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Abstract We study a time explicit �nite volume method for a �rst order conservation law with a multiplica-
tive source term involving a Q-Wiener process. After having presented the de�nition of a measure-valued
weak entropy solution of the stochastic conservation law, we apply a �nite volume method together with
with Godunov scheme for the space discretization, and we denote by {uT ,k} its discrete solution. We present
some a priori estimates including a weak BV estimate. After performing a time interpolation, we prove two
entropy inequalities for the discrete solution. We show that the discrete solution {uT ,k} converges along a
subsequence to a measure-valued entropy solution of the conservation law in the sense of Young measures as
the maximum diameter of the volume elements and the time step tend to zero. Some numerical simulations
are presented in the case of the stochastic Burgers equation.

Keywords Finite volume methods · Stochastic partial di�erential equations · Convergence of numerical
methods

Mathematics Subject Classi�cation (2010) 65M08 · 60H15 · 65M20

1 Introduction

The convergence of numerical methods for the discretization of stochastic conservation laws is a topic of
high interest. In this article we study the convergence of a �nite volume scheme for the problem{

du+ div(vf(u))dt = g(u)dW (x, t) in Ω × Td × (0, T ) ,

u(ω, x, 0) = u0(x) for all ω ∈ Ω, x ∈ Td,

where Td is the d-dimensional torus, W (x, t) is a Q-Brownian motion, the function f is Lipschitz continuous
and the function g is Lipschitz continuous and bounded. We suppose that v = v(x, t) is a given vector
function and that u0 is a given square integrable function on Td.
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A number of articles have been devoted to the study of scalar conservation laws with a multiplicative
stochastic forcing term involving a white noise in time.

Let us mention the one-dimensional study of Feng-Nualart [15], where the authors introduced a notion
of entropy solution in order to prove the existence and uniqueness of an entropy solution. Chen-Ding-
Karlsen [9] extended the work of Feng-Nualart to the multi-dimensional case. They proved a uniform spatial
BV bound by means of vanishing viscosity approximations. Moreover they proved the temporal equicontinuity
of approximations in L1(Ω ×D × (0, T )), uniformly in the viscosity coe�cient.

Debussche-Vovelle [13] proved the existence and uniqueness of a kinetic solution for multi-dimensional
scalar conservation laws in a d-dimensional torus driven by a general multiplicative space-time noise. Hof-
manová [22] then presented a Bhatnagar-Gross-Krook-like approximation of this problem. Applying the
stochastic characteristics method, the author established the existence of an approximate solution and proved
its convergence to the kinetic solution introduced by [13].

Bauzet-Vallet-Wittbold [4] proved the existence and uniqueness of a weak stochastic entropy solution of
the multi-dimensional Cauchy problem in L2(Ω×Rd× (0, T )) in the case of a multiplicative one-dimensional
white noise in time;

In Bauzet-Vallet-Wittbold [5] the authors investigated a corresponding Dirichlet Problem in a bounded
domain of Rd.

Concerning the study of numerical schemes for stochastic conservation laws, Bauzet-Charrier-Gallouët [6]
studied explicit �ux-splitting �nite volume discretizations of multi-dimensional nonlinear scalar conservation
laws with monotone �ux perturbed by a multiplicative one-dimensional white noise in time with a given
initial function in L2(Rd). Under a stability condition on the time step, they proved the convergence of
the �nite volume approximation towards the unique stochastic entropy solution of the corresponding initial
value problem. Then Bauzet-Charrier-Gallouët [7] studied the case of a more general �ux and in [8], Bauzet-
Charrier-Gallouët studied the convergence of the scheme when the stochastic conservation law is de�ned on
a bounded domain with inhomogeneous Dirichlet boundary conditions. Let us also mention the convergence
results of time-discretization of Holden-Risebro [23] and Bauzet [3] on a bounded domain of Rd, as well as
an article of Kröker-Rohde [25] of a �nite volume schemes in a one-dimensional context.

In a recent study, Audusse-Boyaval-Gao-Hilhorst [1] performed numerical simulations in the one-dimensional
torus for the �rst order Burgers equation forced by a stochastic source term. The source term is a white noise
in time while various regularities in space are considered. The authors applied the Monte-Carlo method, and
observed that the empirical mean introduces a small di�usion e�ect to the deterministic numerical solution
and converges to the space average of the initial condition as the time t tends to in�nity and that the
empirical variance stabilizes for large time.

The present article extends the article by Bauzet-Charrier-Gallouët [7] mentioned above. Its organisation
is as follows: In section 2 we de�ne a weak stochastic entropy solution and a measure-valued stochastic entropy
solution of Problem (1) and recall basic results from probability theory. In section 3, we apply a �nite volume
method together with a Godunov scheme to Problem (1) and de�ne the discrete solution {uT ,k}. In section 4,
we present an estimate of the discrete noise term as well as a priori estimates on the discrete solution {uT ,k}.
The a priori estimates imply that {uT ,k} converges up to a subsequence in the sense of Young measures to
an entropy process denoted by u in L2(Ω × Td × (0, T )× (0, 1)). We then prove a weak BV estimate which
is essential in the sequel in order to ensure that the di�erence between the piece-wise constant solution
in time and the solution linearly interpolated in time can be controled by the maximum diameter of the
volume elements and the time step. Meanwhile, in order to prove the discrete entropy inequality, we need
the weak BV estimate for showing that a certain residue tends to zero as the maximum diameter of the
volume elements and the time step tend to zero. In section 5, we introduce a time interpolation and prove
two inequalities, a discrete entropy inequality and a continuous entropy inequality on the discrete solution
which are fondamental for the convergence proof. Then in section 6, using the two entropy inequalities, we
show that the discrete solution {uT ,k} converges along a subsequence to a limit u in the sense of Young
measures as the maximum diameter of the volume elements and the time step tend to zero; moreover u is
a measure-valued entropy solution of Problem (1). In section 7, some numerical simulations for stochastic
Burgers equation involving a Brownian motion and a Q-Brownian motion are presented. It turns out that
the variance increases more as a function of time in the case of a unidimensional Brownian motion than in
the case of the Q-Brownian motion.
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In a forthcoming work [16], we will show that the measured-value entropy solution u is unique and
coincides with the unique weak stochastic entropy solution; this will ensure that the whole approximate
sequence {uT ,k} converges to the entropy solution u.

2 A stochastic conservation law involving a Q-Brownian motion

We study the convergence of a �nite volume scheme for the discretization of the stochastic scalar conservation
law {

du+ div(vf(u))dt = g(u)dW (x, t) in Ω × Td × [0, T ) ,

u(ω, x, 0) = u0(x) ω ∈ Ω, x ∈ Td,
(2.1)

where Td is the d-dimensional torus and W (x, t) is a Q-Brownian motion [10]. More precisely, let Q be a
nonnegative de�nite symmetric operator on L2(Td) such that Q is of trace-class, namely

TrQ =

∞∑
m=1

(Qem, em)L2(Td) =

∞∑
m=1

λm ≤ Λ0, (2.2)

for some positive constant Λ0. Let {em}m≥1 be an orthonormal basis in L2(Td) diagonalizing Q, and let
{λm}m≥1 be the corresponding eigenvalues, such that

Qem = λmem

for all m ≥ 1. Actually, Q is an integral operator with the kernel

Q(x, y) =

∞∑
m=1

λmem(x)em(y). (2.3)

We suppose furthermore that em ∈ L∞(Td) for m = 1, 2... and that there exists a positive constant Λ1 such
that

∞∑
m=1

λm‖em‖2L∞(Td) ≤ Λ1. (2.4)

Let (Ω,F ,P) be a probability space equipped with a �ltration (Ft) [24] and {βm(t)}m≥1 be a sequence of
independent (Ft)-Brownian motions de�ned on (Ω,F ,P); the process W de�ned by

W (x, t) =

∞∑
m=1

βm(t)Q
1
2 em(x) =

∞∑
m=1

√
λmβm(t)em(x) (2.5)

is a Q-Brownian motion in L2(Td) [cf. [18], De�nition 2.6, page 20], and the series de�ned by (2.5) is
convergent in C([0, T ], L2(Ω × Td)) [cf. [18], page 20]. We recall that a Brownian motion β(t) is called an
(Ft)-Brownian motion if it is (Ft)-adapted and the increment β(t) − β(s) is independent of Fs for every
0 ≤ s < t.

