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Abstract—This paper investigates secure transmission using
HARQ protocol when the encoder only knows the statistics of
the channel-state. We analyze the tradeoff between reliability
and secrecy probabilistic guarantees. The conventional approach
of ensuring the secrecy via introduction of dummy-message is
followed. However, unlike the previous works on this subject,
we design a coding strategy tailored to HARQ by splitting
the dummy-message rate over several rate parameters. These
additional degrees of freedom improve the matching between the
dummy-message rates and the realizations of the eavesdropper
channels. We evaluate the performance in terms of secrecy
outage probability, connection outage probability and secrecy
throughput. For Rayleigh fading channel, the splitting of the
dummy-message rate provides higher secrecy throughput and
lower expected duration/average delay.

Index Terms—hybrid automatic repeat request, physical layer
security, state-dependent wiretap channel, channel state informa-
tion, secrecy outage probability and secrecy throughput.

I. INTRODUCTION

This work is concerned with the transmission of information
over wireless block-fading channels, where the channel state
information (CSI), which captures the essence of channel
statistics, is not available at the transmitter but can be esti-
mated by the receivers. In such a scenario, the transmission
is inherently i) unreliable due to unpredictable fading, and
ii) unsecure due to possibility of eavesdropping when commu-
nicating over broadcasting medium. The successful communi-
cation and the secrecy can thus only be defined/guaranteed
in probabilistic terms. The principal question we want to
investigate is how the constraints on the secrecy and the
reliability are related when transmissions are carried out using
hybrid automatic repeat request (HARQ) protocol, and how
to construct the coding to take advantage of the additional
dimension offered by retransmissions.

A. State of art

Reliability and HARQ

Reliability is a key issue for modern communications and is
deeply related to the knowledge—by the transmitters—of the
channel statistics often summarized in one parameter, which
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project Labex MME-DII (ANR11-LBX-0023-01); presented in part at the
IEEE Information Theory Workshop, Sept. 2013 [1]. This work was carried
out, in part, when Maël Le Treust was a post-doctoral researcher with INRS
and McGill University.

defines the CSI, e.g., the signal-to-noise ratio (SNR). When
both encoder and decoder know the CSI it is possible to design
an appropriate coding scheme that conveys reliably a maximal
number of information bits [2]. When the CSI is unavail-
able at the transmitter, the successful transmission cannot be
guaranteed leading to the concepts of outage probability and
throughput.

To deal with the unavoidable transmission errors, the so-
called hybrid automatic repeat request (HARQ) protocol is
often used: a single-bit acknowledgement feedback Ack/Nack
indicates whether the decoding was successful or not. Then,
the transmitter may transmit the same message many times,
till it is successfully received–the event indicated by the Ack.
HARQ protocols was analyzed in the literature from the point
of view of throughput, outage probability, and average delay
[3]–[8].

Retransmissions in HARQ provide additional dimensions
which can be exploited to design a code which provides a
good “match” between the transmission rate and the channel
realizations. For example, in [9]–[18], codewords-length was
varied throughout the retransmissions. A different approach
was taken by [19]–[25] which kept the codeword length
constant and rather relied on the design of new coding schemes
to increase the throughput.

Secrecy
Confidentiality issue arises in wireless communications due
to the broadcast nature of the transmission medium. An
eavesdropper within the communication range can “overhear”
the transmitted signals and extract some private information.

Instead of using cryptographic methods to protect the mes-
sage, Wyner [26] proposed to exploit the difference of quality
between the channel of the legitimate decoder and of the eaves-
dropper, and characterized the rate at which the legitimate
users can communicate securely and reliably. These results
were further generalized in [27], [28] under assumption of
CSI knowledge, which has a significant impact on security in
wireless network [29]. In [30], the authors proved that secure
communication is possible even when the eavesdropper has, on
average, a channel stronger than that of the receiver. However,
the legitimate users must have perfect knowledge of their CSI
and estimate the CSI of the eavesdropper. In [31], the problem
of broadcasting confidential messages to multiple receivers
over parallel and fast-fading channels was investigated while
[32] characterizes the secrecy capacity of slow-fading wiretap
channel under different CSI assumptions. The ergodic secrecy
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capacity was characterized in [33] assuming full CSI at both
legitimate transmitters.

The assumption of the knowledge of the eavesdropper’s
CSI is an idealization,1 so [34] studied the case where the
channel to the eavesdropper experiences fading not known to
the legitimate users. The effect of partial CSI on achievable
secure communication rates and on secret-key generation was
also investigated in [35], and [36] provided bounds on the
ergodic secrecy capacity. The case of transmission without
CSI at the encoder was investigated in [37], where the ergodic
secrecy capacity for fast fading wiretap channel was charac-
terized; and in [38], which proposed an alternative secrecy
outage formulation to measure the probability that message
transmission fails to achieve perfect secrecy.

Secrecy and HARQ

Retransmissions in HARQ may be used not only to increase
the reliability or the throughput, but also to increase the
secrecy. This issue was investigated in [39] using extension
of the Wyner code [26] with the introduction of dummy
messages. In the absence of the CSI, the coding parameters
were chosen using the statistics of the CSI. Then, receiving
a Nack feedback, the encoder retransmit the message but
has no guarantee of reliability nor secrecy which are then
characterized via random events of the secrecy outage and
the connection outage. Improvement of the secure HARQ
protocol was investigated in [40], [41] with variable-length
coding, in [42] with substitution of the dummy-messages at
each transmission and in [43] using low-density parity-check
(LDPC) code.

B. Contributions and organizations

A natural trade-off arises between reliability and security in
the wiretap channel: when the dummy-message rate increases,
it decreases the secrecy outage probability but increases the
connection outage probability. One important drawback of
the coding schemes proposed in [39], is that the dummy-
message rate is unique and should guarantee the secrecy for a
large number of possible transmissions, even if the expected
duration/average delay of the transmission is much lower
[1]. In this work, we address this issue upfront and design
an original wiretap code by splitting the dummy-message
rate over several rate parameters. These additional degrees of
freedom improve the matching between the dummy-message
rates and the realization of the eavesdropper channel. The
contributions of this work are the following:

• We propose a new wiretap code, called “Adaptation-
Secrecy-Rate-code” (ASR-code) and we prove it has an
arbitrarily small error probability and an arbitrarily small
information leakage rate, for a whole set of channel states.

• We characterize the trade-off between connection and
secrecy outage probabilities and show the optimal rate
allocation for discrete channels and for Rayleigh fading
channel with one transmission.

• We present a numerical optimization for multiple trans-
missions over Rayleigh fading channel: using the splitting

1There is not reason while eavesdropper would collaborate with the
legitimate users.

of the dummy-message rate, we achieve a higher through-
put with a lower expected duration/average delay.

The work is organized as follows. Section II presents
the channel model under investigation and the concept of
HARQ-code. The ASR-code is described in Sec. III and
Theorem 4 proves the error probability and the leakage rate
converge to zero for large block-lenght. The performance of
the ASR-code is measured by the secrecy throughput and
the secrecy/connection outage probability, defined in Sec. IV.
Discrete channel-states are investigated in Section V and
Rayleigh fading channel are investigated in Sec. VI. Sec-
tion VII concludes the article and the proofs of the results
are stated in the Appendix.

II. SECURITY FOR HARQ

We consider a HARQ protocol with L possible transmis-
sions shown schematically in Fig. 1 for L = 2. Each transmis-
sion l ∈ {1, . . . , L} corresponds to a block of n ∈ N symbols.
Capital letter X denotes the random variable, lowercase letter
x ∈ X denotes the realization and Xn denotes the n-time
cartesian product of the set X . The random message M ∈ M
is uniformly distributed and m ∈ M denotes the realization.

