two curves are drawn

depending the secrecy rate R ≥ 0, by considering four pairs

of constraints:

(ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6), (10−2, 10−2)

}

.

• As mentioned in the following tabular, splitting the

dummy-message rate using (R1,R2) improves the se-

crecy throughput respectively by more than 8%, com-

pared to the approach of [39], with only one parameter

R
max
1 , i.e., with R2 = 0.

• Tightening the secrecy constraint ξs, reduces the secrecy

throughput.

• As mentioned for one transmission in Sec. IV-A, the

connection outage constraint ξc induces a truncation of

the secrecy throughput. This is illustrated by the curves

corresponding to: (ξc, ξs) ∈
{
(1, 10−2), (10−2, 10−2)

}
.

• The optimal rates (R⋆
1,R

⋆
2) for the ASR-code are pre-

sented in Fig. 11. As expected, the first parameter R
⋆
1 <

R
max
1 is lower for the ASR-code than for the protocol

of [39]. Therefore, the first transmissions are more likely

to be decoded correctly and this increases the secrecy

throughput.

• The connection outage probability Pco corresponding to

the optimal parameters (R,R⋆
1,R

⋆
2) of the ASR-code are

presented in Fig. 12. For (ξc, ξs) = (1, 10−2), the secrecy

rate R = 6 induces a connection outage probability close

to Pco ≃ 10−2 that corresponds to the truncation of the

secrecy throughput for R ≥ 6, on Fig. 10. The connection

outage probability is larger for the ASR-code than for the

protocol of [39] because the total dummy-message rate

R1 + (L− 1) ·R2 > R
max
1 is greater. However, this does
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Constraints (ξc, ξs) (1, 10−6) (1, 10−4) (1, 10−2) (10−2, 10−2)

Maximal secrecy throughput η with R
max
1 , R2 = 0 0.55 0.78 1.22 1.00

Maximal secrecy throughput η with (R⋆
1,R

⋆
2) 0.60 0.86 1.32 1.11

Increase of secrecy throughput 9% 10% 8% 11%

E
[
L
]

with R
max
1 , R2 = 0 7.76 7.57 7.20 5.94

E
[
L
]

with (R⋆
1,R

⋆
2) 6.92 6.53 6.14 5.36

Reduction of exp. number of transmissions −10% −14% −15% −10%

not prevent the secrecy throughput of the ASR-code to

be greater than for the protocol of [39].

• The expected number of transmissions E
[
L
]

is repre-

sented in Fig. 13. The following table provides the

secrecy throughput and the expected number of trans-

missions E
[
L
]
, for different constraints.

• Compared to the protocol of [39], the ASR-code increases

the secrecy throughput η by more than 8% and reduces

the expected number of transmissions E
[
L
]

by more than

10%.
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Fig. 13. Expected number of transmissions E
[

L
]

for the ASR-code and for
the protocol of [39], depending on the secrecy rate R with different pairs of
constraints (ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

.

V. CONCLUSION

We investigate secure HARQ protocols for state-dependent

channels where the encoder only knows the statistics of the

channel-state. Then, the reliability and security are defined

in probabilistic sense and there is a trade-off between the

constraints we can impose on these two criteria.

The presence of multiple transmissions rounds in HARQ

offers new dimensions which we exploit in the design of the

code to ensure secrecy and reliability. This was done in the

literature, using a unique dummy-message. Our work follows

this idea but, unlike previous works, we design a new code

tailored for HARQ protocol, by splitting the dummy-message

rate over several rate parameters. These additional degrees of

freedom improve the matching between the dummy-message

rates and the realization of the eavesdropper channel. We

evaluate the performance in terms of secrecy outage probabil-

ity, connection outage probability and secrecy throughput. For

Rayleigh fading channel, the splitting of the dummy-message

rate provides higher secrecy throughput and lower expected

duration/average delay.

APPENDIX A

PROOF OF THEOREM 4

We prove the Theorem 4 considering L = 2 transmissions.

We provide a coding scheme that is reliable and secure for all

pair of channel states (k1, k2) that satisfy equation (32).

