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Abstract—Network lifetime is still the key issue when we
deploy wireless sensor networks and IoT solutions in real-
world applications. Current WSN research trends include duty-
cycling at MAC layer and energy efficient routing at network
layer, among others. In this study we propose an Optimal
Probabilistic Energy-Aware Routing Protocol (OPEAR) for duty-
cycled WSNs which aims at maximizing the network lifetime by
keeping low energy consumption and balancing network traffic
between nodes. Our experimental campaign reveals that our
OPEAR protocol outperforms the popular Energy Aware Routing
Protocol (EAR) from the literature, proving to be more effective
in extending the network lifetime.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are pervasive. Diverse
domains such as environmental control in buildings, health-
care, internet of things, robot control in automatic manufac-
turing environments exploit WSNs as a key component. A
common issue in all WSNs applications is network lifetime:
sensors have often limited battery, and recharging operations,
if at all possible, substantially increase the cost of service.

While out-of-battery sensor failures, and therefore possible
disconnections of portions of the network, may represent a
simple loss in quality of service in some context, they may
yield critical conditions in others. It is the case of WSNs
for smart homes: these are an emerging technology for home
health care assistance, that provides ambient assisted living
services for elderly. Figure 1.a shows a typical scenario of a
smart home equipped with different wireless sensor nodes,
eventually enriched by an assistant robot, for permanently
monitoring and assisting the person’s daily life activities and
personal health state evolution [17]. Data are collected to a
sink either periodically (e.g. temperature, humidity, luminos-
ity) or following a specific event (e.g. door opening/closing,
chair and bed pressure or movement detection). The data
transmission reliability is enhanced thanks to a multi-hop mesh
topology.

When deploying a WSN in such a scenario, one of the most
important requirements is to be able to estimate the network
lifetime, assuming to have an estimate of the data transmission
demands, as the frequency of periodic data sources or the
average packet generating rate of the event-triggered sensor
sources. Many issues intervene in the design of good policies
to manage these WSNs, such as the ability to extend the

expected lifetime of the full network, to take into account
worst-case situations and identify the most critical sensors, to
efficiently use batteries, to balance sensor usage and so on.

In our previous implementation of such a smart apartment
lab [17], battery level indicator is embedded in the data packet
and is one of the services provided by our gateway called MPI-
Gate. However, for any given traffic demand pattern, finding
the maximal network lifetime is still an open issue since it
depends on the used routing protocol and the underlying MAC
protocol duty cycle, among others.

In this paper we focus on the topic of designing an
energy-aware routing protocol for maximizing the network
lifetime, while still fulfilling the data collection requirements.
We propose an Optimal Probabilistic Energy Aware Routing
(OPEAR) protocol that combines a mathematical model to
produce optimized routing tables in an offline computation
phase and a simple, yet energy efficient, routing policy
during realtime operations. We implemented a prototype of
the OPEAR protocol in the Contiki emulation environment
above ContikiMAC duty-cycled protocol, using a stress-test
computational campaign. We compared OPEAR with the
popular Energy-Aware Routing protocol (EAR) from the lit-
erature [5], also implemented (by us) over ContikiMAC. The
computational tests reveals that OPEAR clearly outperforms
EAR, yielding substantially higher network lifetimes. It is
worth to notice that the original paper of EAR only evaluated
performances by assuming an ideal MAC protocol, without
collisions, neither duty-cycle.

The main contributions of this paper are:

1) We consider a concrete duty-cycle MAC protocol (con-
tikiMAC) in our optimization model, while the existing
works only focus on energy balancing at routing level,
without consider the duty-cycle, which however allows
to save the main part of energy.

2) To the best of our knowledge, this paper is, among the
existing probabilistic routing algorithms, the first work
which provides optimal probabilities.

3) The proposed work is tested in an emulation tool,
Contiki, using the real code that is executed on the
sensors, having more accurate results than a simple
simulation.



In the following we first review the literature on energy-
aware routing (Section II); then we outline the OPEAR
protocol and we detail the mathematical models it relies on
for optimal probability evaluation (Section III). Finally, we
introduce a realistic stress-test dataset and we describe our
experiments, simulations and results (Section IV). Conclusions
and perspectives are briefly presented in Section V.

Fig. 1: a) A smart home scenario, b) Benchmark- 20-node
graph.