During the first transmission, the encoder C uses the se-
quence of input symbols xn

1 ∈ Xn in order to transmit the
message m ∈ M to the legitimate decoder D. The decoder
D (resp. eavesdropper E) observes the sequence of channel
outputs yn1 ∈ Yn (resp. zn1 ∈ Zn) and tries to decode (resp. to
infer) the transmitted message m ∈ M. The decoder D sends
a Ack1/Nack1 feedback over a perfect channel that indicates
to the encoder, whether the first transmission was correctly
decoded or not.

If the encoder receives a Nackl−1 feedback after l − 1 ∈
{1, . . . , L} transmissions, then the message m ∈ M was
not correctly decoded yet. The encoder starts retransmit the
message m ∈ M over transmission l ∈ {1, . . . , L} with
input sequence xn

l ∈ Xn. The decoder D (resp. eaves-
dropper E) tries to decode (resp. to infer) the transmit-
ted message m ∈ M from sequences of channel outputs
(yn1 , y

n
2 , . . . y

n
l ) ∈ Y l×n (resp. (zn1 , z

n
2 , . . . z

n
l ) ∈ Z l×n), where

Y l×n =

l
︷ ︸︸ ︷

Yn × . . .× Yn is the l-time Cartesian product of set
Yn. If the maximal number of transmissions L is attained,
the encoder drops message m ∈ M and starts sending the
next message m′ ∈ M. The notation ∆(X ) stands for the
set of the probability distributions P(X) over the set X .
We assume that the channel is memoryless with transition
probability T (y, z|x, k) depending on a state parameter k ∈
K, for example a fading coefficient. The state parameters
(k1, k2, . . . , kL) ∈ KL stay constant during the transmission
block of n ∈ N symbols and are chosen at random with
i.i.d. probability distribution Pk ∈ ∆(K), from one block
to another. The state parameters (k1, k2, . . . , kL) ∈ KL are
observed by the decoder and the eavesdropper but not by the
encoder.

T n(ynl , z
n
l |x

n
l , kl) =

n
∏

i=1

T (yl(i), zl(i)|xl(i), kl). (1)
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Fig. 1. State dependent wiretap channels, for the first T1(y1, z1|x1, k1) and
for the second T2(y2, z2|x2, k2) transmissions. After the end of the first
transmission, the decoder D sends a Ack/Nack feedback to the encoder C.
The second transmission starts if the encoder C receives a Nack feedback
from the legitimate decoder. The state parameters k1 ∈ K1 and k2 ∈ K2 are
chosen arbitrarily, stay constant during the transmission and are available only
at the legitimate decoder D and at the eavesdropper E .

At transmission l ∈ {1, . . . , L}, the state-dependent wiretap
channel is given by equation (1) and its statistics are known
by both encoder C and decoder D.

Definition 1 A HARQ-code cn ∈ C(n,R, L) with stochastic

encoder is a vector of encoding and decoding functions cn =(

(fl)l∈{1,...,L}, (gl)l∈{1,...,L}), defined for each transmission

l ∈ {1, . . . , L} by:

fl : M× X (l−1)×n × {Ack,Nack}l−1 → ∆(Xn), (2)

gl : Y l×n ×Kl −→ M× {Ack,Nack}, (3)

where the rate R defines the cardinality |M| = 2nR of the set

of messages M and L is the maximal number of transmissions.

We denote by C(n,R, L), the set of HARQ-code with stochastic

encoder.

Definition 2 For each vector of state parameters
(k1, . . . , kL) ∈ KL, the error probability Pe and

the information leakage rate Le of the HARQ-code

cn ∈ C(n,R, L) are defined by:

Pe

(

cn
∣
∣k1, . . . , kL

)

= P
(

M ̸= M̂
∣
∣
∣ cn, k1, . . . , kL

)

,

Le

(

cn
∣
∣k1, . . . , kL

)

=
I
(

M ;Zn
1 , . . . , Z

n
L

∣
∣
∣ cn, k1, . . . , kL

)

n
.

The random variable M̂ denotes the output message of the

decoder. Depending on the number of transmissions l ∈
{1, . . . , L}, it is given by M̂ = gl(Y n

1 , . . . , Y n
l , k1, . . . , kl).

In [39], the authors prove the existence of a HARQ-code
that has small error probability and small information leakage
rate for a whole range of channel states (k1, . . . , kL) ∈ KL.
The coding scheme is based on Wyner’s coding for the wiretap
channel [26] and involves two parameters. The rate Rs ≥ 0

is called the “secrecy rate” and corresponds to the amount of
secret information to be transmitted to the legitimate decoder.

The rate R0 ≥ 0 corresponds to the total size of the codebook.
The difference R0 − Rs ≥ 0 is called the “dummy-message
rate” and corresponds to the amount of randomness that
will be introduced in the codebook, in order to confuse the
eavesdropper. Definition 2 in [39] provides the normalized
versions of equations (4) and (5). This conditions are sufficient
for the transmission to be reliable and secure.

R0 ≤
L
∑

j∈1

I(Xj ;Yj |kj), (4)

R0 − Rs ≥
L
∑

j∈1

I(Xj ;Zj |kj). (5)

III. VARIABLE-RATE SECURE HARQ

Equation (5) imposes a strong condition on the dummy-
message rate R0 − Rs since it should be adapted to the
maximal number of transmissions L. The high value of R0−Rs

prevents the first transmissions to be reliable, especially when
the number of possible transmission L is large. In this
work, we split the dummy-message rate R0 − Rs over L
different parameters denoted by R1,R2, . . . ,RL. When only
two transmissions occur, the secrecy constraints will only
depends on the first two rates (R1,R2) and not on the rates
R3, . . . ,RL. Splitting the dummy-message rate makes the first
transmissions more reliable. The price is paid by a more
complex encoding/decoding; also the outage analysis is more
involved, since the L dummy-message rate parameters induce
L constraints, stated in equations (7) - (9) of Definition 3.

Definition 3 (Channel States) For fixed number of transmis-

sions l ∈ {1, . . . , L}, fixed parameters ε, R, R1, . . . ,RL and

a fixed probability distributions P⋆
x ∈ ∆(X ), the set of secure

channel states, denoted by Sl(ε,R,R1, . . . ,RL,P⋆
x ), is the

union of channel states (k1, . . . , kl) ∈ Kl that satisfy equations

(6) - (9).

R +
l

∑

j∈1

Rj ≤
l

∑

j∈1

I(Xj ;Yj |kj)− ε, (6)

l
∑

j∈1

Rj ≥
l

∑

j∈1

I(Xj ;Zj |kj)− ε, (7)

l−1
∑

j∈1

Rj ≥
l−1
∑

j∈1

I(Xj ;Zj |kj)− ε, (8)

...

R1 ≥ I(X1;Z1|k1)− ε. (9)

Equation (6) guarantees the correct decoding whereas equa-
tions (7) - (9) guarantee that the secrecy condition is satisfied
at each transmission l = {1, . . . , L}. These conditions are
represented in Fig. 2 for L = 2 transmissions. Fixing the
parameters R2 = . . . = RL = 0, the system of equations (6) -
(9) reduces to equations (4) and (5) where the rates parameters
are defined by R1 = R0 − Rs and R = Rs. The splitting
of the dummy-message rate introduces additional degrees of
freedom (R2, . . . ,RL) that will be exploited to increase the
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performances of the protocol, in terms of secrecy throughput,
connection and secrecy outages. We prove that there exists a
HARQ-code that satisfies the secrecy and reliability conditions
for all tuples of channel states that belong to: (k1, . . . , kL) ∈
⋃L

l=1 Sl(ε,R,R1, . . . ,RL,P⋆
x ).

