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ABSTRACT
An increasing number of linked knowledge bases are openly
accessible over the Internet. Distributed Query Processing
(DQP) techniques enable querying multiple knowledge bases
coherently. However, the precise DQP semantics is often
overlooked, and query performance issues arise.

In this paper, we propose a DQP engine for distributed
RDF graphs, adopting a SPARQL-compliant DQP seman-
tics. We improve performance through heuristics that gen-
erate Basic Graph Pattern-based sub-queries designed to
maximise the parts of the query processed by the remote
endpoints.

We evaluate our DQP engine considering a query set rep-
resentative of most common SPARQL clauses and different
data distribution schemes. Results show a significant reduc-
tion of the number of remote queries executed and the query
execution time while preserving completeness.

Un nombre grandissant de bases de connaissances liées
sont exposées à travers l’Internet. Le traitement de requêtes
distribuées (DQP) permet d’interroger des bases de connais-
sances multiples simultanément. Cependant, la sémantique
DQP précise est souvent négligée, et des problèmes de per-
formance doivent être traités.

Dans ce papier, nous proposons un moteur DQP pour
l’interrogation de graphs RDF distribués, conforme à la sé-
mantique de SPARQL. Nous en améliorons la performance
grâce à des heuristiques qui génèrent des sous-requêtes à par-
tir de schémas de graphes basiques (BGPs) de manière à
maximiser la partie de la requête traitée par les serveurs de
données distants.

Nous évaluons notre moteur DQP à travers un ensemble
de reqêtes représentatives de clauses SPARQL les plus répen-
dues et des schémas de distribution des données divers. Les
résultats montrent un réduction significative du nombre de
requêtes exécutées et du temps de traitement sans altération
de la complétude des résultats.
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1. INTRODUCTION
The Semantic Web development led to the dissemination

of open linked knowledge bases in RDF format1, distributed
world-wide over the Internet. The use of unique Internation-
alized Resource Identifiers (IRIs) to identify data elements
and the sharing of these universal identifiers over multiple
data sets create a network of connections between knowledge
bases that are operated independently. SPARQL [6] is an
expressive language and widely adopted standard for RDF
graphs querying. It only partially addresses the problem
of querying data distributed over different graphs though,
providing a low-level interface to express data distribution-
specific queries. The aim of this work is to enable SPARQL
querying over multiple RDF knowledge bases transparently.
We adopt a user-centric vision, where the result of a SPARQL
query applied to a set of graphs should be identical to the
result that would be obtained by applying the same query
to a virtual graph aggregating all target graphs.

Two main approaches are typically considered to imple-
ment querying over distributed data sources [8]: material-
isation (also referred to as Extract-Transform-Load) where
all data is collected to a single database, thus implement-
ing the virtual data source to be queried, and Distributed
Query Processing (DQP), where original queries are trans-
formed, applied to target data sources, and their results in-
tegrated. Although materialisation is much simpler to im-
plement, it suffers many drawbacks among which the time
and space needed to integrate all data. In this paper, we
are more particularly interested in SPARQL DQP for RDF
data sources. We investigate (i) the problem of the SPARQL
query semantic preservation in a DQP context, which in-
volves query rewriting, and (ii) an optimisation technique
to improve query performance, taking into account the way
data is partitioned over multiple data sources.

After a study of the state of the art, this paper describes
the semantic that we adopt for SPARQL queries in a DQP
context in Section 3. Our goal is to preserve SPARQL se-
mantics and expressiveness as much as possible. The DQP
process described matches the user-centric vision of a vir-
tual knowledge graph aggregating all data. The problem
of query rewriting is outlined and a query decomposition
technique that intends to push as much as possible of the

1RDF: http://www.w3.org/TR/rdf11-concepts
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original query towards the remote sources for maximal fil-
tering of the query results is proposed. In Section 4, we
describe our query engine architecture and the algorithms
implementing our DQP optimisation strategy. Results are
presented in Section 5 based on different types of SPARQL
query clauses and different types of data partitioning.

2. STATE OF THE ART

2.1 RDF data stores distribution context
The RDF W3C recommendation is commonly used for

data representation on the Semantic Web. An RDF dataset
may be modelled as a graph composed by a set of triples
(subject, predicate, object) where subjects and objects are
nodes and predicates are the labels of edges linking subjects
and objects. Subjects are IRIs (Internationalised Resource
Identifiers) or blank nodes, predicates are IRIs and objects
are IRIs, blank nodes or literal values. A blank node is a lo-
cal resource without IRI. RDF triples may belong to named
graphs, which correspond to different (possibly overlapping)
RDF data sub-graphs. RDF triples without explicit named
graph attachment belong to the default graph.

Two main approaches may be considered to query dis-
tributed RDF data sets [9]. When the focus is on processing
very large graphs, one usualy considers a graph data struc-
ture distributed over multiple storage resources. The prob-
lem addressed is then the balancing of graph data over mul-
tiple storage nodes and the efficiency of the data structure
used to split the graph (e.g. [11]). This approach is based
on the hypothesis that the graph data can be redistributed
so as to improve the performance of the distributed graph
querying algorithm used. Conversely, when the focus is on
querying legacy linked RDF data stores distributed over the
Internet and accessible through SPARQL endpoints, data
cannot be repartitioned. The complete graph data struc-
ture does not exist as such. Instead, the legacy RDF graphs
are implicitly connected through shared IRIs: since IRIs are
uniques, nodes using the same IRI in different graphs are
identical. This approach is often referred to as federated
SPARQL querying (e.g. [14]). Our work falls into this sec-
ond category.