(k1, k2) ∈ Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ). (32)

The first transmission is not reliable, the encoder receives

a NACK1 feedback and starts a second transmission. More

precisely, the channel states (k1, k2) satisfy equations (33),

(34), (35), (36).

R + R1 + R2 ≤ I(X1;Y1|k1) + I(X2;Y2|k2)− 8ε,(33)

R + R1 > I(X1;Y1|k1)− 4ε, (34)

R1 + R2 ≥ I(X1;Z1|k1) + I(X2;Z2|k2)− 4ε,(35)

R1 ≥ I(X1;Z1|k1)− 4ε. (36)

Equations (33), (35), (36) correspond to the definition of the

set of channel states S2(ε,R,R1,R2,P
⋆
x ) and equation (34)

corresponds to the NACK1 feedback, i.e., the first transmission

failed k1 /∈ Sc
1(ε,R,R1,P

⋆
x ). Combining (33) and (34), it

induces equation (37) that will be used in the following.

R2 ≤ I(X2;Y2|k2)− 4ε. (37)

Fig. 2 shows that equation (37) is a direct consequence

of equation (33), since the second transmission starts

only when there is a Nack1 feedback. Let the length

of the first transmission bloc n̄ ∈ N be larger than

(n1, n2, n3, n4, n5, n6, n7, n8, n9) given by equations (39),

(40), (41), (42), (62), (63), (64), (65) and (66). We prove that

there exists a HARQ-code c⋆ ∈ C(n,R, L) with stochastic

encoder such that the error probability and the information

leakage rate satisfy equation (38), for all channel states

(k1, k2) ∈ Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ),

Pe

(

c⋆
∣
∣
∣
∣
k1, k2

)

≤ ε′, Le

(

c⋆
∣
∣
∣
∣
k1, k2

)

≤ ε′, (38)

with ε′ = ε · (13 + 20 log2 |X |).
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Using similar arguments, the HARQ-code with stochastic

encoder c⋆ ∈ C(n,R, L) can be extended to the case of L
transmissions. The coding scheme is reliable and secure for all

channel states (k1, . . . , kL) ∈
⋃L

l=1 Sl(ε,R,R1, . . . ,RL,P
⋆
x )

stated in definition 3.

b
b
b

b

Xn
1 (m,w1) ∼ P⋆×n

x

m

w1

|M| = 2nR

|M×M1| = 2n(R+R1)

|M1| = 2nR1✛

b b b

b
b
b

b b b

b

Xn
2 (m,w1, w2) ∼ P⋆n

x

m

w1w2

|M| = 2nR

|M×M1 ×M2| = 2n(R+R1+R2)

|M1 ×M2| = 2n(R1+R2)■

|M2| = 2nR2

|M1| = 2nR1✛

Fig. 14. Binning scheme of the random HARQ-code C ∈ C(n,R, L) stated
in section A-A for L = 2 transmissions. The parameters n ∈ N, ∈ R+,
R ∈ R+, R1 ∈ R+, R2 ∈ R+ determine the cardinalities of the set of
messages |M| = 2nR , the cardinality of the bins |M1| = 2nR1 and the
number of sub-bins |M2| = 2nR2 . The random codewords Xn

1 (m,w1) and

Xn
2 (m,w1, w2) are generated with i.i.d. probability distribution P⋆×n

x .

A. Random HARQ-Code

We consider a random HARQ-code C ∈ C(n,R, L) with

stochastic encoder, represented by figure 14 for L = 2
transmissions and defined as follows:

• Random codebook for the first transmission. Generate

|M ×M1| = 2n(R+R1) sequences Xn
1 ∈ X drawn from

the probability distribution P⋆×n
x . Randomly bin them

into |M| = 2nR bins denoted by m ∈ M, each of them

containing |M1| = 2nR1 sequences Xn
1 ∈ Xn indexed

by the parameter w1 ∈ M1.

• Encoding for the first transmission. The encoder observes

the realization of the message m ∈ M. It chooses at

random the parameter w1 ∈ M1 using the uniform

probability distribution and sends the sequence of channel

inputs xn
1 (m,w1) through the channel T1.