Moreover we assume that the following hypotheses (H) hold:

� u0 ∈ L2(Td),
� f : R→ R is a Lipschitz continuous function with Lipschitz constant Cf such that f(0) = 0,
� g : R→ R is a bounded Lipschitz continuous function with Lipschitz constant Cg such that |g(u)| ≤Mg

for some positive constant Mg,
� There exists V <∞ such that |v(x, t)| ≤ V for all (x, t) ∈ Td × [0, T ],

and we introduce some further notations,

� Let E[·] denote the expectation, namely the integral over Ω with respect to the probability measure P. In
general for a random variable Y de�ned on the probability space (Ω,F ,P) to (R,B(R)), if Y is integrable

with respect to the measure P, then E[Y ] =

∫
Ω

Y (ω) P(dω).
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� We denote by N 2
ω(0, T ;L2(Td)) the subclass of L2(Ω×Td×(0, T )) consisting of predictable L2(Td)-valued

processes [cf. [11], page 98].

Next we de�ne the notions of stochastic entropy solution and of measure-valued entropy solutions of
Problem (2.1):

De�nition 2.1 (Entropy solution of Problem (2.1))
A function u ∈ N 2

ω(0, T ;L2(Td)) ∩ L∞(0, T ;L2(Ω × Td)) is a weak entropy solution of the stochastic scalar
conservation law (2.1) with the initial condition u0 ∈ L2(Td), if P-a.s in Ω,∫

Td
η(u0(x))ϕ(x, 0)dx+

∫ T

0

∫
Td
{η(u)∂tϕ(x, t) + F η(u)v · ∇xϕ(x, t)}dxdt

+

∫
Td

∫ T

0

η′(u)g(u)ϕ(x, t)dW (x, t)dx+
1

2

∫ T

0

∫
Td
η′′(u)g2(u)ϕ(x, t)Q(x, x)dxdt

≥ 0

with

F η(τ) =

∫ τ

0

η′(σ)f ′(σ)dσ (2.6)

for all ϕ ∈ C := {ϕ ∈ C∞0 (Td × [0, T )), ϕ ≥ 0} and for all η ∈ A where A is the set of C3 convex functions
such that the support of η′′ is compact.

De�nition 2.2 (Measure-valued entropy solution of Problem (2.1))
A function u of N 2

ω(0, T ;L2(Td× (0, 1)))∩L∞(0, T ;L2(Ω×Td× (0, 1))) is a measure-valued entropy solution
of the stochastic scalar conservation law (2.1) with the initial condition u0 ∈ L2(Td), if P -a.s in Ω, for all
η ∈ A and for all ϕ ∈ C∫

Td
η(u0(x))ϕ(x, 0)dx+

∫ T

0

∫
Td

∫ 1

0

{η(u(., α))∂tϕ(x, t) + F η(u(., α))v · ∇xϕ(x, t)}dαdxdt

+

∫
Td

∫ T

0

∫ 1

0

η′(u(., α))g(u(., α))ϕ(x, t)dαdW (x, t)dx

+
1

2

∫ T

0

∫
Td

∫ 1

0

η′′(u(., α))g2(u(., α))ϕ(x, t)Q(x, x)dαdxdt

≥ 0

3 The �nite volume discretization

3.1 The numerical scheme

De�nition 3.1 (Admissible mesh) An admissible mesh T of Td for the discretization is given by a family
of disjoint polygonal connected subsets of Td such that Td is the union of the closure of the elements of T
and the common interface of any two control volumes is included in a hyperplane of Td. We assume that

h = size(T ) = sup{diam(K),K ∈ T } <∞,

and that, for some αT ∈ R+,

αT h
d ≤ |K| and |∂K| ≤ 1

αT
hd−1, for all K ∈ T ,

which implies
|∂K|
|K|

≤ 1

α2
T h

, (3.1)

where
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� xK is a point in the control volume K,
� |K| is the d-dimensional Lebesgue measure of K,
� ∂K is the boundary of the control volume K,
� |∂K| is the (d− 1)-dimensional Lebesgue measure of ∂K,
� N (K) is the set of control volumes neighbors of the control volume K,
� σK,L is the common interface between K and L for all L ∈ N (K),
� nK,L is the unit normal vector which is perpendicular to the interface σK,L, outward to the control

volume K, for all L ∈ N (K).

Consider an admissible mesh T in the sense of De�nition 3.1. In order to compute an approximation of u

on (0, T ), we take N ∈ N+ and de�ne the time step k =
T

N
. In this way (0, T ) =

N−1⋃
n=0

(nk, (n+ 1)k). We set

tn = nk for all n = 0, 1, 2, ..., N and assume that k and h satisfy a Courant-Friedrichs-Lewy (CFL) condition:
k ≤ Ch for a certain constant C. We recall the de�nition of Godunov scheme.

De�nition 3.2 (Godunov �ux) A function FG ∈ C2(R2,R) is called a Godunov �ux if it satis�es

FG(a, b) =


min
s∈[a,b]

f(s) if a ≤ b

max
s∈[b,a]

f(s) if a > b.
(3.2)

For all (a, b) ∈ R2 we denote by s(a, b) ∈ [min(a, b),max(a, b)] a real number such that FG(a, b) = f(s(a, b)).

Remark 3.1 There hold |FG(b, a)− FG(a, a)| ≤ Cf |a− b| and |FG(a, b)− FG(a, a)| ≤ Cf |a− b|.

The discrete initial condition {u0K ,K ∈ T } is given by:

u0K =
1

|K|

∫
K

u0(x)dx for all K ∈ T , (3.3)

and {unK} satis�es the following explicit scheme:

For all K ∈ T and all n ∈ {0, 1, .., N − 1}

|K|
k

(un+1
K − unK) +

∑
L∈N (K)

|σK,L|
{
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)
}

=
|K|
k
g(unK)(Wn+1

K −Wn
K), (3.4)

where denoting by dγ the (d− 1)-dimensional Lebesgue measure,

vnK,L =
1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

(v(x, t) · nK,L)
+
dγ(x)dt, (3.5)

vnL,K =
1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

(v(x, t) · nL,K)
+
dγ(x)dt

=
1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

(v(x, t) · nK,L)
−
dγ(x)dt.

(3.6)

Moreover, since divv = 0 for all (x, t) ∈ T× (0, T ), we have

∑
L∈N (K)

|σK,L|(vnK,L − vnL,K) =
∑

L∈N (K)

|σK,L|

(
1

k|σK,L|

∫ (n+1)k

nk

∫
σK,L

v(x, t) · nK,Ldγ(x)dt

)

=
1

k

∫ (n+1)k

nk

∫
K

divvdxdt = 0.