II. RELATED WORK

Since nodes in WSNs are battery-powered, energy conser-
vation is important to extend the functional lifetime of both
individual nodes and the network. Several papers deal with
the problem of finding the bounds of lifetime of a network. In
[9], a flow optimization model is proposed for finding out the
maximum lifetime of aggregating networks, assigning roles to
the sensors. A similar approach is proposed in [10] where the
authors maximize the lifetime imposing hop count constraints.
Nevertheless, the above papers do not specify the way that
their optimal solutions could be used in a routing process.

On the other hand, many routing protocols for WSNs exist
in the literature that aim exclusively at preserving high levels
of reliability and quality of service. The most common metric
in probabilistic routing is the Expected Transmission Count
(ETX), which is associated to the minimum hop count, and
reliability parameters like Received Signal Strength Indicator
(RSSI) and Link Quality Indicator (LQI). In [2], the authors
use ETX in Destination-Sequenced Distance-Vector (DSDV)
and Dynamic Source Routing (DSR) protocols. Also ExOR
[3] uses ETX for assigning priorities in a set of candidate
forwarders. In [4], a probabilistic routing scheme is proposed
using a physical distance model for probability assignment.

While all the above protocols are reliability oriented, pre-
serving energy is also addressed as an issue in the literature. In
[11], a stochastic scheme is devised which randomly chooses
next hops between those which are in the forwarding table.
This approach turns out to be inefficient, neglecting quality
checks in the selection of forwarders. In [6], the authors
proposed an energy-efficient routing protocol based on AODV
protocol by considering the transmission power and remaining
energy capacity of the mobile nodes. The authors of [7]
proposed probability based improved broadcasting algorithm
which reduces the route request messages (RREQ) by using
a broadcasting probability together with the consideration of
the residual energy of nodes. In [8] the authors proposed the
energy-efficient probabilistic routing (EEPR) algorithm, which

employs both the ETX metric and the residual energy of each
node as the routing metrics at the same time. In [5] an energy-
aware routing protocol (EAR) is introduced which chooses
forwarders according to a neighbor cost. This neighbor cost
includes the residual energy of the neighbor and also the
cost of the whole possible path from the current node to the
destination. This approach does not aim to find maximum
energy paths but sub-optimal paths which leads to network
lifetime increase.

Although the above papers seems to be energy efficient,
in our paper we use different objectives for selecting for-
warders. Our objective function maximizes the minimum
residual energy and minimizes the maximum difference of
residual energy between sensors at the same time so that the
residual energy on sensors can be better balanced. EAR shares
similar objectives with our proposal and for that reason it has
been considered as a benchmark protocol for our performance
comparison.

III. OPEAR: AN OPTIMAL PROBABILISTIC
ENERGY-AWARE ROUTING PROTOCOL

The main idea of our OPEAR protocol is to maximize the
lifetime of the network by (a) exploiting optimization models,
and forecasting of transmission demands in terms of number
of packets to be sent, to build optimized routing tables, and
(b) limiting the realtime activity of sensors to basic operations,
thereby limiting also their energy consumption.

Fig. 2: An illustrating example.

As an overview, let us assume that our network is composed
by three types of nodes: source nodes, representing sensors
actually collecting data, relay nodes, representing sensors only
acting as bridges, and a sink node, representing the terminal
server, collecting all data. A sample network is depicted in
Fig. 2, where s is a source node, nodes 1, 2, 3 are relay nodes
and τ represents the sink. An arc represent the possibility of
a node to directly send packets to another one.

The OPEAR protocol can be summarized in three main
phases.

1) Initialization Phase: The sink node having full knowl-
edge of the network and an estimate of sensor transmis-
sion demands, calculates optimized routing tables. Then,
it broadcasts a “hello” packet to the neighbors through
flooding containing such information, so that each node
can suitably fill its forwarding table. The “hello” packet



is recursively transmitted from each sensor to its neigh-
bors, eventually reaching the terminal sensors collecting
data.

2) Data Forwarding Phase: Each source node collects and
forwards data packets to a neighbor, that is randomly
chosen according to the probabilities in its routing table.
Each relay node receives packets and forwards them
according to the same probabilistic policy. For increasing
the reliability of the network, each node that receives a
packet sends back an acknowledgment message. This
procedure is iterated until the data packet reaches the
sink node. Retransmissions in case of no-ACK is not
taken into account in the optimization model, as we
assumed that it is negligible in our setting. In case this is
not true, the model can be extended to take into account
such energy component. The energy consumption for the
acknowledge message is taken into account.