• First feedback from the decoder. The decoder observes

the realization of the channel state k1 ∈ K1 and sends to

the encoder the feedback "Ack1" if it can decode after

the first transmission (i.e. equation (34) is not satisfied).

It sends the feedback "Nack1" if it can not decode after

the first transmission (i.e. equation (34) is satisfied).

• Decoding fonction for "Ack1". The decoder observes the

state parameter k1 ∈ K1 and finds the pair of indexes

(m,w1) ∈ M×M1 such that xn
1 (m,w1) ∈ A⋆n

ε (yn1 |k1)
is jointly typical with the sequence of channel outputs.

Its returns the index m ∈ M of the transmitted message.

• Random codebook for the second transmission. Generate

|M ×M1 ×M2| = 2n(R+R1+R2) sequences Xn
2 ∈ Xn

drawn from the probability distribution P⋆×n
x . Randomly

bin them into |M| = 2nR bins denoted by m ∈ M, each

of them containing |M1 ×M2| = 2n(R1+R2) sequences

Xn
2 ∈ Xn indexed by a pair of parameters (w1, w2) ∈

M1 × M2. Each bin m ∈ M is divided into |M2| =
2nR2 sub-bins containing |M1| = 2nR1 sequences Xn

2 ∈
Xn. We denote by w2 ∈ M2 the index of the sub-bins

and by w1 ∈ M1 the index of the sequence of symboles

Xn
2 (m,w1, w2) ∈ Xn.

• Encoding for the second transmission. If the encoder

receives a "Nack1" feedback, the second transmission

starts. Encoder chooses at random the parameter w2 ∈
M2 using the uniform probability distribution and sends

the sequence of channel inputs xn
2 (m,w1, w2).

• Second feedback from the decoder. The decoder observes

the realization of the channel state (k1, k2) ∈ K1 × K2

and sends to the encoder the feedback "Ack2" if it

can decode (i.e. equation (33) is satisfied). It sends the

feedback "Nack2" if it can not decode (i.e. equation (33)

is satisfied).

• Decoding function for "Ack2". The decoder observes

the state parameters (k1, k2) ∈ K1 × K2 and finds the

triple of indexes (m,w1, w2) ∈ M × M1 × M2 such

that xn
1 (m,w1) ∈ A⋆n

ε (yn1 |k1) is jointly typical with the

sequence of outputs of the first channel T1 and such that

xn
2 (m,w1, w2) ∈ A⋆n

ε (yn2 |k2) is jointly typical with the

sequence of outputs of the second channel T2. Its returns

the index m ∈ M of the transmitted message.

• Larger number of transmissions L > 2. The same pro-

cedure involving random codebook, encoding, feedbacks

and decoding is repeated for L > 2 transmissions.

• An error is declared when the sequences (xn
1 , y

n
1 , z

n
1 ) /∈

A⋆n
ε (Q1|k1) or (xn

2 , y
n
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2) are not

jointly typical for the probability distributions Q1 =
P⋆
x × T1 ∈ ∆(X × Y1 × Z1) and Q2 = P⋆

x × T2 ∈
∆(X × Y2 ×Z2).

Remark 10 The parameter n ∈ N is the length of the

transmission bloc, |M| = 2nR is the cardinality of the set

of messages M, |M1| = 2nR1 is the cardinality of the

set of dummy-messages M1 for the first transmission and

|M2| = 2nR2 is the cardinality of the set of dummy-messages

M2 for the second transmission. We denote by P⋆
x ∈ ∆(X )

the probability distribution of the sequences of channel inputs.

B. Expected error probability

We upper bound the expected error probability for

fixed messages (m,w1, w2) and channel states (k1, k2) ∈
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Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ).

Ec

[

P

({

(xn
1 , y

n
1 , z

n
1 ) /∈ A⋆n

ε (Q1|k1)

}

∪

{

(xn
2 , y

n
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2)

})]

≤ ε, (39)

Ec

[

P

({

∃(m′, w′
1, w

′
2) 6= (m,w1, w2), s.t.

{xn
1 (m

′, w′
1) ∈ A⋆n

ε (yn1 |k1)}

∩{xn
2 (m

′, w′
1, w

′
2) ∈ A⋆n

ε (yn2 |k2)}

})]

≤ ε, (40)

Ec

[

P

({

∃(m′, w′
1) 6= (m,w1), s.t.