I(X1;Y1|k1)
I(X1;Z1|k1)

I(X2;Y2|k2)
I(X2;Z2|k2)

R1

(6)

(7), (8)

R2

R1 + R2

R + R1 + R2

R + R1

Ack1Nack1

Fig. 2. Decoding and secrecy regions corresponding to the rates (R,R1,R2),
for L = 2 transmissions. The second transmission starts only if there is a
Nack1 feedback, hence we disregard the dashed region of Ack1. The green
upper region corresponds to the decoding constraint of equation (6) for the
mutual informations I(X1;Y1|k1) and I(X2; Y2|k2). The red lower region
corresponds to the secrecy constraints of equations (7), (8) for the mutual
informations I(X1;Z1|k1) and I(X2;Z2|k2).

Theorem 4 (Compound Wiretap Channel) Fix the param-

eters R, R1, . . . ,RL and the input probability distribution

P⋆
x ∈ ∆(X ). For all ε > 0, there exists a length n̄ ∈ N

such that for all n ≥ n̄, there exists a HARQ-code c⋆n ∈
C(n,R, L) that satisfies equations (10), for all channel states

(k1, . . . , kL) ∈
⋃L

l=1 Sl(ε,R,R1, . . . ,RL,P⋆
x ).

Pe

(

c⋆n

∣
∣
∣
∣
k1, . . . , kL

)

≤ ε, Le

(

c⋆n

∣
∣
∣
∣
k1, . . . , kL

)

≤ ε. (10)

Proof of Theorem 4 is provided in Appendix A. Theorem 4
guarantees the existence of a sequence of HARQ-code c⋆ =
(c⋆n)n≥1 with c⋆n ∈ C(n,R, L), such that the error probability
and the information leakage rate converge to zero for a whole
range of channel states.

Remark 5 The result stated in Theorem 4 is a generalization
of the result of Theorem 1 stated in [39]. Indeed, both results
coincide when we choose the rate parameters R2 = . . . =
RL = 0. However, the achievability proof, especially the
codebook construction, are different.

In the rest of this article, the optimal sequence of HARQ-
codes c⋆ = (c⋆n)n≥1 is called "Adaptation-Secrecy-Rate-code"
(ASR-code) with parameters R,R1, . . . ,RL. The additional
degrees of freedom R2, . . . ,RL introduced by the ASR-code
will be exploited to increase the secrecy throughput and to
lower the expected number of transmission and the connection
and secrecy outages.

IV. SECRECY THROUGHPUT, CONNECTION AND SECRECY

OUTAGES

The channels under investigation are controlled by a state
parameter k ∈ K observed by the decoder and by the
eavesdropper but not by the encoder. We investigate the secure
transmission over this state-dependent wiretap channel based
on the outage approach. In this setting, the quality of the
channel of the eavesdropper is not known by the legitimate
encoder and decoder. We introduce the events (Al)l∈{1,...,L}

corresponding to the correct decoding (11) and the events
(Bl)l∈{1,...,L} corresponding to the secret transmission (12).

Al =

{

R +
l

∑

j∈1

Rj ≤
l

∑

j∈1

I(Xj ;Yj |kj)

}

, (11)

Bl =

{ l
∑

j∈1

Rj ≥
l

∑

j∈1

I(Xj ;Zj|kj)

}

, (12)

Definition 6 The connection outage probability Pco and se-

crecy outage probability Pso are defined by:

Pco = P

( L
⋂

l=1

Ac
l

)

, Pso = P

( L
⋃

l=1

Bc
l

)

. (13)

A connection outage occurs if for all transmissions l ∈
{1, . . . , L}, the decoding event Al is not satisfied. A secrecy
outage occurs if there exists a transmission l ∈ {1, . . . , L},
for which the secrecy event Bl is not satisfied.

Remark 7 Notation Ac stands for the complementary of A.
Letting the parameters R2 = . . . = RL = 0, this implies that
Al−1 ⊂ Al, Bl ⊂ Bl−1 and the definitions of Pco and Pso

reduce to equations (21) and (22) in [39].

We denote by L ∈ {1, . . . , L}, the random number
of transmission that depends on channel states parameters
(k1, . . . , kL) and rate parameters (R,R1, . . . ,RL).

P(L = 1) = P

(

A1

)

, (14)

P(L = l) = P

( l−1
⋂

j=1

Ac
j ∩Al

)

, ∀l ∈ {2, . . . , L− 1}

= P

( l−1
⋂

j=1

Ac
j

)

− P

( l
⋂

j=1

Ac
j

)

, (15)

P(L = L) = P

( L−1
⋂

j=1

Ac
j

)

. (16)

The expected number of transmissions E
[

L
]

is given by:

E
[

L
]

=
L
∑

l=1

l · P(L = l) = 1 +
L−1
∑

l=1

P

( l
⋂

j=1

Ac
j

)

. (17)

When the random events (Bl)l∈{1,...,L} are independent of
the random events (Al)l∈{1,...,L}, we reformulate the secrecy
outage probability Pso. This hypothesis is satisfied by the
discrete channels of Sec. V and by the Gaussian wiretap
channel with Rayleigh block fading of Sec. VI.
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Proposition 8 Suppose that the random events (Bl)l∈{1,...,L}
are independent of the random events (Al)l∈{1,...,L}. The
secrecy outage probability writes:

Pso = 1−

L−1
∑

j=2

P

( j
⋂

i=1

Bi

)

·

(

P

( j−1
⋂

i=1

A
c
i

)

− P

( j
⋂

i=1

A
c
i

)

)

− P

(

B1

)

· P

(

A1

)

− P

( L
⋂

i=1

Bi

)

· P

(L−1
⋂

i=1

A
c
i

)

. (18)

Proof of Prop. 8 is stated in App. B. Since the number of
transmissions L is a random variable, the expected number
of bits correctly decoded is given by the Renewal-Reward
Theorem [44], [4]. The performance of the HARQ protocol is
evaluated in terms of secrecy throughput, stated in Definition
9. It is equal to the ratio between the expected information rate
E[R] and the expected number of transmissions E[L], stated
in equation (17).

Definition 9 Fix the outages parameters (ξc, ξs). The secrecy

throughput is defined by equation (19) and it measures the

expected number of bits correctly decoded by the legitimate

decoder per channel use.

η = max
R,

R1,...RL,

E[R]

E[L]
= max

R,
R1,...RL,

R · (1− Pco)

1 +
∑L−1

l=1 P
(⋂l

j=1 A
c
j

) ,

u.c.

{

Pco ≤ ξc,

Pso ≤ ξs.
(19)

The maximum is taken over the parameters R,R1, . . . ,RL,
such that the connection outage probability and the secrecy
outage probability are lower than ξc and ξs.

First Transmission

I(X1;Z1|kz1) = 2

I(X1;Z1|k′z1 ) = 3

C

C

E

E

P(kz1) = P(k′z1 ) = 1/2

I(X1;Y1|k
y
1) = 4

I(X1;Y1|k
′y
1 ) = 5

C

C

D

D

P(ky1 ) = P(k′y1 ) = 1/2

Second Transmission

I(X2;Z2|kz2) = 2

I(X2;Z2|k′z2 ) = 3

C

C

E

E

P(kz2) = P(k′z2 ) = 1/2

I(X2;Y2|k
y
2) = 4

I(X2;Y2|k
′y
2 ]) = 5

C

C

D

D

P(ky2 ) = P(k′y2 ) = 1/2

Fig. 3. In both transmissions, the capacity of the channel to the legitimate
decoder takes two possible values {4, 5} with probability (1/2, 1/2) and the
capacity of the channel to the eavesdropper takes two possible values {2, 3}
with probability (1/2, 1/2).