3) Recalculation Phase: Optionally, either at fixed intervals
or due to a triggering event, a recalculation phase
is performed. As in the initialization phase the sink
gathers information about the remaining energy of all the
nodes and recomputes optimized routing tables. Then it
broadcasts again hello packets for updating the sensor
routing tables.

An example of the structure of routing tables is depicted in
Fig. 2. The source node s will send packets with probabilities
0.4 and 0.6 to nodes 1 and 2, respectively. The forwarding
table of the node has the size of the number of neighbors of
the node itself, so it is a quite compact information.

A. Network Model and Problem Formalization

In an offline planning phase probabilistic routing tables, one
for each sensor, are computed by a centralized device. We
assume that the centralized device has a global view on the
network. In details, in such a planning phase we assume that:

• the network connecting sensors is static in terms of links
(this is almost always the case for a small size home
network where nodes are static and external interference
is mitigated by the physical layer’s channel hoping tech-
nique),

• a unique sink exists in the network (the sink is main-
powered without energy limitation), representing the des-
tination of all packets (for higher reliability and more
sensitive applications we can easily duplicate the sink),

• other sensor nodes are battery-powered with random
initial energy budget,

• a planning module has full knowledge of the network
(battery level of each sensor and radio links among sensor
nodes, which can be obtained for instance using MPIGate
gateway [17].),

• each sensor has local knowledge of the network, consist-
ing in two sets of links, leading to forward and backward
sensors, that is those sensors which are respectively
nearer to and farther from the sink in terms of minimum
number of hops to reach it (this can be the case of a

Mode Current (mA)
TX 17.4
RX 18.8

Listen 18.8
Sleep 0.001

TABLE I: Radio current thresholds

DODAG as defined in IETF RPL protocol, where each
node has its rank),

• an estimated demand is known, representing for each
sensor the number of packets that must be routed in the
whole planning period.

At the end of the offline planning phase the routing tables
are transmitted to all sensors by means of a broadcasting
operation. In particular, each sensor will receive a vector p,
having one entry pi for each of its forward neighbors. In a
real-time routing phase, instead, each sensor has only a local
view, holding its own routing table and forwarding packets to
its forwarder neighbors according to the probabilities specified
therein.

B. Energy Model

The radio duty cycle is a critical component of the system
regarding the power consumption. From the view of upper
layer protocols, the sensors are usually assumed to have four
states, i.e. transmitting, receiving, idle listening and sleeping
and no cost for transitions between states [18]. Other re-
searchers try to take more realistic factors into consideration
[19] and others assume that since the nodes are expected to
receive, transmit and listen at full power, for which current
demands are approximately the same, two states of being
in active or sleep mode can represent efficiently the radio
operation [20].

For our experiments we used ContikiMAC radio duty cy-
cle [16], therefore we take into account 4 states: transmitting,
receiving, idle listening and sleeping. We assume that the
nodes are synchronized through the phase-lock optimization
mechanism. According to the CC2420 datasheet [21], we
consider the current thresholds presented in Table I. The
energy spent in each state is equal to that value multiplied
to the duration of each state.The energy of overhearing (when
a node is in the vicinity of a sender may receive and process
the message in order to know if it is the destination or not) is
a small share of the total consumed energy, and is therefore
not taken into account in this work. Nevertheless, it can be
easily added to the optimization model, and may therefore be
subject of further investigation.

C. Offline Optimization Model

Let G(N,A) be the graph representing the network, where
the set of nodes N represents the sensors, and the set of arcs A
represents the wireless connections between the sensor nodes:
the arc (i, j) exists if sensor i can communicate with sensor
j. We denote by τ the sink node, collecting sensor data of all



the network and by Ns ⊂ N the set of source nodes, that are
the sensors that collect data to be sent to the sink node. A
source node can also receive and forward packets from other
source nodes. We denote by di the expected amount of data
collected by sensor i ∈ Ns within the planning horizon (total
demand) and qi the energy the sensor i ∈ N \ {τ} at the
beginning of planning. Note that, following assumptions III-A
and the previous definitions, parameter di is not defined for
nodes that are not sources, and node energy is not defined for
the sink node. The example in Fig. 2, represents the notation
used in the graph representation and the following model. In
red are reported the initial energy and (for sources only) the
demand of each node. The problem of routing all data packets
from nodes in Ns to node τ , maximizing the lifetime of the
network, can be formulated as follows

maximize γ(−z) + (1− γ)v∑
j∈N:

(i,j)∈A

fki,j =
∑
j∈N:

(j,i)∈A

fkj,i ∀k ∈ Ns,∀i ∈ N \ {τ, k} (1)