Legacy data sets stored in independent SPARQL end-
points may typically be vertically partitioned, when different
kinds of data are stored in disjoint data sources, horizontally
partitioned, when the same kind of data is stored and dis-
tributed in several data sources, or a mix of both, when
part of the data is vertically partitioned and part is hori-
zontally partitioned (general case). In RDF graphs, vertical
partitioning corresponds to the case where predicates are
partitioned among the data stores: a given predicate can
only be found in a single data store. Conversely, horizontal
partitioning corresponds to the case where all predicates can
be founds in several data sources.

2.2 SPARQL query language
SPARQL is the most common query language used for

RDF data. SPARQL queries are composed of two main
clauses: the first one specifies the query form (SELECT,
CONSTRUCT, ASK, or DESCRIBE), while the second one
is a WHERE clause specifying a basic graph pattern to be
matched by queried graph resources. In the remainder of
this paper, we focus on SELECT query form without loss of
generality. Most of the DQP processing complexities lies in

the queries WHERE clause.
Let us consider a data set representing an organisation

composed by some teams divided into groups. Each group
has a number of members. Consider the example SPARQL
query Q1 below:

1 PREFIX ns : <http :// examples . f r /team#>
2 SELECT ?name ?members
3 WHERE {
4 ?team ns : team ”SPARKS” .
5 ?team ns : group ?group .
6 ? group ns : name ?name .
7 ? group ns : members ?members .
8 }

This query is composed of 4 triple patterns (TPs) in lines
4 to 7, defining different query patterns for the RDF graph
triples, and implicit join operations, when a variable appears
in two different TPs.

Figure 1: DQP engine
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Applying Q1 to a single data source containing all data
will return the group name and its number of members for
each group in the “SPARKS” team in the database. In this
paper however, we will consider data distributed in several
sources and accessed through a DQP server as illustrated
in Figure 1. The client sends SPARQL queries to the DQP
server. The server splits queries to submit sub-queries to
remote endpoints. Each endpoint processes locally the sub-
queries received and returns partial results. Results are pro-
cessed on the server side and returned to the client. Join
operations may be evaluated locally at an endpoint level
or globally at the server level, joining data retrieved from
different data sources. In the remainder of this paper, we
will refer to local joins to refer to endpoint-level joins and
distributed joins to refer to server-level joins.

SPARQL was natively designed for querying remote data
sources. Beyond a graph query and update language, SPARQL
defines a protocol for transferring queries towards remote
servers (SPARQL endpoints) and returning result sets. The
SPARQL language also defines a SERVICE clause aiming
at applying a sub-query to a specific endpoint identified by
its access URI. A SPARQL query can thus be composed by
several SERVICE clauses computed on different endpoints,
which results are combined together.

A strong limitation of the SERVICE clause in a DQP con-
text is that a query has to be manually decomposed into
multiple sub-queries to apply to several data sources. This
requires the user to have a precise knowledge of the data
partitioning model in the data sources. In the Q1 example



above, if data is split between a data source S1 containing all
ns:team and ns:group relations, and a data source S2 con-
taining all ns:name and ns:members relations for instance,
Q1 will return no results, whether applied to S1 or applied
to S2 independently (as it involves joining groups which are
distributed among S1 and S2). Using SPARQL, a user would
have to rewrite the query to decompose it into two SERVICE
sub-clauses: a SERVICE clause targeting S1 to retrieve all
(?team, ?group) tuples and a SERVICE clause targeting S2

to retrieve all (?group, ?name, ?members) tuples, before join-
ing all data on groups.

SPARQL queries are usually designed to apply to a single
data source and designing SERVICE clause-based SPARQL
queries to access distributed RDF data may become very
cumbersome or even humanly intractable in the case of com-
plex queries rewriting. A technique to implement SPARQL
DQP is to automate the rewriting of SPARQL queries into
multiple SERVICE clauses. As we will see in Section 3, al-
though this technique is sound it may prove unacceptably
inefficient when processing the resulting query and further
query optimisation is needed.

2.3 Query decomposition strategies
To evaluate SPARQL queries in DQP mode, different strate-

gies may be considered. As discussed above, applying the
original query to partial data sources is likely to return a
subset of the expected results only since data from differ-
ent sources need to be joined. A proper DQP strategy will
therefore decompose the original query into sub-queries that
are relevant for each data source and compute joins later on.
Distributed querying typically implies four main steps [10]:

1. Sources selection: All data sources are not necessar-
ily containing data that is relevant for a given query.
Source selection identifies data sources that are likely
to contribute to the result set in order to avoid unnec-
essary processing.

2. Query planning is a query analysis steps aimed at iden-
tifying various optimisations that can be applied by
transforming the initial query while preserving its se-
mantics, such as reordering query parts.

3. The query rewriting step decomposes the original query
into a set of sub-queries to be distributed to the re-
mote data servers. It both ensures preservation of the
original query semantics and takes into account the
performance of the sub-queries to be processed. As
a general rule, the more selective the query sent to a
remote server, the more efficient the processing.

4. The Query evaluation step finally executes the query
plan and collects results from all sub-queries generated.
Partial results thus aggregated often require further
processing (different result sets typically need to be
joined) to compute final results.

Sources selection requires information on the sources con-
tent. This information is usually acquired prior to query
processing, either through data statistics collection on the
endpoints, or by probing the endpoints through source sam-
pling queries.

Query planning and query rewriting involve decomposing
the original query into source-specific sub-queries so as to
retrieve all data that contributes to the final result set. In

SPARQL, Triple-based evaluation is the finest-grained and
simplest query decomposition strategy. It consists in decom-
posing the query into each of its triple patterns (4 TPs in the
case of Q1 for instance), evaluating each TP on the source
independently, collecting the matching triples on the server
side and joining the results. The obvious drawback of evalu-
ating triples patterns individually is that many triples may
be retrieved from the sources and returned to the server,
just to be filtered out by the join operations. If this strategy
is returning correct results (all potentially matching triples
are necessarily returned), it is often inefficient. A simple op-
timisation consists in computing nested loop joins for triple
patterns with join conditions. This limits the number of
triples returned to the server for post-processing, but at the
cost of many remote queries generation.