V. AN INTUITION WITH DISCRETE CHANNEL STATES

We consider the scenario represented by Fig. 3, in which
the channel states of the legitimate decoder and of the eaves-
dropper are discrete and uniformly distributed over {ky, k′y}
and {kz, k′z}. We assume the connection and the secrecy
outage probability must be lower than ξc = 1/4 = 0.25
and ξs = 1/8 = 0.125 for L = 2 possible transmissions.
We investigate the optimal performances of the ASR-code

whose existence is stated in Theorem 4 and we compare it to
the coding scheme introduced in [39], in which the dummy-
message rate R2 = 0 is zero.

A. ASR-code with optimization over R1 only
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Fig. 4. Throughput η optimized over
R1 depending on the rate parameter
R, with R2 = 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R2 = 0η0 = 1.125
⑦

Rate R1

M
ax

im
al

S
ec

re
cy

T
h
ro

u
g
h
p
u
t:
η
0

Fig. 5. Throughput η optimized over
R depending on the rate parameter
R1, with R2 = 0.

We consider the framework of [39] where the second
dummy-message rate is null R2 = 0. The optimal dummy-
message rate R⋄

1 = 6 is high since it must be adapted
to two transmissions. This prevents the first transmission to
be decoded correctly. Fig. 4 and 5 show that the optimal
parameters are (R⋄,R⋄

1) = (3, 6). The probability of having
a NACK1 feedback after the first transmission is equal to:
P(NACK1) = 1. The secrecy throughput is equal to

η =
3 · (1− 0.25)

1 + 1 · (1 − 0)
=

9

8
= 1.125. (20)

The secrecy outage has probability Pso = 0, since the dummy-
message rate R⋄

1 = 6 is larger than the two best channels of
the eavesdropper. The optimal secrecy rate is R⋄ = 3 and it
induces a connection outage probability of Pco = 0.25.

B. ASR-code with optimization over both R1 and R2

The second dummy-message rate R2 provides an addi-
tional degree of freedom for the maximization of the secrecy
throughput.

• Fig. 6 shows that the secrecy throughput is equal to
η = 4/3 ≃ 1.333 for a range of parameter R⋆

2 ∈ [2, 3].
In this interval the secrecy outage probability Pso ≤ ξs =
1/8 = 0.125 satisfies the constraint, the connection out-
age probability is equal to Pco = 0 and P(ACK1) = 0.5
stay constant. Hence the secrecy throughput is constant
for R⋆

2 ∈ [2, 3].
• Fig. 7 shows that the corresponding optimal parameters

are (R⋆,R⋆
1) = (2, 3).

The secrecy outage probability is equal to Pso = 1/8 = 0.125
and the connection outage probability is equal to Pco = 0.

η =
2 · (1− 0)

1 + (1 − 0.5)
=

4

3
≃ 1.333. (21)

The ASR-code allows to split the secrecy constraint over
two parameters (R⋆

1,R
⋆
2) = (3, 2) instead of only R⋄

1 = 6.
It induces a positive probability of decoding in the first
transmission P(ACK1) = 0.5, that increases the secrecy
throughput.
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For this example described by Fig. 3, the ASR-code pro-
vides more than 18, 5% of increase compared to the approach
of [39], with a secrecy rate R⋆ = 2 lower than R⋄ = 3.

VI. RAYLEIGH BLOCK FADING GAUSSIAN WIRETAP

CHANNEL

We consider the Gaussian wiretap channel with Rayleigh
block fading defined by (22) and represented in Fig. 8.

Y = hd ·X +Nd, Z = he ·X +Ne. (22)

Nd and Ne are independent and i.i.d. N (0, 1) additive white
Gaussian noise. We assume a normalized power constraint on
the channel input E

[

|X |2
]

≤ P = 1. The state parameters

M
C D

M̂

E

X Y

Z

hd Nd

he Ne

Fig. 8. Gaussian wiretap channel with Rayleigh block fading (hd, he).

k = (hd, he) ∈ K are fading coefficients, distributed i.i.d. from
one block to another with Rayleigh probability distribution.
Since the mean of noise and power are normalized to 1, we
introduce the notation SNRd = |hd|2 and SNRe = |he|2. The
mean SNRs are denoted by γd = E[SNRd] = E

[

|hd|2
]

and
γe = E[SNRe] = E

[

|he|2
]

. For x ≥ 0, the probability density
function f(x) and the cumulative distribution function F (x)
of the SNRs are defined by:

f(x) =
1

γ
· e−

x
γ , F (x) = 1− e−

x
γ . (23)

The mutual informations writes as equations (24), (25) and
depend on the random fading coefficients k = (hd, he) ∈ K.

I(X ;Y |hd) = log(1 + SNRd), (24)

I(X ;Z|he) = log(1 + SNRe). (25)

A. One transmission: outage and throughput analysis

We characterize the optimal secrecy rate R⋆ and dummy-
message rate R⋆

1 corresponding to the secrecy throughput η for
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Fig. 9. Trade-off between the connection outage probability Pco ≤ ξc and
the secrecy outage probability Pso ≤ ξs, depending on the difference of mean
SNR γd − γe in [dB], for rate R = 0.

L = 1 transmission. The connection outage and the secrecy
outage probabilities are stated in equations (26) and (27).

Pco = P

(

R + R1 > I(X ;Y |hd)

)

= 1− e
− 2R+R1−1

γd , (26)

Pso = P

(

R1 < I(X ;Z|he)

)

= e−
2R1−1

γe . (27)

The outage parameters ξc and ξs are not always compatible
since the outage constraints Pco ≤ ξc and Pso ≤ ξs may not be
satisfied simultaneously. We characterize the trade-off between
connection outage probability and secrecy outage probability.

Theorem 10 Consider the case of L = 1 transmission.

• Outage parameters ξc and ξs are compatible if and only if :

ξs ≥

(

1− ξc

) γd
γe

⇐⇒

(

ξs

)γe

−

(

1− ξc

)γd

≥ 0. (28)

• For a fixed secrecy rate R ≥ 0, outage parameters ξc and

ξs are compatible if and only if :

R ≤ log2

(
1− γd · ln(1− ξc)

1− γe · ln(ξs)

)

. (29)

The proof of Theorem 10 is stated in App. C. Equation (28)
emphasizes that the trade-off between the connection and the
secrecy outage probability only depends on the ratio γd/γe,
i.e., the difference γd − γe in [dB]. The trade-off between
connection and secrecy outage probability (28) is represented
in Fig. 9, for different parameters (γd, γe) and for R = 0.
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Fig. 10. Secrecy throughput depending on the secrecy rate R ≥ 0, for
different secrecy outage constraints ξs ∈

{

10−2, 10−4, 10−6
}

. Vertical
dotted lines represents the maximal secrecy rate R corresponding to the
connection outage constraint ξc = 0.75.

The maximization problem for the secrecy throughput
writes as follows:

η = max
R,R1

R · e−
2R+R1−1

γd , (30)

u.c.

⎧

⎪
⎪
⎨

⎪
⎪
⎩

R + R1 ≤ log2

(

1− γd · ln(1 − ξc)

)

,

R1 ≥ log2

(

1− γe · ln(ξs)

)

.