(3.7)
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Remark 3.2 We remark that, if the �ux function f is monotone, and FG(a, b) is the Godunov scheme, then
the �ux term in (3.4) coincides with the upwind scheme. Indeed, suppose that f is increasing, we use the
de�nition of the Godunov �ux (3.2) to deduce that FG(a, b) = f(a) for all a, b ∈ R. Thus the �ux term in
the scheme (3.4) satis�es

vnK,LF
G(unK , u

n
L)− vnL,KFG(unL, u

n
K) =

{
vnK,Lf(unK) if v(x, t) · nK,L ≥ 0

−vnL,Kf(unL) if v(x, t) · nK,L < 0,

which coincides with the upwind scheme.

3.2 The main result of this article

We de�ne the approximate �nite volume solution uT ,k on Td × (0, T ) from the discrete unknowns unK , for
all n ∈ {0, 1, ..., N − 1} and for all K ∈ T , that:

uT ,k(x, t) = unK for x ∈ K and t ∈ [nk, (n+ 1)k), (3.8)

where the set {u0K ,K ∈ T } is de�ned by (3.3).

The main result of this article is the following Theorem:

Theorem 3.1 (Convergence of the �nite volume scheme and the existence of a measure-valued
entropy solution of Problem (2.1)) Assume that hypotheses (H) hold. Let T be an admissible mesh,

T > 0, N ∈ N+ and let k =
T

N
satisfy that

k

h
→ 0 as h→ 0.

Then there exist a function u ∈ N 2
ω(0, T ;L2(Td × (0, 1)))∩L∞(0, T ;L2(Ω ×Td × (0, 1))) and a subsequence

of {uT ,k} which we denote again by {uT ,k} such that {uT ,k} converges to u in the sense of Young measures.
Moreover u is measure-valued entropy solution of Problem (2.1) in the sense of De�nition 2.2.

3.3 The study of the discrete noise term

The discrete noise terms are given by

WM,K(t) =

M∑
m=1

√
λmβm(t)emK ,

WK(t) =

∞∑
m=1

√
λmβm(t)emK ,

(3.9)

where emK =
1

|K|

∫
K

em(x)dx for all K ∈ T . Moreover we denote by Wn
M,K and Wn

K the values of WM,K and

WK at the time t = nk respectively. We de�ne for later use

WT ,k(x, t) = Wn
K for x ∈ K and t ∈ [nk, (n+ 1)k),

WM,T ,k(x, t) = Wn
M,K for x ∈ K and t ∈ [nk, (n+ 1)k).

WT (x, t) = WK(t) for x ∈ K and t ∈ [0, T ].
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Lemma 3.1 WM,K(t) and WK(t) being de�ned as in (3.9), we have that

E[Wn+1
M,K −W

n
M,K ] = 0 (3.10)

and

E[Wn+1
K −Wn

K ] = 0 (3.11)

Proof. Remark that for each m ≥ 1 and each n ∈ {0, 1, ..., N − 1}

βm(tn+1)− βm(tn) ∼ N (0, tn+1 − tn),

where N (0, tn+1 − tn) denotes the Gaussian law N (µ, σ2) with density
1√

2πσ2
e−

(x−µ)2

σ2 in the case µ = 0

and σ2 = tn+1 − tn, so that,

E[βm(tn+1)− βm(tn)] = 0. (3.12)

and

Var[βm(tn+1)− βm(tn)] = E[(βm(tn+1)− βm(tn))2]−
(
E[(βm(tn+1)− βm(tn))]

)2
,

so that by (3.12)

E[(βm(tn+1)− βm(tn))2] = Var[βm(tn+1)− βm(tn)] = tn+1 − tn, (3.13)

Let M and K be given. Then

E[Wn+1
M,K −W

n
M,K ] =

M∑
m=1

√
λm E[βm(tn+1)− βm(tn)]emK = 0.

which completes the proof of (3.10). Next we show (3.11). Since

(emK)
2

=
1

|K|2

(∫
K

em(x)dx

)2

≤ 1

|K|

∫
K

e2m(x)dx ≤ 1

|K|
,

we have that

E
[
(Wn

K)
2
]

=

∞∑
m=1

λmt
n (emK)

2 ≤ tn

|K|

∞∑
m=1

λm <∞,

where we have used that Var[βm(tn)] = Var[βm(tn) − βm(0)] = tn. Thus, W
n
K ∈ L2(Ω) ⊂ L1(Ω), so that

E [|Wn
K |] <∞. Therefore

E[Wn+1
K −Wn

K ] = E[

∞∑
m=1

√
λm
(
βm(tn+1)− βm(tn)

)
emK ]

=

∞∑
m=1

√
λm E[βm(tn+1)− βm(tn)]emK

= 0.

(3.14)

Lemma 3.2 Suppose that the coe�cients {λm}m≥1 satisfy (2.2), then

∑
K∈T
|K|E

[(
Wn+1
M,K −W

n
M,K

)2]
≤ (tn+1 − tn)Λ0, (3.15)

holds for all M ∈ N+, n ∈ {0, 1, ..., N − 1} and K ∈ T .
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Proof: We have that for �xed n, M and K,

(Wn+1
M,K −W

n
M,K)2 =

(
M∑
m=1

(βm(tn+1)− βm(tn))

√
λm
|K|

∫
K

em(x)dx

)2

.

We take the expectation of both sides to obtain:

E

[(
Wn+1
M,K −W

n
M,K

)2 ]

= E

[(
M∑
m=1

(βm(tn+1)− βm(tn))

√
λm
|K|

∫
K

em(x)dx

)2 ]

= E

[
M∑
m=1

(βm(tn+1)− βm(tn))2λm

]
1

|K|2

(∫
K

em(x)dx

)2

+ E

2
∑

m1 6=m2

(βm1(tn+1)− βm1(tn))(βm2(tn+1)− βm2(tn))
√
λm1e

m1

K

√
λm2e

m2

K


=

M∑
m=1

E
[
(βm(tn+1)− βm(tn))2

]
λm

1

|K|2

(∫
K

em(x)dx

)2

+ 2
∑

m1 6=m2

E
[
(βm1

(tn+1)− βm1
(tn))(βm2

(tn+1)− βm2
(tn))

]√
λm1

em1

K

√
λm2

em2

K .

Since βm1
(tn+1)− βm1

(tn) and βm2
(tn+1)− βm2

(tn) are independent, we have

E[(βm1
(tn+1)− βm1

(tn))(βm2
(tn+1)− βm2

(tn))]

= E[βm1
(tn+1)− βm1

(tn)] E[βm2
(tn+1)− βm2

(tn)]

= 0.

Therefore

E

[(
Wn+1
M,K −W

n
M,K

)2]
=

M∑
m=1

E[(βm(tn+1)− βm(tn))2]λm
1

|K|2

(∫
K

em(x)dx

)2

.

Next we deduce from (3.13) that

∑
K∈T
|K|E

[(
Wn+1
M,K −W

n
M,K

)2]
=

M∑
m=1

(tn+1 − tn)λm
∑
K∈T
|K| 1

|K|2

(∫
K

em(x)dx

)2

= (tn+1 − tn)

M∑
m=1

λm
∑
K∈T
|K| 1

|K|2

(∫
K

em(x)dx

)2

≤ (tn+1 − tn)

∞∑
m=1

λm
∑
K∈T

∫
K

e2m(x)dx

≤ (tn+1 − tn)

∞∑
m=1

λm ≤ (tn+1 − tn)Λ0.