Conversely, the BGP-based strategy consists in evaluat-
ing Basic Graph Patterns (BGPs) sub-queries. BGPs are
groups of triple patterns. Their evaluation potentially in-
volves processing joins at the endpoint level (local joins),
which is more efficient than retrieving all possible triples at
the server level before computing joins (distributed joins).
The use of SPARQL SERVICE clauses is a typical way of
sending BGPs for evaluation on remote endpoints. How-
ever, as discussed before, a BGP could return a subset of
the expected results only, due to the need to compute joins
between data distributed in different data stores. In the case
of vertically partitioned data sets, a whole partition is con-
tained in a single server, to which a global BGP can be sent
through a SERVICE clause. In case of horizontally parti-
tioned data sets, BGPs can still be computed but different
BGPs may be needed depending on the endpoints content.

To preserve the semantics of the original query, it is manda-
tory to carefully split it into sub-queries that do not cause
results losses. The larger BGPs can be evaluated indepen-
dently in each data source, the more efficient the query. Yet,
the data distribution scheme needs to be taken into account
to ensure that a BGP does not filter results too much for
complete query processing. An hybrid BGP-Triple evalu-
ation strategy computes the largest BPGs usable without
alterating the results. It mixes the evaluation of BGPs and
TPs at the endpoints level to collect a super-set of the final
results over which remaining join operations can be com-
puted at the server level. The difficult part of hybrid strate-
gies is to estimate the most efficient BPGs to process for each
data source and the combinations of TPs that complete the
query.

2.4 Main federated SPARQL DQP engines
Naive DQP implementations may lead to a tremendous

number of remote queries and generate large partial result
sets. The optimization of DQP is therefore critical and many
related work primarily address the problem of query perfor-
mance. This is the case for several DQP engines designed to
query RDF data stores with SPARQL, such as DARQ [13],
FedX [14], SPLENDID [7], and ANAPSID [1]. Their data
sources selection and query decomposition strategies are de-
scribed below.

2.4.1 Sources selection
Most existing engines rely on prior information on sources

content for sources selection. DARQ relies on service de-
scriptions to identify relevant sources. The descriptors pro-
vide information on predicate capabilities and statistics in-



formation on triples hosted in each source. However, un-
bound predicates (i.e. variables as predicates) are not han-
dled by DARQ. SPLENDID index manager uses statistical
data on sources expressed through the Vocabulary of Inter-
linked Data (VoID [2]), to build an index of predicates and
their cardinality. This index is computed through SPARQL
ASK queries for triple patterns with bound variables and by
assigning all sources to triple patterns with unbound pred-
icates. ANAPSID source selection is based on a catalog of
predicates, concepts capabilities and statistics. The statis-
tics are updated dynamically by the query engine during
queries evaluation.

Rich prior information on data sources content is useful
to implement elaborated source selection strategies. How-
ever, it requires specific instrumentation of data sources, and
therefore do not apply to regular SPARQL endpoints. FedX
also performs source selection optimisation but unlike the
previous approaches, without prior knowledge on sources.
Only SPARQL ASK queries are sent to identify the relevant
sources for query predicates. Similarly, our DQP engine is
based on SPARQL ASK queries for sources statistics collec-
tion.

2.4.2 Query rewriting
BGP-based query evaluation is implemented by all feder-

ated SPARQL query engines listed above to improve per-
formance. DARQ also add filters to BGP-based sub-queries
for more selectivity. However, in all these approaches, BGP
generation is only considered for triples patterns relevant
to a single source (vertically partitioned data). Regarding
SPARQL language expressiveness, only ANAPSID can cope
with the SPARQL 1.1 standard. FedX, SPLENDID and
DARQ support SPARQL 1.0, which does not include the
SPARQL SERVICE clause. The hybrid strategy described
in this paper can generate BGPs for both vertical and hor-
izontal data partitions. The heuristic implemented aims at
creating the largest possible BGPs and applying as much as
possible filtering at the endpoints level to minimize the num-
ber of queries generated, and the number of partial results
collected for post processing at the DQP server level.

3. DISTRIBUTING SPARQL QUERIES
In this work, we more specifically address the query rewrit-

ing step of the DQP process. The objective is to develop a
SPARQL DQP engine that (i) is fully compatible with the
SPARQL 1.1 standard while preserving performance and (ii)
can adapt to the existing data partitioning scheme.

DQP query performance is a major issue. As outlined
in Section 2.4, it is often dealt with in the litterature by
only considering a subset of the SPARQL standard, making
assumptions on the data distribution or considering instru-
mented endpoints. To remain user-centric, our approach
does not make any constraining assumption on the kind of
request applied (full SPARQL compliance), on the data par-
tionning scheme (endpoints are pre-existing and no attempt
is made to redistribute the data), nor on the endpoints ca-
pability (standard third party SPARQL endpoints can be
queried).

By giving language expressiveness the highest priority, we
ensure that users will not be limited by the query language
and that results returned will be complete with regards to
the existing standard. To alleviate the resulting performance
problem, we propose a query rewriting heuristic that tackles

all kinds of data partitioning schemes (vertical and/or hori-
zontal), using only limited knowledge on endpoints content,
that can be inferred through regular SPARQL queries.

Since automated query rewriting to adapt a SPARQL
query to data distributed over different sources is not part of
the SPARQL standard, a clear semantics for SPARQL DQP
first needs to be defined. It should be noted that none of
the approaches cited above investigates the DQP semantics.