∑
j∈N:

(i,j)∈A

f ii,j = di ∀i ∈ Ns (2)

∑
i∈N:

(i,τ)∈A

∑
k∈Ns

fki,τ =
∑
k∈Ns

dk (3)

ri = qi −
∑
k∈Ns

(
∑
j∈N:

(i,j)∈A

%1f
k
i,j+

∑
j∈N:

(j,i)∈A

%2f
k
j,i + %3T ) ∀i ∈ N \ {τ} (4)

ri ≤ qi ∀i ∈ N (5)
v ≤ ri ∀i ∈ N (6)
ri − rj ≤ z ∀i, j ∈ N \ {τ} (7)

fki,j ≥ 0 ∀k ∈ Ns,∀(i, j) ∈ A (8)

ri ≥ 0 ∀i ∈ N \ {τ} (9)

where decision variables fki,j represent the number of packets
whose source is k to be sent from i to j (and symmetrically,
the number of acknowledgment messages returned from j to
i), decision variables ri represent the residual energy (namely,
initial energy minus consumed energy) at node i, variable
v represents the minimum residual energy and variable z
represents the maximum difference of residual energy between
two sensors.

Constraints (1) impose flow conservation: each received
packet must be forwarded. Constraints (2) and (3) impose
respectively that all packets are forwarded from source sensors
and all packets are received by the sink node. Constraints (4)
link the energy consumption variable values to the number of
packets sent and received; %1 represents the energy spent in
each data packet transmission and %2 the energy spent in each
data packet reception. The last term represents the fixed energy
spent per second just because of duty-cycle (sleeping mode
and CCA mechanism). Constraints (5) impose that not more

than the available energy can be consumed. Constraints (6)-(7)
ensure consistency between ri and v and ri and z variables,
respectively. The energy which is supposed to be spent during
sleep mode state (Table I) for all the planning period T is
removed in advance.

The objective function aims at simultaneously minimizing
the maximum difference of residual energy between sensors
and maximizing the minimum residual energy (to the aim of
combining these two objectives, we need to reverse the first
one, therefore we maximize −z). These two, potentially con-
flicting, objectives are balanced in a linear convex combination
according to parameter γ. Indeed, in preliminary experiments
we found out that considering only one objective at a time
was leading to unbalanced networks at the end of the planning
period.

Model (1) – (9) is compact, requiring an amount of memory
which is polynomial in problem size. It can also be optimized
in polynomial computing time, being either solved as a Linear
Program [14], or by means of dedicated flow algorithms [15].
Furthermore, since data packets are identical for the flow
structure and for the computation of probability tables, as
discussed below, the commodity index on fki,j variables can
be dropped, further reducing the computing effort needed to
obtain optimal solutions

Let fk,?i,j be an optimal solution for the model above. We
build a probabilistic routing table P : each entry Pij is defined
as follows

Pij =


∑
k∈Ns

fk,?i,j∑
l:(i,l)∈A

∑
k∈Ns f

k,?
i,l

if (i, j) ∈ A

0 otherwise
(10)

The probability Pij corresponds to the fraction of demand
forwarded to node j by node i.

During broadcast, each sensor i ∈ N stores as routing
table a set of values Pij for all j : (i, j) ∈ A, representing
the probability of forwarding a data packet to j ∈ N . We
remark that no probabilistic routing table is required for
backward reply with acknowledgment packets, as they are
deterministically sent back to the forwarder. The same applies
to the “hello” packets, that are deterministically broadcast from
each sensor to all its backward neighbors.

IV. EXPERIMENTAL EVALUATION

We performed an experimental campaign to assess the
performances of our OPEAR protocol, comparing it with a
benchmark protocol from the literature by means of tests on
emulated networks. In the following we first detail the dataset
we created, we describe our simulation setting and we finally
present our results. The benchmark protocol can be further
reviewed in [5].

A. Dataset design

The traffic patterns are generated periodically. As discussed
in subsection III-A we assume that for a specific time period
we can forecast the number of sensor packets that each sensor
will send for this specific time period, that may depend on



the type of sensor. In a practical setting for many sensor
types, like periodic temperature monitoring, such an estimate
is simple, while for others, like event-triggered movement
sensors, application-dependent statistics must be considered.

We considered the grid-like topology depicted in Fig. 1.b.
It corresponds to a high network density, in order to run tests
in a worse-case scenario. We fixed the number of nodes to
20, which is a common value for a smart-home application.
Then we considered three cases: 1) only node 20 is a source,
2) nodes 20, 19 and 14 are sources, 3) all nodes are sources.
Node 1 is set as sink and all the remaining nodes that are not
sources are relay only.