This problem has a solution if and only if the outage pa-
rameters (ξc, ξs) are compatible, i.e., satisfy the conditions of
Theorem 10. Since the secrecy throughput is decreasing in
R1, the optimal parameter is R⋆

1 = log2
(

1− γe · ln(ξs)
)

. We

denote by R̃ = log2

(
1−γd·ln(1−ξc)
1−γe·ln(ξs)

)

the maximal secrecy rate,

compatible with the outage parameters (ξc, ξs). The derivative

of the criteria Φ(R) = R · e−
2R

·(1−γe·ln(ξs))−1
γd is:

Φ′(R) = e
− 2R

·(1−γe·ln(ξs))−1
γd

×

(

1− R · 2R ·
ln(2) · (1− γe · ln(ξs))

γd

)

. (31)

We denote by R̂ ≥ 0, the evaluation of the Lambert W function
at γd

ln(2)·(1−γe·ln(ξs))
:

R · 2R =
γd

ln(2) · (1− γe · ln(ξs))
. (32)

The function Φ(R) increases for R ≤ R̂ and then decreases,

hence the maximum of Φ(R) is achieved by R̂. The optimal

secrecy rate is equal to the minimum: R⋆ = min
(

R̂, R̃
)

.

Fig. 10 represents the secrecy throughput for L = 1
transmission depending on the rate parameter R, for different
outage constraints (ξc, ξs). The shape of the curve depends on

the secrecy outage constraint ξs. The connection outage con-
straint ξc truncates the secrecy throughput, since the optimal
secrecy rate R⋆ should be smaller than R̃.
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Fig. 11. Trade-off between the connection Pco and secrecy Pso outage
probability, for zero rate R = 0 and number of transmissions L ∈ {1, 2, 4, 8}.

B. Multiple Transmissions

We propose a numerical optimization of the secrecy
throughput with respect to the rate parameters for the case of
L > 1 multiple transmissions. In order to reduce the complex-
ity of the optimization, we restrict our study to the case where
the dummy-message rate parameters R2 = R3 = . . . = RL are
equal after the second transmission. In that case, the optimiza-
tion problem depends only on three parameters: (R,R1,R2)
instead of L+1 parameter (R,R1, . . . ,RL). We compare this
setting to the one of [39] that involves only two parameters
(R,R1), i.e., where rates R2 = R3 = . . . = RL = 0 are null.

Trade-off connection and secrecy outage probability

As mentioned in Sec VI-A, the outage parameters ξc and ξs
are not always compatible. Fig. 11 represents the trade-off be-
tween the connection Pco and the secrecy Pso outages, depend-
ing on the maximal number of transmissions L ∈ {1, 2, 4, 8},
for R = 0. For each setting, we represent two curves where the
lowest corresponds to the optimization over the two secrecy
parameters (R1,R2), whereas the highest corresponds to the
optimization over R1 only, i.e., with R2 = 0. Splitting the
dummy-message rate over multiple transmission, i.e., with
R2 > 0, provides a small improvement for the trade-off
between Pco and Pso. For a given pair of outage parameters
(ξc, ξs), there exists a minimal number of transmission L such
that the connection and secrecy outage probability Pco ≤ ξc
and Pso ≤ ξs satisfy the constraints.

Range of dummy-message rate R1 ∈ [Rmin
1 ,Rmax

1 ]
The minimal rate R1 should guarantee that during the
first transmission, the equation P

(

I(X1;Z1|k1) ≥ R1

)

=
ξs is satisfied with equality. If the inequality was strict
P
(

I(X1;Z1|k1) ≥ R1

)

< ξs, then it would be possible to
decrease the rate parameter R1 in order to increase the secrecy
rate R and the corresponding throughput. The minimal rate
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Fig. 12. Secrecy throughput depending on the secrecy rate R, under different
pairs of outage constraints (ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

. For
each setting, the highest curve corresponds to the optimal pair of dummy-
message rates (R⋆

1,R
⋆
2), whereas the lowest curve correspond to the unique

rate Rmax
1 , with R2 = 0.

Rmin
1 ≤ R1 is defined by:

Rmin
1 = log2

(

1− γe · log2(ξs)
)

. (33)

The maximal rate R1 should guarantee that the secrecy
outage probability for L possible transmissions, is equal to ξs.
A larger dummy-message rate R1 would be a waste of trans-
mission resources. This induces a maximal rate Rmax

1 ≥ R1,
defined by:

Rmax
1 s.t. P

( L
∑

j∈1

I(Xj ;Zj|kj) ≥ Rmax
1

)

= ξs. (34)

The dummy-message rate Rmax
1 is optimal in the framework

of [39], i.e., where second rate R2 = 0 is zero.
Optimization of dummy-message rates (R1,R2)

We fixe the secrecy rate R ≥ 0 and for each rate Rmin
1 ≤ R1 ≤

Rmax
1 , we find R⋆

2(R1) such that the secrecy outage probability
Pso = ξs is satisfied with equality. Then, we optimize the
secrecy throughput regarding the pair of rates

(

R1,R
⋆
2(R1)

)

and the secrecy rate R.
Numerical Results

Figure 12 compares the secrecy throughput with two optimal
rates (R⋆

1,R
⋆
2), to the secrecy throughput with only one rate

Rmax
1 . These two curves are drawn depending the secrecy rate

R ≥ 0, by considering four pairs of outage parameters:

(ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6), (10−2, 10−2)

}

.

• As mentioned in the following tabular, splitting the
dummy-message rate using (R1,R2) improves the se-
crecy throughput respectively by more than 8%, com-
pared to the approach of [39], with only one parameter
Rmax

1 , i.e., with R2 = 0.
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}

.

• Tightening the secrecy outage constraint ξs, reduces the
secrecy throughput.

• As mentioned for one transmission in Sec. VI-A, the
connection outage constraint ξc induces a truncation of
the secrecy throughput. This is illustrated by the curves
corresponding to: (ξc, ξs) ∈

{

(1, 10−2), (10−2, 10−2)
}

.
• The optimal pair (R⋆

1,R
⋆
2) corresponding to Fig. 12 are

presented in Fig. 13. The optimal rate R⋆
1 < Rmax

1 is
reduced compared to the case where R2 = 0, and this
is compensated by a strictly positive R⋆

2 > 0. Hence,
the first transmissions are correctly decoded with a larger
probability, compared to the approach stated in [39].

• The connection outage probability Pco corresponding to
the parameters (R,R⋆

1,R
⋆
2) of Fig. 12 and Fig. 13 are
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The parameters of this tabular correspond to Fig. 12, 13, 14, 15.

Outage parameters (ξc, ξs) (1, 10−6) (1, 10−4) (1, 10−2) (10−2, 10−2)

Maximal secrecy throughput η with Rmax
1 , R2 = 0 0.55 0.78 1.22 1.00

Maximal secrecy throughput η with (R⋆
1,R

⋆
2) 0.60 0.86 1.32 1.11

Increase of secrecy throughput 9% 10% 8% 11%

E
[

L
]

with Rmax
1 , R2 = 0 7.76 7.57 7.20 5.94

E
[

L
]

with (R⋆
1,R

⋆
2) 6.92 6.53 6.14 5.36

Reduction of exp. number of transmissions −10% −14% −15% −10%

presented in Fig. 14. For (ξc, ξs) = (1, 10−2), the secrecy
rate R = 6 induces a connection outage probability
close to Pco ≃ 10−2 that corresponds to the truncation
of the secrecy thorughput for R ≥ 6, on Fig. 12.
The connection outage probability is larger than in the
approach of [39] because the total dummy-message rate
R1 + (L − 1) · R2 > Rmax

1 is greater. However, the
corresponding secrecy throughput with (R⋆

1,R
⋆
2) is still

larger than with Rmax
1 and R2 = 0.

• The expected number of transmissions E
[

L
]

correspond-
ing to the settings of Fig. 12, Fig. 13, Fig. 14, is
represented in Fig. 15. The following tabular provides the
expected number of transmissions E

[

L
]

corresponding to
the maximal secrecy throughput η of Fig. 12.