{xn
1 (m

′, w′
1) ∈ A⋆n

ε (yn1 |k1)}

∩{xn
2 (m

′, w′
1, w2) ∈ A⋆n

ε (yn2 |k2)}

})]

≤ ε, (41)

Ec

[

P

({

∃w′
2 6= w2, s.t.

xn
2 (m,w1, w

′
2) ∈ A⋆n

ε (yn2 |k2)

})]

≤ ε. (42)

(39) comes from the typical sequences [49, pp. 26].

(40) comes from (33) and [49, pp. 46, Packing Lemma] since

the codewords (Xn
1 (m

′, w′
1), X

n
2 (m

′, w′
1, w

′
2)) are indepen-

dent of (Xn
1 (m,w1), X

n
2 (m,w1, w2)).

(41) comes from (33) and [49, pp. 46, Packing Lemma].

(42) comes from (37) and [49, pp. 46, Packing Lemma].

This provides an upper bound on:

Ec

[

Pe

(

C

∣
∣
∣
∣
k1, k2

)]

≤ 4ε. (43)

C. Expected information leakage rate

We provide an upper bound on the expected information

leakage rate that is valid for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ). To this purpose, we

introduce four auxiliary random variables V1, J1, V2 and

J2 that belong to the sets MV1
, MJ1 , MV2

and MJ2 with

cardinality |MV1
| = 2nRV1 , |MJ1 | = 2nRJ1 , |MV2

| = 2nRV2

and |MJ2 | = 2nRJ2 given by:

RV1
= I(X1;Z1|k1) + I(X2;Z2|k2)

− min

(

I(X2;Z2|k2),R2

)

− 4ε, (44)

RV2
= min

(

I(X2;Z2|k2),R2

)

− 4ε, (45)

RJ1 = R1 − RV1

= min

(

R1 − I(X1;Z1|k1) + 4ε,R1 + R2

− I(X1;Z1|k1)− I(X2;Z2|k2) + 4ε

)

, (46)

RJ2 = R2 − RV2

= max

(

R2 − I(X2;Z2|k2), 0

)

+ 4ε. (47)

The idea of this proof is to adapt the size of the set of

dummy-messages to the realizations of the mutual informa-

tions I(X1;Z1|k1) and I(X2;Z2|k2). The parameters RV1
,

RV2
and RJ2 are positive. Equations (35) and (36) guarantees

that parameter RJ1 is positive for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ). In this section, each

bin m ∈ M is re-organized as follows:

• First, we divide each sub-bin w2 ∈ M2 of size 2nR1 into

2nRJ1 sub-sub-bins of size 2nRV1 .

• Second, we concatenate the sub-bins w2 ∈ M2 into 2nRJ2

super-sub-bins containing 2nRV2 sub-bins w2 ∈ M2.

This analysis does not modify the random code C but it

allows to provide an upper bound over the information leakage

rate. The parameters W1 and W2 correspond to the pairs of

auxiliary random variables W1 = (V1, J1) and W2 = (V2, J2).

n · Ec

[

Le

(

C

∣
∣
∣
∣
k1, k2

)]

= I(M,W1,W2;Z
n
1 , Z

n
2 |C, k1, k2) (48)

− H(W1,W2|M,C, k1, k2) (49)

+ H(W1,W2|M,C,Zn
1 , Z

n
2 , k1, k2). (50)

• The first term (48) satisfies:

I(M,W1,W2, C;Zn
1 , Z

n
2 |k1, k2)

≤ I(Xn
1 , X

n
2 ;Z

n
1 , Z

n
2 |k1, k2) (51)

= n · (I(X1;Z1|k1) + ·I(X2;Z2|k2)). (52)

(51) comes from the Markov chain (C,M,W1,W2) −
−
(Xn

1 , X
n
2 ) −
− (Zn

1 , Z
n
2 ) for all channel states (k1, k2) ∈

Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ).

(52) comes from the independent generation of the sequences

Xn
1 and Xn

2 with i.i.d. probability distributions P⋆
x .