As a stress test, we assumed to be in a scenario in which
energy is scarce. To reproduce such a condition, we designed
our test instances as follows. First, we generated random
energy levels in the ranges [1000-2500] and [2000-3500]
for single-source and multiple-source scenarios respectively,
drawing values from uniform distributions. The energy ranges
are chosen taking into account a desirable number of packets
to be sent, to obtain significant simulations with a reasonable
duration. Then we computed the maximum demand that can
be routed without fully consuming the energy of any sensor.
To perform such a computation we built the following model.

maximize δT∑
j∈N:

(i,j)∈A

fki,j =
∑
j∈N:

(j,i)∈A

fkj,i ∀k ∈ Ns,∀i ∈ N \ {τ, k} (11)

∑
j∈N:

(i,j)∈A

f ii,j = δTφi ∀i ∈ Ns (12)

∑
i∈N:

(i,τ)∈A

∑
k∈Ns

fki,τ = δT
∑
k∈Ns

φk (13)

ri = qi −
∑
k∈Ns

(
∑
j∈N:

(i,j)∈A

2%1f
k
i,j+

∑
j∈N:

(j,i)∈A

%2f
k
j,i + %3δT ) ∀i ∈ N \ {τ} (14)

ri ≤ qi ∀i ∈ N \ {τ} (15)

fki,j ≥ 0 ∀k ∈ Ns,∀(i, j) ∈ A (16)

ri ≥ 0 ∀i ∈ N \ {τ} (17)

Constraints (11), (12), (13), (14), (15), (16) and (17) have
in turn the same meaning of constraints (1), (2), (3), (4), (5),
(8) and (9), with the only important difference that δT is now
a decision variable, that is maximized by our model.

Indeed that stress-test model shares features with that of
[9]. However, objectives are different: in [9] the demands
are known, and the network lifetime is maximized, while to
build our instances we aim at finding the maximum amount of
packets that the network can transmit before an out of battery
failure occurs.

Finally, we created four instances, one for each of the
following scenarios:

A random energy levels, single-source sending D packets

Settings Value
Contiki version 2.7

Wireless channel model UDG Model with Distance Loss
Communication range 60m

Mote type Tmote Sky
Communication profile Rime

MAC Layer CSMA
Duty Cycle ContikiMAC

TABLE II: Contiki OS and Cooja Parameters

B random energy levels, multiple homogeneous sources,
each sending D packets

C random energy levels, multiple heterogeneous sources,
each sending a number of packets uniformly drawn in
the range [0.9D, 1.1D].

D random energy levels, all sources heterogeneous, each
sending a number of packets uniformly drawn in the
range [0.9D, 1.1D].

B. Emulation Scenario

We emulated both protocols in Contiki 2.7 [22] using
TelosB (also known as TMote Sky). This approach allows us
to deploy in sensors the same computer code that would be ex-
ecuted in a real environment. Furthermore we used the COOJA
simulator provided by Contiki [12], whose behavior is close
to real hardware, thus yielding very reliable results together
with the possibility of rapidly testing multiple scenarios. In
Table II we report our COOJA settings.

C. Results

We first made a round of tests to assess the scalability of our
OPEAR protocol. In particular, we measured the CPU time
required to optimize the network flow models for creating
the probabilistic routing tables as the size of the network
increases. We verified that even problems on large networks
can be optimized easily. This was expected, as only Linear
Programming optimization is involved in the definition of the
probabilistic routing tables. Then, as main performance mea-
sure we considered the network lifetime a protocol achieves,
that is defined as follows.

Definition 4.1: The network lifetime is the time between the
starting of sensor data transmission and the first sensor failure,
considering a sensor to fail when its energy reaches zero.

Both protocols compute and assign probability tables during
the initialization phase. During the main process, EAR calls
the flooding process with a given frequency, while OPEAR
can call the flooding process or not. In order to have a fair
comparison between EAR and OPEAR, we considered two
use settings: no flooding (nf), that is the probability tables are
computed only once at the beginning of the simulation and
never changed, and with flooding (kf, where k is the number
of flooding steps performed), that is new probability tables are
re-computed with a certain frequency, that is kept the same for
both protocols.