Corollary 3.1 There holds: ∑
K∈T
|K|E

[(
Wn+1
K −Wn

K

)2] ≤ (tn+1 − tn)Λ0. (3.16)
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Proof: We �rst show the limiting property

‖WM,T ,k(x, t)−WT ,k(x, t)‖L2(Ω×Td) → 0 as M →∞,

for all t ∈ (0, T ). Indeed

‖WM,T ,k(x, t)−WT ,k(x, t)‖2L2(Ω×Td)

= E

[∫
Td

(WM,T ,k(x, t)−WT ,k(x, t))2dx

]
= E

[∑
K∈T
|K|

(
1

|K|

∫
K

(WM (x, t)−W (x, t))dx

)2
]

≤E

[∑
K∈T
|K| 1

|K|2

∫
K

1dx

∫
K

(WM (x, t)−W (x, t))2dx

]

≤E

[∫
Td
dx(WM (x, t)−W (x, t))2

]
→0 as M →∞,

since the series de�ned by (2.5) is convergent in C([0, T ], L2(Ω × Td)). We have that,∣∣‖WM,T ,k(tn+1)−WM,T ,k(tn)‖L2(Ω×Td) − ‖WT ,k(tn+1)−WT ,k(tn)‖L2(Ω×Td)
∣∣

≤‖(WM,T ,k(tn+1)−WM,T ,k(tn))− (WT ,k(tn+1)−WT ,k(tn))‖L2(Ω×Td)

=‖(WM,T ,k(tn+1)−WT ,k(tn+1))− (WM,T ,k(tn)−WT ,k(tn))‖L2(Ω×Td)

≤‖WM,T ,k(tn+1)−WT ,k(tn+1)‖L2(Ω×Td) + ‖WM,T ,k(tn)−WT ,k(tn)‖L2(Ω×Td)

→ 0 as M →∞,

that is to say

lim
M→∞

‖WM,T ,k(tn+1)−WM,T ,k(tn)‖L2(Ω×Td) = ‖WT ,k(tn+1)−WT ,k(tn)‖L2(Ω×Td).

In view of (3.15), we obtain that

‖WM,T ,k(tn+1)−WM,T ,k(tn)‖L2(Ω×Td) =
∑
K∈T
|K|E

[(
Wn+1
M,K −W

n
M,K

)2]
≤ (tn+1 − tn)Λ0,

where we take the limit M →∞ to obtain:

lim
M→∞

∑
K∈T
|K|E

[(
Wn+1
M,K −W

n
M,K

)2]
=
∑
K∈T
|K|E

[(
Wn+1
K −Wn

K

)2] ≤ (tn+1 − tn)Λ0,

as the upper bound (tn+1 − tn)Λ0 does not depend on M .

4 A priori estimates

Lemma 4.1 Assume that hypotheses (H) hold. Let T > 0, T be an admissible mesh in the sense of De�nition
3.1 and h and k satisfy the Courant-Friedrichs-Lewy (CFL) condition:

k ≤ α2
T h

2V Cf
.

There hold
‖uT ,k‖2L∞(0,T ;L2(Ω×Td)) ≤ ‖u0‖

2
L2(Td) + TΛ0M

2
g |Td|

and
‖uT ,k‖2L2(Ω×QT ) ≤ T‖u0‖

2
L2(Td) + T 2Λ0M

2
g |Td|,

where QT = Td × (0, T ).
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Proof. We recall the numerical scheme

|K|
k

(un+1
K − unK) +

∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)} =

|K|
k
g(unK)(Wn+1

K −Wn
K). (4.1)

We multiply both sides of (4.1) by kunK :

|K|(un+1
K − unK)unK =− k

∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}unK

+ |K|g(unK)(Wn+1
K −Wn

K)unK .

Applying the formula ab = 1
2 [(a+ b)2 − a2 − b2] with a = un+1

K − unK and b = unK , we obtain that

|K|
2

[(un+1
K )2 − (unK)2 − (un+1

K − unK)2] =− k
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}unK

+ |K|g(unK)(Wn+1
K −Wn

K)unK .

Thus
|K|
2

[(un+1
K )2 − (unK)2] =

|K|
2

(un+1
K − unK)2

− k
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}unK

+ |K|g(unK)(Wn+1
K −Wn

K)unK .

(4.2)

We substitute (4.1) into (4.2) and take the expectation of both sides to deduce that

|K|
2

E[(un+1
K )2 − (unK)2]

=
|K|
2

E


 k

|K|
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}

2

+ g2(unK)(Wn+1
K −Wn

K)2


− 2
|K|
2

E

kg(unK)

|K|
(Wn+1

K −Wn
K)

∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}


− E

k ∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}unK


+ E

[
g(unK)|K|(Wn+1

K −Wn
K)unK

]
.

We remark that two terms in the equality above vanish. Indeed sinceWn+1
K −Wn

K and unK are independent
variables, we have that, in view of (3.14)

E

g(unK)(Wn+1
K −Wn

K)
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}

 = 0,

and similarly

E

[
g(unK)|K|(Wn+1

K −Wn
K)unK

]
= E

[
Wn+1
K −Wn

K

]
E

[
g(unK)unK |K|

]
= 0.
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Therefore,
|K|
2

E
[
(un+1
K )2 − (unK)2

]
=

k2

2|K|
E


 ∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}

2


− kE

 ∑
L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}unK


+
|K|
2

E
[(
Wn+1
K −Wn

K

)2]
E
[
g2(unK)

]
.

(4.3)

We recall (3.7), which states that
∑

L∈N (K)

|σK,L|(vnK,L − vnL,K) = 0, so that also

∑
L∈N (K)

{
|σK,L|(vnK,L − vnL,K)f(unK)

}
= 0. (4.4)

The equality (4.3) can be then rewritten as

|K|
2

E
[
(un+1
K )2 − (unK)2

]
= B1 −B2 +D, (4.5)

where

B1 =
k2

2|K|
E


 ∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

2


B2 = kE

 ∑
L∈N (K)

|σK,L|
{
vnK,L

(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)}
unK


D =

|K|
2

E
[(
Wn+1
K −Wn

K

)2]
E
[
g2(unK)

]
(4.6)

Using a similar method as in the Part I.2 of Proposition 4 in [7] we deduce that∑
K∈T

(B1 −B2) ≤ 0,

which we substitute in (4.5); this together with the De�nition of D in (4.6) and the inequality (3.16) yields:∑
K∈T
|K|E[(un+1

K )2] ≤
∑
K∈T
|K|E[(unK)2] +

∑
K∈T
|K|E[(Wn+1

K −Wn
K)2] E[g2(unK)]

≤
∑
K∈T
|K|E[(unK)2] +M2

g

∑
K∈T
|K|E[(Wn+1

K −Wn
K)2]

≤
∑
K∈T
|K|E[(unK)2] + kΛ0M

2
g ,

which implies that∑
K∈T
|K|E[(unK)2] ≤

∑
K∈T
|K|E[(u0K)2] + nkΛ0M

2
g for all n ∈ {1, 2, ..., N},

and that
‖uT ,k‖2L∞(0,T ;L2(Ω×Td)) ≤ ‖u0‖

2
L2(Td) + TΛ0M

2
g .

As a consequence, there holds

‖uT ,k‖2L2(Ω×QT ) ≤ T‖u0‖
2
L2(Td) + T 2Λ0M

2
g .
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4.1 Weak BV estimate

Lemma 4.2 Assume that hypotheses (H) hold. Let T be an admissible mesh in the sense of De�nition 3.1,

T > 0, N ∈ N+ and let k =
T

N
satisfy the CFL condition

k ≤ (1− ξ)α2
T h

2V Cf
(4.7)

for some ξ ∈ (0, 1). Then the following estimates hold

1. There exists a positive constant C1, depending on Λ0, T , Mg, ξ, Cf and ‖u0‖L2(Td) such that

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[
vnK,L{FG(unK , u

n
L)− f(unK)}2

+ vnL,K{FG(unL, u
n
K)− f(unK)}2

]
≤ C1;

(4.8)

2. There exists a positive constant C2 depending on α, Λ0, T , Mg, ξ, Cf and ‖u0‖L2(Td) such that

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d)) + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(f(d)− FG(c, d)) + max

(c,d)∈C(unK ,unL)
(f(c)− FG(c, d))

}]
≤ C2h

− 1
2 ,

(4.9)

where we de�ne

In := {(K,L) ∈ T 2 : L ∈ N (K) and unK > unL}

and

C(a, b) :=
{

(c, d) ∈ [min(a, b),max(a, b)]2 : (d− c)(b− a) ≥ 0
}
.