• The ASR-code increases the secrecy throughput η by
more than 8% and reduces the expected number of
transmissions E

[

L
]

by more than 10%.
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Fig. 15. Expected number of transmissions E
[

L
]

for (R⋆
1,R⋆

2) and for Rmax
1 ,

depending on the secrecy rate R with different pairs of outage parameters
(ξc, ξs) ∈

{

(1, 10−2), (1, 10−4), (1, 10−6)
}

.

VII. CONCLUSION

We investigate secure HARQ protocol for state-dependent
channel where the encoder only knows the statistics of the
channel-state. Then, the reliability and security are defined
in probabilistic sense and there is a trade-off between the
constraints we can impose on these two criteria.

The presence of multiple transmissions rounds in HARQ
offers new dimensions which we exploit in the design of the
code to ensure secrecy and reliability. This was done in the
literature, using a unique dummy-message. Our work follows
this idea but, unlike previous works, we design a new code
tailored for HARQ protocol, by splitting the dummy-message
rate over several rate parameters. These additional degrees of
freedom improve the matching between the dummy-message
rates and the realization of the eavesdropper channel. We
evaluate the performance in terms of secrecy outage probabil-
ity, connection outage probability and secrecy throughput. For
Rayleigh fading channel, the splitting of the dummy-message
rate provides higher secrecy throughput and lower expected
duration/average delay.

APPENDIX A
PROOF OF THEOREM 4

We prove the Theorem 4 considering L = 2 transmissions.
We provide a coding scheme that is reliable and secure for all
pair of channel states (k1, k2) that satisfy equation (35).

(k1, k2) ∈ Sc
1(ε,R,R1,P

⋆
x ) ∩ S2(ε,R,R1,R2,P

⋆
x ). (35)

The first transmission is not reliable, the encoder receives
a NACK1 feedback and starts a second transmission. More
precisely, the channel states (k1, k2) satisfy equations (36),
(37), (38), (39).

R + R1 + R2 ≤ I(X1;Y1|k1) + I(X2;Y2|k2)− 8ε,(36)

R + R1 > I(X1;Y1|k1)− 4ε, (37)

R1 + R2 ≥ I(X1;Z1|k1) + I(X2;Z2|k2)− 4ε,(38)

R1 ≥ I(X1;Z1|k1)− 4ε. (39)

Equations (36), (38), (39) correspond to the definition of the
set of channel states S2(ε,R,R1,R2,P⋆

x ) and equation (37)
corresponds to the NACK1 feedback, i.e., the first transmission
failed k1 /∈ Sc

1(ε,R,R1,P⋆
x ). Combining (36) and (37), it

induces equation (40) that will be used in the following.

R2 ≤ I(X2;Y2|k2)− 4ε. (40)

Fig. 2 shows that equation (40) is a direct consequence
of equation (36), since the second transmission starts
only when there is a Nack1 feedback. Let the length
of the first transmission bloc n̄ ∈ N be larger than
(n1, n2, n3, n4, n5, n6, n7, n8, n9) given by equations (42),
(43), (44), (45), (65), (66), (67), (68) and (69). We prove that
there exists a HARQ-code c⋆ ∈ C(n,R, L) with stochastic
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encoder such that the error probability and the information
leakage rate satisfy equation (41), for all channel states
(k1, k2) ∈ Sc

1(ε,R,R1,P⋆
x ) ∩ S2(ε,R,R1,R2,P⋆

x ),

Pe

(

c⋆
∣
∣
∣
∣
k1, k2

)

≤ ε′, Le

(

c⋆
∣
∣
∣
∣
k1, k2

)

≤ ε′, (41)

with ε′ = ε · (13 + 20 log2 |X |).
Using similar arguments, the HARQ-code with stochastic

encoder c⋆ ∈ C(n,R, L) can be extended to the case of L
transmissions. The coding scheme is reliable and secure for all
channel states (k1, . . . , kL) ∈

⋃L
l=1 Sl(ε,R,R1, . . . ,RL,P⋆

x )
stated in definition 3.

Xn
1 (m,w1) ∼ P⋆×n

x

m

w1

|M| = 2nR

|M×M1| = 2n(R+R1)

|M1| = 2nR1✛

Xn
2 (m,w1, w2) ∼ P⋆n

x

m

w1w2

|M| = 2nR

|M×M1 ×M2| = 2n(R+R1+R2)

|M1 ×M2| = 2n(R1+R2)■

|M2| = 2nR2

|M1| = 2nR1✛

Fig. 16. Binning scheme of the random HARQ-code C ∈ C(n,R, L) stated
in section A-A for L = 2 transmissions. The parameters n ∈ N, ∈ R+,
R ∈ R+, R1 ∈ R+, R2 ∈ R+ determine the cardinalities of the set of
messages |M| = 2nR, the cardinality of the bins |M1| = 2nR1 and the
number of sub-bins |M2| = 2nR2 . The random codewords Xn

1 (m,w1) and

Xn
2 (m,w1, w2) are generated with i.i.d. probability distribution P⋆×n

x .

A. Random HARQ-Code

We consider a random HARQ-code C ∈ C(n,R, L) with
stochastic encoder, represented by figure 16 for L = 2
transmissions and defined as follows:

• Random codebook for the first transmission. Generate
|M ×M1| = 2n(R+R1) sequences Xn

1 ∈ X drawn from
the probability distribution P⋆×n

x . Randomly bin them
into |M| = 2nR bins denoted by m ∈ M, each of them
containing |M1| = 2nR1 sequences Xn

1 ∈ Xn indexed
by the parameter w1 ∈ M1.

• Encoding for the first transmission. The encoder observes
the realization of the message m ∈ M. It chooses at
random the parameter w1 ∈ M1 using the uniform
probability distribution and sends the sequence of channel
inputs xn

1 (m,w1) through the channel T1.

• First feedback from the decoder. The decoder observes
the realization of the channel state k1 ∈ K1 and sends to
the encoder the feedback "Ack1" if it can decode after
the first transmission (i.e. equation (37) is not satisfied).
It sends the feedback "Nack1" if it can not decode after
the first transmission (i.e. equation (37) is satisfied).

• Decoding fonction for "Ack1". The decoder observes the
state parameter k1 ∈ K1 and finds the pair of indexes
(m,w1) ∈ M×M1 such that xn

1 (m,w1) ∈ A⋆n
ε (yn1 |k1)

is jointly typical with the sequence of channel outputs.
Its returns the index m ∈ M of the transmitted message.

• Random codebook for the second transmission. Generate
|M ×M1 ×M2| = 2n(R+R1+R2) sequences Xn

2 ∈ Xn

drawn from the probability distribution P⋆×n
x . Randomly

bin them into |M| = 2nR bins denoted by m ∈ M, each
of them containing |M1 ×M2| = 2n(R1+R2) sequences
Xn

2 ∈ Xn indexed by a pair of parameters (w1, w2) ∈
M1 × M2. Each bin m ∈ M is divided into |M2| =
2nR2 sub-bins containing |M1| = 2nR1 sequences Xn

2 ∈
Xn. We denote by w2 ∈ M2 the index of the sub-bins
and by w1 ∈ M1 the index of the sequence of symboles
Xn

2 (m,w1, w2) ∈ Xn.
• Encoding for the second transmission. If the encoder

receives a "Nack1" feedback, the second transmission
starts. Encoder chooses at random the parameter w2 ∈
M2 using the uniform probability distribution and sends
the sequence of channel inputs xn

2 (m,w1, w2).
• Second feedback from the decoder. The decoder observes

the realization of the channel state (k1, k2) ∈ K1 × K2

and sends to the encoder the feedback "Ack2" if it
can decode (i.e. equation (36) is satisfied). It sends the
feedback "Nack2" if it can not decode (i.e. equation (36)
is satisfied).