3.1 Distributed SPARQL query semantics
Most works on SPARQL DQP make the assumption that

users expect the SPARQL engine to return the same result
whether processing a single or multiple data sources. Intu-
itively, this corresponds to evaluating the original SPARQL
query against an aggregated data graph, defined as the set
union of all data source triples lists. Implementing this se-
mantics is not straightforward though. Moreover, there are
particularities of RDF graphs to be considered to define a
precise semantics for the evaluation of SPARQL queries on
multiple data sources: named graphs, data replication, blank
nodes and redundant results.

Named graphs: Named graphs are sub-graphs in an
original RDF graph, identified by an IRI. The RDF stan-
dard does not anticipate data distributed over multiple data
stores. As a consequence, the fact that the same IRI for
named graphs appears in different RDF stores does not im-
ply anything on the relations between these named graphs.
In the DQP context, we consider that data associated to
the same named graph IRI belongs to a single named graph,
even if it is distributed in different sources. This is coherent
with the idea of aggregating all data sources into a single
virtual graph. In addition, IRI are usually specific enough
to prevent most accidental collisions between names.

Data replication: In a distributed context, it is common
to replicate data items over several data servers to improve
availability. RDF triples may thus be replicated in different
servers. When evaluating a query, an RDF triple should
be accounted for only one time, even if it is replicated over
different servers. This is coherent with the aggregated graph
view, which cannot contain duplicated triples.

Blank nodes: By definition, blank nodes are locally
scoped nodes which identifier (if any) is not an IRI. Hence
identifiers of two blank nodes from two different data stores
may collide. In the DQP context, blank nodes identifier col-
lisions may occur either for unrelated nodes from two data
sources that accidentally share the same identifier, or be-
cause a blank node was replicated over different stores. Since
it is not possible to discriminate between these two cases
automatically, we make the assumption that blank nodes
between different sources always differ. If triples contain-
ing blank nodes need to be replicated, care should be taken
to assign IRIs to these nodes before duplication (a process
known as skolemization).

Redundant results: Finally, SPARQL can return some
results multiple times in a result multiset, if same values
match several graph patterns in the original query. In a
distributed context, data replication is also likely to lead to
redundant results if the same triple is accounted for several
time in a query. However, this redundancy in results is only
a side effect of data duplication that would disappear if data
was aggregated in a single virtual graph. The query engine
therefore needs to detect which redundant results are legiti-
mate (products of the SPARQL evaluation) and which ones



are side effects and should be filtered out.

3.2 Hybrid query rewriting
We use the following formalism to compute BGPs in our

hybrid query evaluation strategy: the G1 operator describes
all join operations (distributed and local) when evaluating a
SPARQL query, the L1 operator corresponds to local joins
computed by endpoints and the D1 operator corresponds
to distributed joins computed by the DQP server.

Let TP = {tp1, . . . , tpn} be the set of triple patterns from
the WHERE clause of a SPARQL query and S1 . . . Sm be a
set of RDF data sources interfaced through SPARQL end-
points:

• G1 (tp1, . . . , tpn) represents the join operation of all
triples matching TP triple patterns from a virtual data
set aggregating all data sources (SPARQL query com-
puted over the virtual RDF graph, complying to the
semantics described in Section 3.1):
G1 (tp1, . . . , tpn) = {tp1, . . . , tpn} evaluatedin {S1 ∪
S2 ∪ . . . ∪ Sm}

• L1 (tp1, . . . , tpn) represents the union of results from
the local join of all triples matching TP triple patterns
in each data source (SPARQL BGP operator processed
in each source):
L1 (tp1, . . . , tpn) = ({tp1, . . . , tpn} evaluated in S1) ∪
({tp1, . . . , tpn} in S2) ∪ ...({tp1, . . . , tpn} in Sm)
Note that L1 (tp1, . . . , tpn) is included in G1 (tp1, . . . , tpn).

• D1 (tp1, . . . , tpn) represents the distributed join oper-
ations of all triples matching TP triple patterns (joins
results from at least two sources):
D1 (tp1, . . . , tpn) = G1 (tp1, . . . , tpn) \ L1 (tp1, . . . , tpn)
and
G1 (tp1, . . . , tpn) = L1 (tp1, . . . , tpn) ∪D1 (tp1, . . . , tpn)

To illustrate these operators, let us consider the execution
of query Q1 introduced in Section 2.2 (TP = {?team ns:team

”SPARKS”, ?team ns:group ?group, ?group ns:name ?name,
?group ns:members ?members}) over the two distributed
data sources S1 and S2 described below:

S1 S2

t1 ns:team ”SPARKS” t1 ns:team ”SPARKS”
t1 ns:group g1 t1 ns:group g2
g1 ns:name ”Modalis” g2 ns:name ”Wimmics”
g1 ns:members 12 g2 ns:members 9
t1 ns:group g3 g3 ns:name ”MinD”
g3 ns:members 7

The 3 join operators defined above produce the following
result sets when applied to the S1 and S2 distributed data
sources:

Operators Results retrieved

L1 (TP )
{ t1, ”SPARKS”, g1, ”Modalis”, 12}
{ t1, ”SPARKS”, g2, ”Wimmics”, 9}

D1 (TP ) { t1, ”SPARKS”, g3, ”MinD”, 7}

G1 (TP )
{ t1, ”SPARKS”, g1, ”Modalis”, 12}
{ t1, ”SPARKS”, g2, ”Wimmics”, 9}
{ t1, ”SPARKS”, g3, ”MinD”, 7}

Indeed, L1 (TP ) computes a join of all 4 triple patterns
in TP in each data sources, producing one 4-items tuple

for each of them (group named “Modalis” in S1 and group
named “Wimmics” in S2). However, triples associated to
the group named “MinD” are distributed between the two
data sources and they do not match the L 1 local join.
Conversely, D1 (TP ) only accounts for distributed triple
joins and therefore retrieves the remaining group. Finally,
G1 (TP ) is the complete result set, resulting from the union
of L1 (TP ) and D1 (TP ) results.