Proof: 1, Multiplying the equation (4.1) by kunK , inserting (4.4), taking the expectation and summing over
K ∈ T and n = 0, 1, ..., N − 1 implies

N−1∑
n=0

∑
K∈T

|K|E[(un+1
K − unK)unK ]

+

N−1∑
n=0

k
∑
K∈T

E[
∑

L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}unK ]

=

N−1∑
n=0

∑
K∈T
|K|E[(Wn+1

K −Wn
K)unKg(unK)],

which we denote as A+B = D with

A =

N−1∑
n=0

∑
K∈T
|K|E[(un+1

K − unK)unK ]

B =

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E[{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}unK ]

D =

N−1∑
n=0

∑
K∈T
|K|E[(Wn+1

K −Wn
K)unKg(unK)].
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Note that the term D = 0 since the increment (Wn+1
K −Wn

K) is independent of unK and since by (3.14),
E[Wn+1

K −Wn
K ] = 0. Applying the formula ab = 1

2 [(a + b)2 − a2 − b2] with a = un+1
K − unK and b = unK we

obtain:

A =− 1

2

N−1∑
n=0

∑
K∈T
|K|E[(un+1

K − unK)2] +
1

2

N−1∑
n=0

∑
K∈T
|K|E[(un+1

K )2 − (unK)2]

=− 1

2

N−1∑
n=0

∑
K∈T
|K|E[(un+1

K − unK)2] +
1

2

∑
K∈T
|K|E[(uNK)2 − (u0K)2],

where we set

A1 = −1

2

N−1∑
n=0

∑
K∈T
|K|E[(un+1

K − unK)2],

and

A2 =
1

2

∑
K∈T
|K|E[(uNK)2 − (u0K)2] ≥ −1

2

∑
K∈T
|K|E[(u0K)2]. (4.10)

Next, we substitute (3.4) into A1. Also using (4.4) and the fact that Wn+1
K −Wn

K and any function of
unK , u

n
L, v

n
K,L and vnL,K are independent, we deduce that

A1 =− 1

2

N−1∑
n=0

∑
K∈T
|K|

{
E
[
(Wn+1

K −Wn
K)2g2(unK)

]

+
k2

|K|
E


 ∑
L∈N (K)

|σK,L|{vnK,L(FG(unK , u
n
L)− f(unK))− vnL,K(FG(unL, u

n
K)− f(unK))}

2
}.

Using a similar idea in the proof of Proposition 2 in [7], we deduce that:

∑
K∈T

k2

2|K|
E


 ∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

2


≤1− ξ
2

k
∑

(K,L)∈In

|σK,L|
2Cf

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
.

Therefore

A1 ≥−
1

2

N−1∑
n=0

∑
K∈T

E
[
(Wn+1

K −Wn
K)2g2(unK)2

]
− 1− ξ

2

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|
2Cf

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
,
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where we recall that In = {(K,L) ∈ T 2 : L ∈ N (K) and unK > unL}. Next we use (3.16) and (4.10) to deduce
that

A = A1 +A2

≥ −1

2
(‖u0‖2L2(Td) + TΛ0M

2
g )− 1− ξ

2

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|
2Cf

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
The term B is estimated by using the same idea as in the proof of Proposition 2 in [7] such that,

B ≥
N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|
2× 2Cf

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
.

Therefore, since A+B = 0,

‖u0‖2L2(Td) + TΛ0M
2
g

≥ ξ

(2Cf )

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
which, in turn, implies the bound

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
≤ C1,

(4.11)

where the positive constant C1 depends on Λ0, T , Mg, ξ, Cf and ‖u0‖L2(Td). We then use a reordering of
the summation to deduce that∑

(K,L)∈In

|σK,L|E

[
vnK,L

{
(FG(unK , u

n
L)− f(unK))2 + (FG(unK , u

n
L)− f(unL))2

}
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+ vnL,K
{

(FG(unL, u
n
K)− f(unK))2 + (FG(unL, u

n
K)− f(unL))2

}]
=
∑
K∈T

∑
L∈N (K)

|σK,L|E
[
vnK,L

{
FG(unK , u

n
L)− f(unK)

}2
+ vnL,K

{
FG(unL, u

n
K)− f(unK)

}2]
which together with (4.11) implies

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|E
[
vnK,L

{
FG(unK , u

n
L)− f(unK)

}2
+ vnL,K

{
FG(unL, u

n
K)− f(unK)

}2] ≤ C1.

This completes the proof of the inequality (4.8).
Proof of the inequality (4.9). We estimate the term

T
2

=

{
N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c)) + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(f(c)− FG(c, d)) + max

(c,d)∈C(unK ,unL)
(f(d)− FG(c, d))

}]}2

(4.12)
We de�ne

T1 := max
(c,d)∈C(unK ,unL)

(FG(c, d)− f(c)) + max
(c,d)∈C(unK ,unL)

(FG(c, d)− f(d))

and
T2 := max

(c,d)∈C(unK ,unL)
(f(c)− FG(c, d)) + max

(c,d)∈C(unK ,unL)
(f(d)− FG(c, d))

We deduce from the Cauchy-Schwarz inequality that:

T
2

=

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E
[
vnK,LT1 + vnL,KT2

]2

≤

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|(vnK,L + vnL,K)

×
N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E

[
(vnK,LT1 + vnL,KT2)2

vnK,L + vnL,K

]
≤

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|(vnK,L + vnL,K)

×
N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E
[
vnK,LT

2
1 + vnL,KT

2
2

] ,

(4.13)

where we have applied Jensen's inequality to deduce that(
vnK,LT1 + vnL,KT2

vnK,L + vnL,K

)2

≤
vnK,L

vnK,L + vnL,K
T 2
1 +

vnL,K
vnK,L + vnL,K

T 2
2 .

It follows from (3.1), that

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|(vnK,L + vnL,K) =

N−1∑
n=0

k
∑
K∈T

∑
L∈N (K)

|σK,L|vnK,L

≤ T
∑
K∈T
|∂K|V

≤ TV |Td|
α2
T h

.
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Moreover, we remark that

T 2
1 ≤ 2

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}
T 2
2 ≤ 2

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}
,

which we substitute into (4.13) to deduce that

T
2 ≤2TV |Td|

α2
T h

N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|

× E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c))2 + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))2

}]
.

(4.14)

Substituting (4.11) into (4.14), we deduce that

T
2 ≤ 2TV |Td|

α2
T h

C1

which combined with the inequality (4.12) implies{
N−1∑
n=0

k
∑

(K,L)∈In

|σK,L|E

[
vnK,L

{
max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(c)) + max

(c,d)∈C(unK ,unL)
(FG(c, d)− f(d))

}

+ vnL,K

{
max

(c,d)∈C(unK ,unL)
(f(c)− FG(c, d)) + max

(c,d)∈C(unK ,unL)
(f(d)− FG(c, d))

}]}2

≤2TC1|Td|V
α2
T h

.

We choose C2 =
2TC1|Td|V

α2
T h

to deduce (4.9).