• The second term (49) satisfies:

H(W1,W2|M,C, k1, k2) = n · (R1 + R2). (53)

(53) comes from the fact that the random variable W1 and

W2 are drawn independently of (M,C, k1, k2) and uniformly

distributed over the sets M1, M2 of cardinality 2nR1 , 2nR2 .

• The third term (50) satisfies:

H(W1,W2|M,C,Zn
1 , Z

n
2 , k1, k2)

= H(V1, J1, V2, J2|M,C,Zn
1 , Z

n
2 , k1, k2) (54)

= H(J1, J2|M,C,Zn
1 , Z

n
2 , k1, k2)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (55)

≤ n · (RJ1 + RJ2)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (56)

= n ·

(

R1 + R2 − I(X1;Z1|k1)− I(X2;Z2|k2) + 8ε

)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (57)

≤ n ·

(

R1 + R2 − I(X1;Z1|k1)− I(X2;Z2|k2)

+ ε ·
(
9 + 20 log2 |X |

)
)

. (58)

(54) comes from replacing indexes (w1, w2) ∈ M1 ×M2 by

auxiliary indexes (v1, j1, v2, j2) ∈ MV1
×MJ1 ×MV2

×MJ2 .

(55) and (56) come from the properties of the entropy function

and the cardinalities |MJ1 | = 2nRJ1 and |MJ2 | = 2nRJ2 .

(57) comes from the equations (46) and (47),
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satisfied for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ) and the equation:

max(a, b) + min(a, b) = a+ b.

(58) comes from Lemma 1, that is based on Fano’s inequality.

Equations (52), (53) and (58) provide an upper bound on:

Ec

[

Le

(

C
∣
∣
∣k1, k2

)]

≤ ε ·
(
9 + 20 log2 |X |

)
. (59)

This analysis can be extended to the case of L > 2 transmis-

sions by introducing the random variables RVL
and RJL .

Lemma 1 Fano’s inequality provides the upper bound:

H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2)

≤ n ·

(

ε+ 20ε · log2 |X |

)

. (60)

Proof. [Lemma 1] Suppose that the eavesdropper implements

the decoding ge defined by equation (61) as follows:

• Decoding of the eavesdropper ge takes the sequence of

channel outputs Zn
1 ∈ Zn

1 , Zn
2 ∈ Zn

2 , the message M ∈
M, the indexes J1 ∈ MJ1 , J2 ∈ MJ2 and the HARQ-

code C ∈ C(n,R, L) and returns the indexes V1 ∈ MV1
,

V2 ∈ MV2
and the sequences Xn

1 (M,V1, J1) ∈ Xn and

Xn
2 (M,V1, J1, V2, J2) ∈ Xn that are jointly typical with

Zn
1 ∈ Zn

1 and Zn
2 ∈ Zn

2 .

ge : Zn
1 ×Zn

2 ×M×MJ1 ×MJ2

×K1 ×K2 × C(n,R,RW,RL,P
⋆
x1
,P⋆

x2
)

−→ Xn ×Xn ×MV1
×MV2

. (61)

An error occurs if this decoding function ge returns

sequences of inputs and indexes (x̂n
1 , x̂

n
2 , v̂1, v̂2) 6=

ge(z
n
1 , z

n
2 ,m, j1, j2, c, k1, k2) that are different from the orig-

inal tuple (xn
1 , x

n
2 , v1, v2). We provide an upper bound over

the expected error probability of this decoding function ge.

Ec

[

P

({

(xn
1 , z

n
1 ) /∈ A⋆n

ε (Q1|k1)

}

∪

{

(xn
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2)

})]

≤ ε, (62)

Ec

[

P

({

∃(v′1, v
′
2) 6= (v1, v2), s.t.

{xn
1 (m, v′1, j1) ∈ A⋆n

ε (zn1 |k1)}

∩{xn
2 (m, v′1, j1, v

′
2, j2) ∈ A⋆n

ε (zn2 |k2)}

})]

≤ ε, (63)

Ec

[

P

({

∃v′1 6= v1, s.t.