3.2.1 Global join decomposition
The G1 operator is associative and commutative [3, 12]:
∀k < n, G1 (tp1, . . . , tpn)

= G1 (tp1, . . . , tpk) . G1 (tpk+1, . . . , tpn)
= G1 (tpk+1, . . . , tpn) . G1 (tp1, . . . , tpk)

where ” . ” represents the binary operator for joins. Conse-
quently, ∀k < n, G1 (tp1, . . . , tpn) =

(L1 (tp1, . . . , tpk) ∪D1 (tp1, . . . , tpk)) .
(L1 (tpk+1, . . . , tpn) ∪D1 (tpk+1, . . . , tpn))

This equation can be used to compute the global join oper-
ation through a combination of local and distributed joins.
Two main cases can be considered. In the case where a
source does not contain triples matching all triple patterns
in TP, L1 (tp1 . . . tpn) is empty and G1 (tp1, . . . , tpn) ≡ D1

(tp1, . . . , tpn). But in the case where a source does not con-
tain triples matching all TP patterns, the G1 operator can
be computed as a join of several independent partial joins
according to the distribution of triple patterns over sources.
The partial joins can be computed as a union of partial L1
and D1.

3.2.2 Hybrid evaluation strategy
Our hybrid evaluation strategy is based on the idea of

maximising the part of the query processed by the remote
endpoints. It therefore pushes as much as possible SPARQL
FILTER clauses into the sub-queries generated to improve
partial results filtering at the source. It also exploits the
local and distributed join operators composition properties
shown above since the partial L1 operators size correspond
to the evaluation of the largest possible BGPs at the end-
points level. However, this maximisation is constrained by
the fact that TPs should be decomposed in disjoint subsets
of triple patterns. The hybrid evaluation strategy requires
prior knowledge on the data sources partitioning scheme to
decide on the best triple patterns partitionning strategy.

3.2.3 Local joins generation strategy
Triple patterns which predicates are only available in ver-

tical partitions are used to compose BGPs (one BGP per ver-
tical partition) that can be evaluated independently. Among
the remaining triple patterns, two criteria are considered
with the aim of creating the largest possible BGPs to max-
imize the computation delegated to each endpoint:

1. Two triple patterns may be grouped into a BGP only
when they contain common variables and therefore
they represent inner-joins. Indeed in SPARQL, joining
triple patterns without common variable corresponds
to computing a Cartesian product between the triples
matching each pattern. There is no interest in com-
puting BGPs to reduce the number of results retrieved
in this case.

2. The distribution of predicates inside horizontally par-
titioned data sources needs to be taken into account



in order to generate the disjoint subsets of triple pat-
terns to use in local joins. Let PH be the set of predi-
cates that are horizontally partitioned among the data
sources, we distinguish two cases for each data source:

• Global distribution: all predicates from PH are
present in a source (triples matching all triple pat-
terns may be found in this source). If there are
common variables between all triple patterns, a
global L1 (containing all shared triple patterns)
will be generated for this source to handle local
joins. Otherwise Triple-based evaluation is used.

• Partial distribution: predicates from PH are par-
tially present in sources (only triples matching
a subset of all triple patterns may be found in
these sources). A partial L1 is generated for each
source using the largest possible number of triple
patterns with common variables. The remaining
triple patterns (without common variables) will
be evaluated through the Triple-based approach.
Each triple pattern should be applied to the tar-
get sources only once. Therefore, triple patterns
which are already consumed in distributed and lo-
cal joins are excluded from the L1 subsequently
generated.

3.2.4 Distributed joins generation strategy
D1 operators aim at completing L1 query results by only

processing distributed joins for horizontal partitions (there
is no distributed join for vertical partitions). Thus, each L1
generated has a corresponding D1. For the L1 generation
strategy, we distinguish between global D1, when the dis-
tribution of predicates is global in a given data source, and
partial D1 when it is not.

Unlike the L1 operators, the evaluation of D1 operators
computes query results built with at least two distributed
sources. To avoid redundancy with query results already
handled by L1, D1 operators need to ensure that the query
results found are not local to a source (i.e only built with
intermediate results from that source). This is implemented
through a pruning algorithm that prevents retrieving the
last intermediate results of a distributed query from a given
data source when all the previous ones came from this same
source.

4. DISTRIBUTED QUERY EXECUTION

4.1 KGRAM SPARQL engine
The Knowledge Graph Abstract Machine (KGRAM) [4] is

an implementation of SPARQL 1.1. It is an open source
project structured to be easily extensible. Its code is avail-
able from github2. Among other extension points, KGRAM
defines a data producer interface abstracting the data sources
connected to the SPARQL server. Data producers may be
traditional SPARQL endpoints, alternative database sys-
tems, or technical proxies used to connected various data
sources.

In an earlier work, we leveraged the data producer in-
terface to implement a meta-producer connecting to several
data sources concurrently [5].

2KGRAM github repository: https://github.com/
Wimmics/corese

4.2 Hybrid query evaluation strategy
In this work, the KGRAM DQP module has been revised

to implement the hybrid optimisation strategy described in
Section 3.2.2. In the warmup phase, the module queries re-
mote data sources with SPARQL ASK queries for predicates
contained in each of them, to determine the data partition-
ing scheme. At query execution time, the module computes
the sub-queries BGPs and FILTER clauses.