• Decoding function for "Ack2". The decoder observes
the state parameters (k1, k2) ∈ K1 × K2 and finds the
triple of indexes (m,w1, w2) ∈ M × M1 × M2 such
that xn

1 (m,w1) ∈ A⋆n
ε (yn1 |k1) is jointly typical with the

sequence of outputs of the first channel T1 and such that
xn
2 (m,w1, w2) ∈ A⋆n

ε (yn2 |k2) is jointly typical with the
sequence of outputs of the second channel T2. Its returns
the index m ∈ M of the transmitted message.

• Larger number of transmissions L > 2. The same pro-
cedure involving random codebook, encoding, feedbacks
and decoding is repeated for L > 2 transmissions.

• An error is declared when the sequences (xn
1 , y

n
1 , z

n
1 ) /∈

A⋆n
ε (Q1|k1) or (xn

2 , y
n
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2) are not
jointly typical for the probability distributions Q1 =
P⋆
x × T1 ∈ ∆(X × Y1 × Z1) and Q2 = P⋆

x × T2 ∈
∆(X × Y2 × Z2).

Remark 11 The parameter n ∈ N is the length of the
transmission bloc, |M| = 2nR is the cardinality of the set
of messages M, |M1| = 2nR1 is the cardinality of the
set of dummy-messages M1 for the first transmission and
|M2| = 2nR2 is the cardinality of the set of dummy-messages
M2 for the second transmission. We denote by P⋆

x ∈ ∆(X )
the probability distribution of the sequences of channel inputs.
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B. Expected error probability

We upper bound the expected error probability for
fixed messages (m,w1, w2) and channel states (k1, k2) ∈
Sc
1(ε,R,R1,P⋆

x ) ∩ S2(ε,R,R1,R2,P⋆
x ).

Ec

[

P

({

(xn
1 , y

n
1 , z

n
1 ) /∈ A⋆n

ε (Q1|k1)

}

∪

{

(xn
2 , y

n
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2)

})]

≤ ε, (42)

Ec

[

P

({

∃(m′, w′
1, w

′
2) ̸= (m,w1, w2), s.t.

{xn
1 (m

′, w′
1) ∈ A⋆n

ε (yn1 |k1)}

∩{xn
2 (m

′, w′
1, w

′
2) ∈ A⋆n

ε (yn2 |k2)}

})]

≤ ε, (43)

Ec

[

P

({

∃(m′, w′
1) ̸= (m,w1), s.t.

{xn
1 (m

′, w′
1) ∈ A⋆n

ε (yn1 |k1)}

∩{xn
2 (m

′, w′
1, w2) ∈ A⋆n

ε (yn2 |k2)}

})]

≤ ε, (44)

Ec

[

P

({

∃w′
2 ̸= w2, s.t.

xn
2 (m,w1, w

′
2) ∈ A⋆n

ε (yn2 |k2)

})]

≤ ε. (45)

(42) comes from the typical sequences [45, pp. 26].
(43) comes from (36) and [45, pp. 46, Packing Lemma] since
the codewords (Xn

1 (m
′, w′

1), X
n
2 (m

′, w′
1, w

′
2)) are indepen-

dent of (Xn
1 (m,w1), Xn

2 (m,w1, w2)).
(44) comes from (36) and [45, pp. 46, Packing Lemma].
(45) comes from (40) and [45, pp. 46, Packing Lemma].

This provides an upper bound on:

Ec

[

Pe

(

C

∣
∣
∣
∣
k1, k2

)]

≤ 4ε. (46)

C. Expected information leakage rate

We provide an upper bound on the expected information
leakage rate that is valid for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P⋆

x ) ∩ S2(ε,R,R1,R2,P⋆
x ). To this purpose, we

introduce four auxiliary random variables V1, J1, V2 and
J2 that belong to the sets MV1

, MJ1 , MV2
and MJ2 with

cardinality |MV1
| = 2nRV1 , |MJ1 | = 2nRJ1 , |MV2

| = 2nRV2

and |MJ2 | = 2nRJ2 given by:

RV1
= I(X1;Z1|k1) + I(X2;Z2|k2)

− min

(

I(X2;Z2|k2),R2

)

− 4ε, (47)

RV2
= min

(

I(X2;Z2|k2),R2

)

− 4ε, (48)

RJ1 = R1 − RV1

= min

(

R1 − I(X1;Z1|k1) + 4ε,R1 + R2

− I(X1;Z1|k1)− I(X2;Z2|k2) + 4ε

)

, (49)

RJ2 = R2 − RV2

= max

(

R2 − I(X2;Z2|k2), 0

)

+ 4ε. (50)

The idea of this proof is to adapt the size of the set of
dummy-messages to the realizations of the mutual informa-
tions I(X1;Z1|k1) and I(X2;Z2|k2). The parameters RV1

,
RV2

and RJ2 are positive. Equations (38) and (39) guarantees
that parameter RJ1 is positive for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P⋆

x ) ∩ S2(ε,R,R1,R2,P⋆
x ). In this section, each

bin m ∈ M is re-organized as follows:

• First, we divide each sub-bin w2 ∈ M2 of size 2nR1 into
2nRJ1 sub-sub-bins of size 2nRV1 .

• Second, we concatenate the sub-bins w2 ∈ M2 into 2nRJ2

super-sub-bins containing 2nRV2 sub-bins w2 ∈ M2.

This analysis does not modify the random code C but it
allows to provide an upper bound over the information leakage
rate. The parameters W1 and W2 correspond to the pairs of
auxiliary random variables W1 = (V1, J1) and W2 = (V2, J2).

n · Ec

[

Le

(

C

∣
∣
∣
∣
k1, k2

)]

= I(M,W1,W2;Z
n
1 , Z

n
2 |C, k1, k2) (51)

− H(W1,W2|M,C, k1, k2) (52)

+ H(W1,W2|M,C,Zn
1 , Z

n
2 , k1, k2). (53)

• The first term (51) satisfies:

I(M,W1,W2, C;Zn
1 , Z

n
2 |k1, k2)

≤ I(Xn
1 , X

n
2 ;Z

n
1 , Z

n
2 |k1, k2) (54)

= n · (I(X1;Z1|k1) + ·I(X2;Z2|k2)). (55)

(54) comes from the Markov chain (C,M,W1,W2) −!−
(Xn

1 , X
n
2 ) −!− (Zn

1 , Z
n
2 ) for all channel states (k1, k2) ∈

Sc
1(ε,R,R1,P⋆

x ) ∩ S2(ε,R,R1,R2,P⋆
x ).