{xn
1 (m, v′1, j1) ∈ A⋆n

ε (zn1 |k1)}

∩{xn
2 (m, v′1, j1, v2, j2) ∈ A⋆n

ε (zn2 |k2)}

})]

≤ ε, (64)

Ec

[

P

({

∃v′2 6= v2, s.t.

xn
2 (m, v1, j1, v

′
2, j2) ∈ A⋆n

ε (zn2 |k2)

})]

≤ ε. (65)

(62) comes from properties of typical sequences [49, pp. 26].

(63) comes from (44), (45) and [49, pp. 46, Packing Lemma].

(64) comes from (44) and [49, pp. 46, Packing Lemma].

(65) comes from (45) and [49, pp. 46, Packing Lemma].

Equations (62), (63), (64) and (65) prove that the expected

probability of this decoding ge is upper bounded by 4ε.

H(V1, V2|M,J1, J2, C, Z
n
1 , Z

n
2 , k1, k2)

≤ n ·

(

ε+ 20 · ε · log2 |X |

)

. (66)

Equation (66) comes from [49, pp. 19, Fano’s Inequality] and

n ≥ n9 = 1
ε and equations (44) and (45) which imply that

log2 |MV1
| ≤ 2n · log2 |X | and log2 |MV2

| ≤ n · log2 |X |.

D. Conclusion

For all ε > 0, there exists n̄, for all n ≥ n̄, there exists

HARQ-code c⋆ ∈ C(n,R, L) such that Pe

(
c⋆
∣
∣k1, k2

)
≤ ε

and Le

(
c⋆
∣
∣k1, k2

)
≤ ε, for all (k1, k2) ∈ Sc

1(ε,R,R1,P
⋆
x ) ∩

S2(ε,R,R1,R2,P
⋆
x ).

APPENDIX B

PROOF OF PROPOSITION 7

Proof. We assume that the random events (Bl)l∈{1,...,L} are
independent of the random events (Al)l∈{1,...,L}.

Pso = P

( L
⋃

i=1

B
c
i

)

= 1− P

( L
⋂

i=1

Bi

)

(67)

= 1−

L
∑

j=1

P

( j
⋂

i=1

Bi

∣

∣

∣

∣

L = j

)

· P

(

L = j

)

(68)

= 1−

L
∑

j=1

P

( j
⋂

i=1

Bi

)

· P

(

L = j

)

(69)

= 1−

L−1
∑

j=2

P

( j
⋂

i=1

Bi

)

·

(

P

( j−1
⋂

i=1

A
c
i

)

−P

( j
⋂

i=1

A
c
i

)

)

− P

(

B1

)

· P

(

A1

)

− P

( L
⋂

i=1

Bi

)

· P

(L−1
⋂

i=1

A
c
i

)

. (70)

(67) comes from the properties of the probability Pso.

(68) comes from the definition of the HARQ-code, if j
transmissions occurs, then

⋃L
i=1 B

c
i =

⋃j
i=1 B

c
i .

(69) comes from the independence of the events (Bl)l∈{1,...,L}

with events (Al)l∈{1,...,L} hence with transmission number L.

(70) comes from the probability of having L transmission.

APPENDIX C

PROOF OF THEOREM 9

Proof. First Point. Increasing R decreases the connection

outage probability and does not affect the secrecy outage

probability. Hence we consider the secrecy rate R = 0.

Pco = 1− e
− 2

R1−1

γd ≤ ξc, Pso = e−
2

R1−1

γe ≤ ξs. (71)

ξc and ξs are compatible if there exists R1 satisfying (71), i.e.,

log2

(

1− γe · ln(ξs)

)

≤ R1 ≤ log2

(

1− γd · ln

(

1− ξc

))

.

The existence of parameter R1 is given by the above inequal-

ities and this proves the first point of Theorem 9.

Second Point. The parameter R1 should satisfy :

log2(1 − γe · ln(ξs)) ≤ R1 ≤ log2(1 − γd · ln(1 − ξc)) − R.



13

Hence, the parameter R1 exists if and only if:

R ≤ log2

(
1− γd · ln(1− ξc)

1− γe · ln(ξs)

)

.
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