4.2.1 Warmup step
The hybrid query evaluation algorithm makes use of 3

indexes:

• idxTPSources associates to each triple pattern a set of
data sources hosting candidate RDF triples. It is used
to determine which part of the data is horizontally and
vertically partitioned.

• idxSourceTPs associates to each data source, triple
patterns which are exclusive to it. It is used to deter-
mine if horizontal data fragmentation is total or par-
tial.

• idxTPVariables associates to each triple pattern a set
of variables used in this pattern. This index is used to
check if several triple patterns have common variables.

From this information, the algorithm rewrites the origi-
nal query into a set of sub-queries preserving the query se-
mantics. The sub-queries are then evaluated on the remote
endpoints and their results joined by the DQP server.

Data: idxTPSources, queryExpr
Result: the set of SPARQL query results
foreach triplePattern ∈ queryExpr do

if ( idxTPSources.get(triplePattern).size() > 1 )
then

return
evaluate(createL1UnionD1 (queryExpr));

end

end
return serviceClause(createL1 (queryExpr));

where:

serviceClause: generates a SPARQL query with a
SERVICE clause to send this BGP to a specific source.

createL1UnionD1 (Algorithm 2): joins
decomposition.

evaluate: handles evaluation as explained in
section 4.2.3.

Algorithm 1: determines the joins decomposition strat-
egy from a set of triple patterns and the data partitioning
scheme.

4.2.2 Query rewriting step
Algorithm 1 describes how BGP expressions are rewritten

as unions of L1 and D1 operators, if data is horizontally
partitioned, or as a unique L1 (for each source) if data
is vertically partitioned. The input for this algorithm is a
queryExpr expression containing the list of triple patterns
and the FILTER clauses from the original SPARQL query.

https://github.com/Wimmics/corese
https://github.com/Wimmics/corese


Data: idxSourceTPs, idxTPVariables, queryExpr,
sourceSet

Result: exprResult rewritten query
if (globalDistribution(sourceSet, queryExpr,
idxSourceTPs)) then

if (commonVariables(queryExpr, idxTPVariables))
then

return union(createL1 (queryExpr),
createD1 (queryExpr));

else no common variable
return queryExpr;

end

else partial distribution
sourceSet.sortByNumberOfPredicates();
exprResult← �;
BGP TP List← �;
foreach s ∈ sourceSet do

tps← idxSourceTPs.get(s);
if (commonVariables (tps, idxTPVariables))
then

ctps = cleanBGP (tps);
BGP TP List.add(ctps);
exprResult← join(exprResult,

union(createL1 (ctps),
createD1 (ctps)));

end

end
free TP List←
set substract(queryExpr,BGP TP List);

return
join(exprResult, createD1 (free TP List));

end

where:

globalDistribution: returns true if all sources contain
triple candidates for all triple patterns in BGPExpr.

commonVariables: returns true if a set of patterns
share variables (and therefore describe a join
operation).

createL1: creates a BGP expression from a set of
triple patterns forming a BGP and add applicable
filters from the original query.

createD1: creates a triple-based join expression and
add applicable filters from the original query.

cleanBGP: deletes the triple patterns already handled
by another L1 or D1 from a set of triple patterns to
keep L1 operators or D1 operators disjoint.

Algorithm 2: (createL1UnionD1) decomposes joins in
a union of local and distributed joins.

4.2.3 Query evaluation step
Algorithm 3 executes the local and distributed join oper-

ations for each triple pattern in the query.

evaluate:
resultTriples← �;
foreach expr ∈ exprResult do

switch expr.getType() do
case UNION do

resultsTriples← join(resultsTriples,
evaluate(expr.leftOp(), expr.rightOp());

end
case D1 do

resultsTriples← join(resultsTriples,
evaluateD1 (expr.getTriplePatterns());

end
case L1 do

resultsTriples← join(resultsTriples,
evaluateL1 (expr.getTriplePatterns());

end

end

end
return resultTriples;

evaluateL1: writes a query with all triple patterns in
the expression and sends it to sources containing all
edges related to these triple patterns.

evaluateD1 (Algorithm 4): evaluates a set of triple
patterns in a nested loop join way by writing a query
for each triple pattern, and avoids redundancy by
pruning.

Algorithm 3: (createL1UnionD1) decomposes joins in
a union of local and distributed joins.

5. EVALUATION
The evaluation of our KGRAM-DQP implementation ad-

dresses both the completeness of the results (with a minimal
number of sub-queries processing), and query execution per-
formance. The experiments proposed in this section aim at
demonstrating the completeness of the results independently
from the data partitioning scheme and the kind of SPARQL
SELECT query executed. They are based on the query-
ing of two linked RDF datasets, and a set of representative
SPARQL queries covering most common SPARQL clauses.
In each case, performance is measured in terms of number
of sub-queries generated and computation time. All experi-
ments are ran locally on a single dedicated quad-core laptop
(Dell Latitude E6430 running Linux Ubuntu 14.04, 2.7 GHz
Intel CPU i7-3740QM, 8 GB RAM) running all SPARQL
endpoints and the KGRAM query engine, thus preventing
any impact from the network load on performance measure-
ments. To further alleviate any problem related to execution
time variations that cannot be controlled in a multi-core
multi-threaded execution environment, each experiment is
re-executed 6 times and computation times averaged.