As far as parameters tuning is concerned, according to pre-
liminary experiments we found EAR to perform better in our
dataset with α = β = 1.0. The γ parameter in OPEAR was set
to 0.5. Indeed, we could observe that with this setting, utopia
values for both objective functions simultaneously could be
attained; that was not the case by fixing either γ = 1.0 or
γ = 0.0.

In table III the parameters for the different simulation exper-
iments are summarized. Each column represent an emulation
experiment and its use settings. In the second line the cases
with different flooding cases are presented. A(nf), B(nf), C(nf)
and D(nf) for case of no flooding, A(2f), B(2f), C(2f) and
D(2f) for case of 2 flooding processes and A(4f), B(4f), C(4f)
and D(4f) for case of 4 flooding processes.

In Figure 3 and 4 we report the network lifetime (vertical
axis) obtained in each simulation (indicated in horizontal axis),
expressed in msec. Blue bars correspond to the average results
of the OPEAR protocol, while the red bars correspond to
those of the EAR protocol. In each graph the first set of
bars corresponds to the test without flooding (nf), the second
corresponds to test with two flooding processes (2f), while the
third set corresponds to test with four flooding processes (4f).
Each experiment is repeated three times and we observed that
there is no significant variation between the values of network
lifetime among the tests. We also made experiments using two
different random initial energies q and q′ to prove that this
randomness does not affect the efficiency of our approach.

As a general consideration, we observe that OPEAR out-
performs EAR in all simulations. OPEAR generates optimal
probabilities, trying to minimize in part the difference of the
residual energy of the nodes. This means that the nodes are
used in that level so that at the end of the planning horizon
they have the same residual energy. Therefore, our objective
function prolongs the lifetime of the network. EAR chooses
next hops by taking into account the residual energy of the
next hop neighbor itself and the residual energy of nodes
that may be part of the path till the packet arrives to the
sink. In other words, EAR does not find paths with the most
energy but sub-optimal paths which may include nodes with
low energy. A drawback of EAR is that since the residual
energy is normalized by the initial energy (that is a part of
the cost function), the first round brings completely uniform
probabilities among all the links, so nodes with lower energy
are used at same level as nodes with higher energy.

Furthermore, flooding seems to have a positive influence
in OPEAR, proving the capability of OPEAR of re-adapting
routing tables to the changed panorama of sensor residual
energy. Optimal solution let some sensors be used more than
others with less energy. On the other hand, EAR does not seem
to be improved significantly.We have to remark that the energy
spent for flooding is not considered in our experiments. By that
way, we are able to evaluate the mechanism of probability
assignment to the links.

Table IV present the variation of residual energy for both
protocols. We can observe that OPEAR provides lower varia-
tion than EAR which proves the fact that OPEAR is able to

keep more uniformly the residual energy of nodes.
OPEAR aims to balance the usage of sensors along a

given planning period, thus improving lifetime. Our method
is based on an approximation of ContikiMAC, predicting the
energy that is only spent in CCA and transmitting-receiving
phases by assuming ideal phase-lock mechanism provided by
ContikiMAC (which is not always the case during the tests).
OPEAR was tested in a real setting using Contiki emulation.
In the tests, as we used an approximation, some performance
degradation with respect to the ideal case is measured, and
therefore the real lifetime is shorter then the one computed by
the offline model. Nevertheless, OPEAR prolongs significantly
the network lifetime compared to the benchmark protocol.

We also tested OPEAR on a random graph of 40 nodes,
the results obtained in this new set of experiments, leads to
similar observations, therefore, due to space limitations we do
not include these results.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an Optimal Probabilistic Energy
Aware protocol for Routing in duty-cycled WSNs (OPEAR).
It is designed to be especially useful to improve network
lifetime, and therefore reliability, in applications of sensor
networks in smart homes for heath care. We compared the
performances of our protocol to those of the popular Energy
Aware Routing (EAR) protocol by means of emulations of
realistic networks, considering different scenarios and different
use modes. OPEAR protocol showed to outperform EAR in
all settings, allowing to higher network lifetime.

Future research work will cover improved models and algo-
rithms for building accurate probabilistic routing tables, taking
into account additional operational details of real networks
such as delay and bandwidth limits, as well as providing
probabilistic lifetime guarantees. Another extension is a better
approximation of contikiMAC, taking also into account the
energy of overhearing.
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Fig. 3: Network Lifetime a) Exper. A - qi, b) Exper. A - q′i, c) Exper. B - qi, d) Exper. B - q′i
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Fig. 4: Network Lifetime a) Exper. C - qi, b) Exper. C - q′i, c) Exper. D - qi, d) Exper. D - q′i
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