(55) comes from the independent generation of the sequences
Xn

1 and Xn
2 with i.i.d. probability distributions P⋆

x .
• The second term (52) satisfies:

H(W1,W2|M,C, k1, k2) = n · (R1 + R2). (56)

(56) comes from the fact that the random variable W1 and
W2 are drawn independently of (M,C, k1, k2) and uniformly
distributed over the sets M1, M2 of cardinality 2nR1 , 2nR2 .
• The third term (53) satisfies:

H(W1,W2|M,C,Zn
1 , Z

n
2 , k1, k2)

= H(V1, J1, V2, J2|M,C,Zn
1 , Z

n
2 , k1, k2) (57)

= H(J1, J2|M,C,Zn
1 , Z

n
2 , k1, k2)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (58)

≤ n · (RJ1 + RJ2)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (59)

= n ·

(

R1 + R2 − I(X1;Z1|k1)− I(X2;Z2|k2) + 8ε

)

+ H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2) (60)

≤ n ·

(

R1 + R2 − I(X1;Z1|k1)− I(X2;Z2|k2)

+ ε ·
(

9 + 20 log2 |X |
)
)

. (61)

(57) comes from replacing indexes (w1, w2) ∈ M1 ×M2 by
auxiliary indexes (v1, j1, v2, j2) ∈ MV1

×MJ1 ×MV2
×MJ2 .
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(58) and (59) come from the properties of the entropy function
and the cardinalities |MJ1 | = 2nRJ1 and |MJ2 | = 2nRJ2 .
(60) comes from the equations (49) and (50),
satisfied for all channel states (k1, k2) ∈
Sc
1(ε,R,R1,P⋆

x ) ∩ S2(ε,R,R1,R2,P⋆
x ) and the equation:

max(a, b) + min(a, b) = a+ b.
(61) comes from Lemma 1, that is based on Fano’s inequality.

Equations (55), (56) and (61) provide an upper bound on:

Ec

[

Le

(

C
∣
∣
∣k1, k2

)]

≤ ε ·
(

9 + 20 log2 |X |
)

. (62)

This analysis can be extended to the case of L > 2 transmis-
sions by introducing the random variables RVL

and RJL .

Lemma 1 Fano’s inequality provides the upper bound:

H(V1, V2|J1, J2,M,C, Zn
1 , Z

n
2 , k1, k2)

≤ n ·

(

ε+ 20ε · log2 |X |

)

. (63)

Proof. [Lemma 1] Suppose that the eavesdropper implements
the decoding ge defined by equation (64) as follows:

• Decoding of the eavesdropper ge takes the sequence of
channel outputs Zn

1 ∈ Zn
1 , Zn

2 ∈ Zn
2 , the message M ∈

M, the indexes J1 ∈ MJ1 , J2 ∈ MJ2 and the HARQ-
code C ∈ C(n,R, L) and returns the indexes V1 ∈ MV1 ,
V2 ∈ MV2 and the sequences Xn

1 (M,V1, J1) ∈ Xn and
Xn

2 (M,V1, J1, V2, J2) ∈ Xn that are jointly typical with
Zn
1 ∈ Zn

1 and Zn
2 ∈ Zn

2 .

ge : Zn
1 × Zn

2 ×M×MJ1 ×MJ2

×K1 ×K2 × C(n,R,RW,RL,P
⋆
x1 ,P

⋆
x2)

−→ Xn × Xn ×MV1 ×MV2 . (64)

An error occurs if this decoding function ge returns
sequences of inputs and indexes (x̂n

1 , x̂
n
2 , v̂1, v̂2) ̸=

ge(zn1 , z
n
2 ,m, j1, j2, c, k1, k2) that are different from the orig-

inal tuple (xn
1 , x

n
2 , v1, v2). We provide an upper bound over

the expected error probability of this decoding function ge.

Ec

[

P

({

(xn
1 , z

n
1 ) /∈ A⋆n

ε (Q1|k1)

}

∪

{

(xn
2 , z

n
2 ) /∈ A⋆n

ε (Q2|k2)

})]

≤ ε, (65)

Ec

[

P

({

∃(v′1, v
′
2) ̸= (v1, v2), s.t.

{xn
1 (m, v′1, j1) ∈ A⋆n

ε (zn1 |k1)}

∩{xn
2 (m, v′1, j1, v

′
2, j2) ∈ A⋆n

ε (zn2 |k2)}

})]

≤ ε, (66)

Ec

[

P

({

∃v′1 ̸= v1, s.t.

{xn
1 (m, v′1, j1) ∈ A⋆n

ε (zn1 |k1)}

∩{xn
2 (m, v′1, j1, v2, j2) ∈ A⋆n

ε (zn2 |k2)}

})]

≤ ε, (67)

Ec

[

P

({

∃v′2 ̸= v2, s.t.

xn
2 (m, v1, j1, v

′
2, j2) ∈ A⋆n

ε (zn2 |k2)

})]

≤ ε. (68)

(65) comes from properties of typical sequences [45, pp. 26].
(66) comes from (47), (48) and [45, pp. 46, Packing Lemma].
(67) comes from (47) and [45, pp. 46, Packing Lemma].
(68) comes from (48) and [45, pp. 46, Packing Lemma].

Equations (65), (66), (67) and (68) prove that the expected
probability of this decoding ge is upper bounded by 4ε.

H(V1, V2|M,J1, J2, C, Z
n
1 , Z

n
2 , k1, k2)

≤ n ·

(

ε+ 20 · ε · log2 |X |

)

. (69)

Equation (69) comes from [45, pp. 19, Fano’s Inequality] and
n ≥ n9 = 1

ε
and equations (47) and (48) which imply that

log2 |MV1
| ≤ 2n · log2 |X | and log2 |MV2

| ≤ n · log2 |X |.

D. Conclusion

For all ε > 0, there exists n̄, for all n ≥ n̄, there exists
HARQ-code c⋆ ∈ C(n,R, L) such that Pe

(

c⋆
∣
∣k1, k2

)

≤ ε
and Le

(

c⋆
∣
∣k1, k2

)

≤ ε, for all (k1, k2) ∈ Sc
1(ε,R,R1,P⋆

x ) ∩
S2(ε,R,R1,R2,P⋆

x ).

APPENDIX B
PROOF OF PROPOSITION 8

Proof. We assume that the random events (Bl)l∈{1,...,L} are
independent of the random events (Al)l∈{1,...,L}.

Pso = P

( L
⋃

i=1

B
c
i

)

= 1− P

( L
⋂

i=1

Bi

)

(70)

= 1−

L
∑

j=1

P

( j
⋂

i=1

Bi

∣

∣

∣

∣

L = j

)

· P

(

L = j

)

(71)

= 1−

L
∑

j=1

P

( j
⋂

i=1

Bi

)

· P

(

L = j

)

(72)

= 1−

L−1
∑

j=2

P

( j
⋂

i=1

Bi

)

·

(

P

( j−1
⋂

i=1

A
c
i

)

− P

( j
⋂

i=1

A
c
i

)

)

− P

(

B1

)

· P

(

A1

)

− P

( L
⋂

i=1

Bi

)

· P

(L−1
⋂

i=1

A
c
i

)

. (73)

(70) comes from the properties of the probability Pso.
(71) comes from the definition of the HARQ-code, if j
transmissions occurs, then

⋃L
i=1 B

c
i =

⋃j
i=1 B

c
i .

(72) comes from the independence of the events (Bl)l∈{1,...,L}

with events (Al)l∈{1,...,L} hence with transmission number L.
(73) comes from the probability of having L transmission.

APPENDIX C
PROOF OF THEOREM 10

Proof. First Point. Increasing R decreases the connection
outage probability and does not affect the secrecy outage
probability. Hence we consider the secrecy rate R = 0.

Pco = 1− e
− 2R1−1

γd ≤ ξc, Pso = e−
2R1−1

γe ≤ ξs. (74)

ξc and ξs are compatible if there exists R1 satisfying (74), i.e.,

log2

(

1− γe · ln(ξs)

)

≤ R1 ≤ log2

(

1− γd · ln

(

1− ξc

))

.



13

The existence of parameter R1 is given by the above inequal-
ities and this proves the first point of Theorem 10.
Second Point. The parameter R1 should satisfy :

log2(1 − γe · ln(ξs)) ≤ R1 ≤ log2(1− γd · ln(1 − ξc))− R.

Hence, the parameter R1 exists if and only if:

R ≤ log2

(
1− γd · ln(1− ξc)

1− γe · ln(ξs)

)

.
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