5 Convergence of the scheme

5.1 A time-continuous approximation

We de�ne ūK as the continuous in time stochastic process

ūK(t) =unK −
t− nk
|K|

∑
L∈N (K)

|σK,L|
(
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)
)

+ g(unK)(WK(t)−Wn
K)

=unK −
∫ t

nk

∑
L∈N (K)

|σK,L|
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)

|K|
ds

+

∫ t

nk

g(unK)dWK(t).

(5.1)
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on the domain Ω × (nk, (n + 1)k). In this way, ūK(nk) = unK and ūK((n + 1)k) = un+1
K . We de�ne the

time-continuous approximate solution ūT ,k on Ω × Td × (0, T ) by

ūT ,k(x, t) = ūK(tn) for x ∈ K and t ∈ [nk, (n+ 1)k).

Next we estimate the di�erence between the time-continuous approximation ūT ,k and the �nite volume
solution uT ,k which is de�ned in (3.8).

Lemma 5.1 Let u0 ∈ L2(Td) and T be an admissible mesh in the sense of De�nition 3.1. Let k =
T

N
satisfy

the CFL condition (4.7). There exists a positive constant C depending on T , Mg, Cf , α, V and u0 such that

‖uT ,k − ūT ,k‖2L2(Ω×QT ) ≤ C(h+ k).

Proof: There holds

‖uT ,k − ūT ,k‖2L2(Ω×QT )

=

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E

[
g(unK)(WK(s)−Wn

K)+

(
s− nk
|K|

∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

)2]
dxds

=

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E
[
g2(unK)(WK(s)−Wn

K)2
]
dxds

+

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E

[
(
s− nk
|K|

∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

)2]
dxds

+ 2

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E

[
s− nk
|K|

g(unK)(WK(s)−Wn
K)

×
∑

L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

]
,

=

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E
[
g2(unK)(WK(s)−Wn

K)2
]
dxds

+

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E

[
(
s− nk
|K|

∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}

)2]
dxds

where we used the fact that
E [WK(s)−Wn

K ] = 0. (5.2)

We remark that (5.2) can be proved in the same way as (3.14). Applying the counter part of (3.16)∑
K∈T
|K|E

[
(WK(s)−Wn

K)
2
]
≤ (s− tn)Λ0,
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for all s > nk, we deduce that

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E
[
g2(unK)(WK(s)−Wn

K)2
]
dxds

≤
N−1∑
n=0

∫ (n+1)k

nk

(s− tn)Λ0M
2
g ds

≤TΛ0M
2
g k.

Moreover, using the CFL condition (4.7) and the inequality (4.8), we deduce that:

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

E
[(s− nk
|K|

∑
L∈N (K)

|σK,L|{vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}
)2]

dxds

≤ C1
α2
T h

V (2Cf )2

Therefore

‖uT ,k − ūT ,k‖2L2(Ω×QT ) ≤ TΛ0M
2
g k + C1

α2
T h

V (2Cf )2
.

Finally we set C = max(TΛ0M
2
g ,

C1α
2
T

V (2Cf )2
) to deduce the result of Lemma 5.1.

5.2 Entropy inequalities for the approximate solution

In this section, we show entropy inequalities satis�ed by the approximate solution and use them in the proof
of convergence of the numerical scheme.

Lemma 5.2 (Discrete entropy inequality) Assume that hypotheses (H) hold. Let T be an admissible

mesh in the sense of De�nition 3.1, N ∈ N+ , let k =
T

N
be the time step and assume that

k

h
→ 0 as h→ 0. (5.3)

Then P−a.s in Ω, for all η ∈ A and for all ϕ ∈ C:

−
N−1∑
n=0

∑
K∈T

∫
K

(η(un+1
K )− η(unK))ϕ(x, nk)dx

+

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

F η(unK)v(x, t) · ∇xϕ(x, nk)dxdt

+
∑
K∈T

∫
K

N−1∑
n=0

∫ (n+1)k

nk

η′(unK)g(unK)ϕ(x, nk)dWK(t)dx

+
1

2

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

η′′(unK)g2(unK)ϕ(x, nk)qKdxdt

≥Rk,h

(5.4)
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where qK =

∞∑
m=1

λm

(
1

|K|

∫
K

e2m(x)dx

)2

, F η(a) =

∫ a

0

η′(s)f ′(s)ds and for all sets A ∈ F , E[1AR
k,h] → 0

as h→ 0.

Before proving Lemma 5.2, we recall Itô's formula (cf. [24], p. 153).

Lemma 5.3 (Itô's formula for an (Ft)-Brownian motion)

Assume that the stochastic process W (τ) is an (Ft)-Brownian motion multiplied by a positive constant q
1
2

and X(τ) is an R-valued stochastic process given by

X(τ) = X(0) +

∫ τ

0

ψ(t)dt+

∫ τ

0

θ(t)dW (t), 0 ≤ τ ≤ T,

where X(0) is F0-measurable, ψ is (Ft)-adapted and measurable in (ω, t) such that∫ T

0

‖ψ(t)‖Rdt <∞ P−a.s.

and θ is an (Ft)-adapted and measurable process such that

P

(∫ T

0

θ2(t)dt <∞

)
= 1.

Suppose that the function G(x1, x2) : R × [0, T ] → R is such that its partial derivatives
∂G
∂x2

,
∂G
∂x1

and
∂2G
∂x21

are continuous on R× [0, T ]. Then P-a.s. for all τ ∈ [0, T ],

G(X(τ), τ) =G(X(0), 0) +

∫ τ

0

{ ∂G
∂x2

(X(t), t) +
∂G
∂x1

(X(t), t) ψ(t)
}
dt

+

∫ τ

0

∂G
∂x1

(X(t), t) · θ(t)dW (t)

+
q

2

∫ τ

0

∂2G
∂x21

(X(t), t) · θ2(t)dt.

Lemma 5.4 (Itô isometry) (cf. [24], Page 144)
Assume that {βi(t)}i=1,2 and β(t) are independent (Ft)-Brownian motions, and let X = (Xt(ω))t∈(0,T ) and
Y = (Yt(ω))t∈(0,T ) be (Ft)-adapted and measurable stochastic processes such that X,Y ∈ L2(Ω × (0, T )).
Then,

E

[(∫ T

0

Xtdβi(t)

)(∫ T

0

Ytdβj(t)

)]
= E

[∫ T

0

XtYtdt

]
· δi,j , (5.5)

where δi,j = 1 if i = j and δi,j = 0 otherwise, which in turn implies that

E

(∫ T

0

Xtdβ(t)

)2
 = E

[∫ T

0

X2
t dt

]
. (5.6)

We then prove an equality based upon Itô's formula.

Lemma 5.5 For all η ∈ A, there holds:

η(ūK((n+ 1)k))− η(ūK(nk))

=−
∫ (n+1)k

nk

η′(ūT ,k(t))
∑

L∈N (K)

|σK,L|
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)

|K|
dt

+

∫ (n+1)k

nk

η′(ūT ,k(t))g(unK)dWK(t)

+
1

2
qK

∫ (n+1)k

nk

η′′(ūT ,k(t))g2(unK)dt

(5.7)
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P−a.s in Ω.

Proof: We apply the Itô's formula stated in Lemma 5.3 to the case that

� G(x1, x2) = η(x1),
� X(t) = ūK(t) which is de�ned in (5.1) on the time interval (nk, (n+ 1)k),

� ψ = −
∑

L∈N (K)

|σK,L|
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)

|K|
,

� θ = g(unK)

� The stochastic process W (t) is given by WK(t) =

∞∑
m=1

√
λm
|K|

(∫
K

em(x)dx

)
βm(t).