5.1 Experimental set up
The two experimental data sets used are French geographic3

3INSEE geographic data set: http://rdf.insee.fr/geo/
cog-2014.ttl.zip

http://rdf.insee.fr/geo/cog-2014.ttl.zip
http://rdf.insee.fr/geo/cog-2014.ttl.zip


Data: idxSourceTPs, idxTPVariables, triplePatterns,
sourceSet

Result: Results the set of SPARQL query results.
foreach tp ∈ triplePatterns do

foreach s ∈ sourceSet do
if (tp ∈ idxSourceTPs(s) ;
& ;
tp.isNotLastPattern()) then

Results← process(Results, tp, s);
else last edge to handle the pruning

if (Results.sameSource()) then
if (Results.sources.notContains(s)) then

Results← process(Results, tp, s);
else nothing to do because already
handled by the equivalent L1

end

else
Results← process(Results, tp, s);

end

end

end

end
return Results;

where:

process:
if (Results.isEmpty()) then

Results← query(tp);
bookKeeping.add(Results, s);

else
tmp← query(tp);
bookKeeping.add(tmp, s);
Results← join(Results, tmp);

end
return Results;

bookKeeping: handles the history of results to
determine if all results came from the same source in
order to avoid redundancy.

Algorithm 4: (evaluateD1): evaluates all triple patterns
of D1 independently and avoids redundancy by pruning.

and demographic4 RDF graphs published openly by the Na-
tional Institute of Statistical and Economical Studies (IN-
SEE). Both contain linked data on the geographical repar-
tition of population on the French administrative territory
decompositions.

To reproduce a context of both vertical and horizontal
partitioning of data, the demographic data set is vertically
partitioned (source S1) and the geographic data set is hori-
zontally partitioned in three test cases:

• P1 partitioning (data duplication): the geographic data
is duplicated into two distributed sources (S2 and S3),
each containing a complete copy of the data. This test
case aims at evaluating the handling of redundant re-
sults by each evaluation method.

• P2 partitioning (global distribution of predicates): the
geographic data is partitioned into two sources (S4 and
S5), each containing all predicates related to this data.

• P3 partitioning (partial distribution of predicates): the
geographic data is partitioned into three sources (S6,
S7 and S8), each containing a subset of predicates re-
lated to this data.

The first partitioning aims at testing the handling of redun-
dant results by all evaluation methods, and the two last ones
aim at testing the global and partial distribution strategies
introduced in Section 3.2.3. The data partitions are sum-
marized in Table 1.

Six evaluation queries (shown below) were selected as a
representative set of SPARQL queries covering the most
common clauses: the first query is made of a simple SE-
LECT clause, the second one introduces a UNION, the third
one a MINUS, the fourth one FILTERs, the fifth one an
OPTIONAL clause, and the last one is a combination of all
clauses. In all evaluations queries, the geographical predi-
cates are prefixed by geo (http://rdf.insee.fr/def/geo)
and the demographical predicates are prefixed by demo (http:
//rdf.insee.fr/def/demo#). These queries are variations
around listing the population count in diverse sub-geographical
areas.

Query QSELECT :

SELECT ?name ? tota lPop WHERE {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
?dpt demo : populat ion ?popLeg .
?popLeg demo : popu lat ionTota le ? tota lPop .
} ORDER BY ? totalPop

Query QUNION :

SELECT ? d i s t r i c t ? tota lPop WHERE {
{ ? r eg i on geo : codeRegion ?v .

? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
FILTER (?v <= ”42 ”) }

UNION {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
FILTER (?v > ”42 ”) }

? d i s t r i c t demo : populat ion ?popLeg .

4INSEE demographic data set: http://rdf.insee.fr/
demo/popleg-2013-sc.ttl.zip

http://rdf.insee.fr/def/geo
http://rdf.insee.fr/def/demo#
http://rdf.insee.fr/def/demo#
http://rdf.insee.fr/demo/popleg-2013-sc.ttl.zip
http://rdf.insee.fr/demo/popleg-2013-sc.ttl.zip


Table 1: Data sets partitioning
Datasets Predicates File size (.ttl) Number of Triples
S1: Demographic dataset population , populationTotale 17,9 Mo 222 429
S3: Geographic dataset codeRegion, subdivisionDirecte, nom 19,9 Mo 368 761
S3: Geographic dataset copy codeRegion, subdivisionDirecte, nom 19,9 Mo 368 761
S4: Geographic dataset part 1 codeRegion, subdivisionDirecte, nom 19,2 Mo 351 720
S5: Geographic dataset part 2 codeRegion, subdivisionDirecte, nom 749,4 ko 17 217
S6: Geographic dataset part 2.1 codeRegion, subdivisionDirecte 735,3 ko 16 963
S7: Geographic dataset part 2.2 codeRegion, nom 15,5 ko 232
S8: Geographic dataset part 2.3 subdivisionDirecte, nom 33,9 ko 567

?popLeg demo : popu lat ionTota le ? tota lPop .
} ORDER BY ? totalPop

Query QMINUS:

SELECT ?name ? tota lPop WHERE {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
MINUS {
? r eg i on geo : codeRegion ”24 ” .
?dpt geo : s ubd i v i s i o nD i r e c t e

<http :// id . i n s e e . f r /geo/ arrondissement /751> }
? d i s t r i c t demo : populat ion ?popLeg .
?popLeg demo : popu lat ionTota le ? tota lPop .
} ORDER BY ? totalPop

Query QFILTER:

SELECT ? d i s t r i c t ?cantonNom WHERE {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
? d i s t r i c t geo : s ubd i v i s i o nD i r e c t e ? canton .
? canton geo :nom ?cantonNom .
FILTER (?v = ”11 ”)
FILTER (? cantonNom = ”Par i s 14 e canton ”)
} ORDER BY ? totalPop

Query QOPT :

SELECT ∗ WHERE {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo :nom ?name .
OPTIONAL {
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t }

}

Query QALL:

SELECT ?name ? tota lPop WHERE {
{ ? r eg i on geo : codeRegion ”24 ” .

? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
OPTIONAL { ? d i s t r i c t geo :nom ?name }

} UNION {
? r eg i on geo : codeRegion ?v .
? r eg i on geo : s ubd i v i s i o nD i r e c t e ?dpt .
?dpt geo : s ubd i v i s i o nD i r e c t e ? d i s t r i c t .
? d i s t r i c t geo :nom ?name .
MINUS {
?dpt geo : s ubd i v i s i o nD i r e c t e
<http :// id . i n s e e . f r /geo/ arrondissement /751> .
? d i s t r i c t geo : s ubd i v i s i onD i r e c t e
<http :// id . i n s e e . f r /geo/ canton/6448> .

FILTER (?v = ”24 ”)
}

}

? d i s t r i c t demo : populat ion ?popLeg .
?popLeg demo : popu lat ionTota le ? tota lPop .
} ORDER BY ? totalPop

Several metrics are reported for each experiment to mea-
sure computing efficiency, both in term of execution time
and amount of queries generated:

• Execution time: total execution time measured on the
DQP server.

• Processing time: query execution time, excluding the
query analysis and rewriting times.

• # sub-queries: number of sub-queries sent to end-
points for evaluation.

In each run, our hybrid strategy (Hybrid), that imple-
ments BGP-based evaluation of both vertical and horizon-
tal data partitions, is compared to the reference KGRAM
implementation (Reference), that implements a triple-based
evaluation strategy with BGP generation for vertical parti-
tions only, similarly to other state-of-the-art KGRAM DQP
engines. The correctness of the hybrid algorithm is checked
first as all hybrid request produce exactly the same results
as their reference counter-part.

5.2 Performance and complexity results
Figure 2 displays the performance (execution and process-

ing time) and workload (number of sub-queries generated)
for each test query and each partitioning scheme. The ex-
ecution times shown in Figure 2 (top) are averaged exe-
cution time and error bars represent ± 1 standard devia-
tion. The Figure displays groups of 12 measurements for
each type of query, shown in the following order: simple
SELECT, UNION, MINUS, FILTER, OPTIONAL, and all
combined. Each group of 12 measurements is composed of
6 first measurements related to Execution time and 6 last
measurements related to Processing time. Each group of
6 measurements shows the Reference and the Hybrid im-
plementations execution time for partitioning schemes P1

(duplication), P2 (global distribution) and P3 (partial dis-
tribution). Similarly, Figure 2 (bottom) shows the number
of sub-queries processed for each test query. Measurements
are further analyzed by partitioning scheme.

As can be seen, the hybrid strategy is consistently faster
that the reference strategy in all cases, with execution time
reduced by 1.9% to 76% depending on the test case. The
number of sub-queries processed is consistently reduced.

The impact of the hybrid approach depends on the ef-
ficiency of BGP-based evaluation which, in turn, depends
on the distribution of data queried. Thus, the more L1



retrieved results compared to D1, the more efficient the
hybrid approach.

In the P1 partitioning scheme, all data is duplicated in two
sources. Local joins (L1) will therefore retrieve all the final
results. However, the distributed joins (D1) processing is
initiated to handle the possible distributed triples and finally
deleted by the pruning algorithm to tackle the distributed
redundancy issue. Even with this unnecessary processing
time, the hybrid approach reduced the processing time by
33% to 53% and the number of sub-queries by 41% to 97%
depending on the test query.

In the P2 partitioning scheme, there is no data duplica-
tion, and data predicates are globally distributed. More re-
sults are retrieved through distributed joins processing. Ex-
ecution times are consequently higher than in the previous
case. The experiments still show a reduction of the process-
ing time by 2.1% to 20% and a reduction of the number of
sub-queries by 19% to 48%.

Owing to partial distribution, the P3 partitioning scheme
exhibits less selective expressions (partial BGPs) than in
the P2 case (global BGP), with a higher chance of matching
more results. This explains why the results of the hybrid
approach with P3 is more efficient than the results with P2.
Furthermore, since the distributed joins are less selective in
this case, the pruning algorithm is applied earlier than in
the P1 case, which explains why results are improved. In
this case, the hybrid approach reduces the processing time
by 31% to 80% and the number of sub-queries by 41% to
97%.

6. CONCLUSIONS
In this paper, we proposed a query semantics for SPARQL

queries applied to distributed linked RDF data set and a hy-
brid query evaluation algorithm to improve performance of
DQP queries. Queries are interpreted as if they were ran on
a single virtual RDF graph defined as the set union of all
target data sets. Replicated data are consistently accounted
only once in the query evaluation, named graph sharing the
same identifier are considered as identical and blank nodes
are considered unique in the complete data set. The query
evaluation algorithm proposed decomposes the query into
BGP- and Triple Pattern-based SPARQL sub-queries with
filters. It aims at maximising the amount of processing han-
dled by the remote endpoints and minimising the amount
of data transferred to the DQP server. The strategy imple-
mented delivers improved results in all kinds of data par-
titioning schemes and all types of SPARQL queries investi-
gated.

Other query optimisation techniques can be considered
to further improve the performance of the KGRAM-DQP
engine, in particular better source selection and improved
sub-queries ordering heuristics. Another important mile-
stone in the future will be to test the KGRAM-DQP engine
in a networked environment to assess the impact of network
communications in the query process. KGRAM-DQP also
needs to be tested against established benchmarks, such as
FedBench [14], and compared to existing competitors for
query expressiveness and performance.
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[10] T. M. Özsu and P. Valduriez. Principles of Distributed
Database Systems, third edition. Springer, 2011.

[11] P. Peng, L. Zou, M. Özsu, L. Chen, and D. Zhao.
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Figure 2: Top: query processing time. Bottom: sub-queries generated
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