Thus:
∂G
∂x2

= 0,
∂G
∂x1

= η′(x1) and
∂2G
∂x21

= η′′(x1)

with x1 = X(t) = ūK(t), t ∈ [nk, (n+ 1)k).
Using the formula of WK(t), we deduce that

WK(tn+1)−WK(tn) =

∞∑
m=1

{(√
λm
|K|

∫
K

em(x)dx

)
(βm(tn+1)− βm(tn))

}
where

βm(tn+1)− βm(tn) ∼ N (0, tn+1 − tn),

Using the property that if a random variable Y ∼ N (µ, σ2), then the random variable aY +b ∼ N (aµ+b, b2σ2)
[19], we deduce that(√

λm
|K|

∫
K

em(x)dx

)
(βm(tn+1)− βm(tn)) ∼ N

(
0,

(√
λm
|K|

∫
K

em(x)dx

)2

(tn+1 − tn)

)
for all m ∈ {1, 2, ...}. Because the Brownian motions {βm(t)}m≥1 are independent, and using the fact that if
two independent random variables Y1 ∼ N (µ1, σ

2
1) and Y2 ∼ N (µ2, σ

2
2) then Y1+Y2 ∼ N (µ1+µ2, σ

2
1+σ2

2) [19],
we deduce that

WK(tn+1)−WK(tn) ∼ N

(
0,

∞∑
m=1

(√
λm
|K|

∫
K

em(x)dx

)2

(tn+1 − tn)

)
.

We recall

qK : =

∞∑
m=1

(√
λm
|K|

∫
K

em(x)dx

)2

=
1

|K|2

∫
K

∫
K

Q(x, y)dxdy,

and we rewrite the stochastic process WK(t) in the form WK(t) = q
1
2

Kβ(t) where β is a standard Brownian
motion and apply Itô's formula (cf. Lemma 5.3) to deduce that

η(ūK((n+ 1)k))− η(ūK(nk))

=−
∫ (n+1)k

nk

η′(ūK(t))
∑

L∈N (K)

|σK,L|
vnK,LF

G(unK , u
n
L)− vnL,KFG(unL, u

n
K)

|K|
dt

+

∫ (n+1)k

nk

η′(ūK(t))g(unK)dWK(t)

+
1

2
qK

∫ (n+1)k

nk

η′′(ūK(t))g2(unK)dt
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P−a.s in Ω. This completes the proof of Lemma 5.5.

Proof of Lemma 5.2. Step 1: Recalling that ūK(nk) = unK , ūK((n + 1)k) = un+1
K , and using (3.7), after

multiplying (5.7) by |K|ϕnK , one deduces that P−a.s. in Ω,

N−1∑
n=0

∑
K∈T
|K|ϕnK [η(un+1

K )− η(unK)]

=−
N−1∑
n=0

∑
K∈T

ϕnK

∫ (n+1)k

nk

η′(ūT ,k(t))
∑

L∈N (K)

[
|σK,L|

× {vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}
]
dt

+

N−1∑
n=0

∑
K∈T
|K|ϕnK

∫ (n+1)k

nk

η′(ūT ,k(t))g(unK)dWK(t)

+
1

2

N−1∑
n=0

∑
K∈T

|K|qKϕnK
∫ (n+1)k

nk

η′′(ūT ,k(t))g2(unK)dt,

(5.8)

with

ϕnK =
1

|K|

∫
K

ϕ(x, nk)dx.

The equation (5.8) can be written in the form Ak,h = −Bk,h + Ck,h +Dk,h, with

Ak,h =

N−1∑
n=0

∑
K∈T
|K|ϕnK [η(un+1

K )− η(unK)]

Bk,h =

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

ϕnKη
′(ūT ,k(t))

∑
L∈N (K)

[
|σK,L|

× {vnK,L
(
FG(unK , u

n
L)− f(unK)

)
− vnL,K

(
FG(unL, u

n
K)− f(unK)

)
}
]
dt

Ck,h =

N−1∑
n=0

∑
K∈T
|K|

∫ (n+1)k

nk

ϕnKη
′(ūT ,k(t))g(unK)dWK(t)

Dk,h =
1

2

N−1∑
n=0

∑
K∈T

|K|qKϕnK
∫ (n+1)k

nk

η′′(ūT ,k(t))g2(unK)dt

Since by the assumption (5.3),
k

h
→ 0 as h→ 0 in the theorem, we may suppose that the CFL condition

k ≤ (1− ξ)α2
T h

V (2Cf )

holds for some ξ ∈ (0, 1).

Study of Bk,h: we decompose Bk,h as

Bk,h = (Bk,h − B̃k,h) + (B̃k,h −Bk,h) + (B
k,h −Bk,h1 ) +Bk,h1
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where

B̃k,h =

N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

η′(unK)

×
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}ϕ(x, nk)dxdt

B
k,h

=

N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

∑
L∈N (K)

|σK,L|{vnK,LGG(unK , u
n
L)− vnL,KGG(unL, u

n
K)}ϕ(x, nk)dxdt

Bk,h1 = −
N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

∫
K

F η(unK)v(x, t) · ∇xϕ(x, nk)dxdt.

where
GG(a, b) = F η(s(a, b)). (cf. (2.6))

In the following we prove that B̃h,k −Bh,k ≥ 0 almost surely. Recalling that∑
L∈N (K)

(vnK,L − vnL,K)F η(unK) = 0,

∑
L∈N (K)

(vnK,L − vnL,K)f(unK) = 0,

and that for all K ∈ T , FG(unK , u
n
K) = f(unK) and GG(unK , u

n
K) = F η(unK); we rewrite B̃h,k −Bh,k as:

B̃h,k −Bh,k

=

N−1∑
n=0

∑
K∈T

k

|K|
∑

L∈N (K)

|σK,L|
{
vnK,L

[
η′(unK)(FG(unK , u

n
L)− f(unK))− (GG(unK , u

n
L)− F η(unK))

]
− vnL,K

[
η′(unK)(FG(unL, u

n
K)− f(unK))− (GG(unL, u

n
K)− F η(unK))

] } ∫
K

ϕ(x, nk)dx

Let K,L ∈ T , L ∈ N (K) and suppose that unK < unL.

We study the sign of η′(unK)(FG(unK , u
n
L)−f(unK))− (GG(unK , u

n
L)−F η(unK)). Using the fact that FG is a

Godunov numerical �ux (cf.(3.2)), we deduce that there exists s(unK , u
n
L) ∈ [unK , u

n
L] such that FG(unK , u

n
L) =

f(s(unK , u
n
L)) = min

s∈[unK ,unL]
f(s). Thus

η′(unK)(FG(unK , u
n
L)− f(unK))− (GG(unK , u

n
L)− F η(unK))

= η′(unK)(f(s(unK , u
n
L))− f(unK))− (F η(s(unK , u

n
L))− F η(unK))

=

∫ s(unK ,u
n
L)

unK

f ′(s)η′(unK)ds−
∫ s(unK ,u

n
L)

unK

f ′(s)η′(s)ds

=

∫ s(unK ,u
n
L)

unK

f ′(s)(η′(unK)− η′(s))ds

= f(s(unK , u
n
L)){η′(unK)− η′(s(unK , unL))}+

∫ s(unK ,u
n
L)

unK

f(s)η′′(s)ds

≥f(s(unK , u
n
L)){η′(unK)− η′(s(unK , unL))}+

∫ s(unK ,u
n
L)

unK

f(s(unK , u
n
L))η′′(s)ds

= 0.
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Similarly

η′(unK)(FG(unL, u
n
K)− f(unK))− (GG(unL, u

n
K)− F η(unK))

=η′(unK)(f(s(unL, u
n
K))− f(unK))− (F η(s(unK , u

n
L))− F η(unK))

=

∫ s(unL,u
n
K)

unK

f ′(s)(η′(unK)− η′(s))ds

=f(s(unL, u
n
K)){η′(unK)− η′(s(unL, unK))}+

∫ s(unL,u
n
K)

unK

f(s)η′′(s)ds

≤f(s(unL, u
n
K)){η′(unK)− η′(s(unL, unK))}+

∫ s(unL,u
n
K)

unK

f(s(unL, u
n
K))η′′(s)ds

= 0.

Also using (3.5) and (3.6) we obtain

vnK,L[η′(unK)(FG(unK , u
n
L)− f(unK))− (GG(unK , u

n
L)− F η(unK))]

− vnL,K [η′(unK)(FG(unK , u
n
L)− f(unK))− (GG(unK , u

n
L)− F η(unK))]

≥ 0.

We deduce that

vnK,L[η′(unK)(FLFD (unK , u
n
L)− f(unK))− (GLFD (unK , u

n
L)− F η(unK))]

−vnL,K [η′(unK)(FLFD (unL, u
n
K)− f(unK))− (GLFD (unL, u

n
K)− F η(unK))]

≥ 0,

from which we deduce that B̃h,k −Bh,k ≥ 0 almost surely in Ω.
Study of Ck,h: we decompose Ck,h as

Ck,h = Ck,h − C̃k,h + C̃k,h

with

C̃k,h =
∑
K∈T

∫
K

N−1∑
n=0

∫ (n+1)k

nk

η′(unK)g(unK)ϕ(x, nk)dWK(t)dx.

Study of Dk,h: we decompose Dk,h as

Dk,h = Dk,h − D̃k,h + D̃k,h

with

D̃k,h =
1

2

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

[ ∫
K

qKη
′′(unK)g2(unK)ϕ(x, nk)dxdt

]
,

Since P-a.s. in Ω, Ak,h = −Bk,h + Ck,h +Dk,h, we obtain

Bk,h =−Ak,h + Ck,h +Dk,h

≥(Bk,h − B̃k,h) + (B
k,h −B1) +B1,

so that
−Ak,h −B1 ≥ (Bk,h − B̃k,h) + (B

k,h −B1)− Ck,h −Dk,h,

and that

−Ak,h −B1 + C̃k,h + D̃k,h ≥ (Bk,h − B̃k,h) + (B
k,h −B1) + (C̃k,h − Ck,h) + (D̃k,h −Dk,h). (5.9)
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Substituting the de�nition of Ak,h, B1, C̃
k,h and D̃k,h into (5.9) yields

−
N−1∑
n=0

∑
K∈T

∫
K

(η(un+1
K )− η(un+1

K ))ϕ(x, nk)dx

+

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

F η(unK)v · ∇xϕ(x, nk)dxdt

+

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

η′(unK)g(unK)ϕ(x, nk)dWK(t)dx

+
1

2

N−1∑
n=0

∫ (n+1)k

nk

∑
K∈T

∫
K

qKη
′′(unK)g(unK)ϕ(x, nk)dxdt

≥(Bk,h − B̃k,h) + (B
k,h −B1) + (C̃k,h − Ck,h) + (D̃k,h −Dk,h).

We de�ne
Rk,h = (Bk,h − B̃k,h) + (B

k,h −B1) + (C̃k,h − Ck,h) + (D̃k,h −Dk,h)

to deduce the inequality (5.4).
Step 2: Next we prove that for all sets A ∈ F , E

[
1AR

k,h
]
→ 0 as h→ 0. Let A ∈ F ; we analyze sepa-

rately the convergence of E[1A(Bk,h − B̃k,h)], E[1A(B
k,h −Bk,h1 )], E[1A(C̃k,h −Ck,h)], E[1A(D̃k,h −Dk,h)].

Note that the assumption that
k

h
→ 0 as h→ 0 is crucial.

Convergence of E[1A(Bk,h − B̃k,h)]

We prove that for all sets A ∈ F , E
[
1A(Bk,h − B̃k,h)

]
→ 0 as h→ 0. For almost all ω ∈ Ω, all K ∈ T and

all n ∈ {0, 1, ..., N − 1}, there exists ζnK(ω) ∈ R such that

Bk,h − B̃k,h =

N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

[η′(uT ,k(t))− η′(unK)]

×
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}ϕ(x, nk)dxdt

=

N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

[η′′(ζnK)(uT ,k(t)− unK)]

×
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}ϕ(x, nk)dxdt

= Th,k1 + Th,k2

where we set, in view of (5.1),

Th,k1 =−
N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

η′′(ζnK)ϕ(x, nk)
t− nk
|K|

×

 ∑
L∈N (K)

|σK,L|{vnK,L(FG(unK , u
n
L)− f(unK))− vnL,K(FG(unL, u

n
K)− f(unK))}

2

dxdt

Th,k2 =

N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

[η′′(ζnK)g(unK)(WK(t)−WK(nk))]

×
∑

L∈N (K)

|σK,L|{vnK,LFG(unK , u
n
L)− vnL,KFG(unL, u

n
K)}ϕ(x, nk)dxdt.
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Let A ∈ F ; we �rst study E
[
1AT

h,k
1

]
. Using Cauchy-Schwarz inequality as in (4.13), the assumption (3.1)

and the estimate (4.8), we deduce that∣∣∣E [1ATh,k1

]∣∣∣
=

∣∣∣∣∣E [1A
N−1∑
n=0

∑
K∈T

∫ (n+1)k

nk

1

|K|

∫
K

η′′(ζnK)
t− nk
|K|

ϕ(x, nk)dxdt

×

 ∑
L∈N (K)

|σK,L|{vnK,L(FG(unK , u
n
L)− f(unK))− vnL,K(FG(unL, u

n
K)− f(unK))}

2 ]∣∣∣∣∣
≤ ‖η′′‖∞‖ϕ‖∞

N−1∑
n=0

∑
K∈T

k2

|K|

 ∑
L∈N (K)

|σK,L|(vnK,L + vnL,K)


× E

 ∑
L∈N (K)

|σK,L|{vnK,L(FG(unK , u
n
L)− f(unK))2 + vnL,K(FG(unL, u

n
K)− f(unK))2}


≤ ‖η′′‖∞‖ϕ‖∞

N−1∑
n=0

∑
K∈T

k2

|K|
V |∂K|

× E

 ∑
L∈N (K)

|σK,L|{vnK,L(FG(unK , u
n
L)− f(unK))2 + vnL,K(FG(unL, u

n
K)− f(unK))2}


≤ C1‖η′′‖∞‖ϕ‖∞

k

α2
T h

V,

which tends to 0 as h tends to 0. Next we remark that E[Th,k2 ] = 0. This completes the proof of E[1A(Bk,h−
B̃k,h)]→ 0 as h→ 0.

Convergence of E[1A(B
h,k −Bh,k1 )]

We prove that for all sets A ∈ F , E
[
1A(B

h,k −Bh,k1 )
]
→ 0 as h→ 0. Using the fact that

∑
L∈N (K)

|σK,L|(vnK,L − vnL,K)F η(unK) = 0,

we deduce that

B
h,k

=

N−1∑
n=0

∑
K∈T

k

|K|
∑

L∈N (K)

[ ∫
K

ϕ(x, nk)dx

× |σK,L|{vnK,L(GG(unK , u
n
L)− F η(unK))− vnL,K(GG(unL, u

n
K)− F η(unK))}

]

so that, B
h,k

= T
h,k

1 + T
h,k

2 , where

T
h,k

1 =

N−1∑
n=0

∑
(K,L)∈In

k

|K|
|σK,L|

∫
K

ϕ(x, nk)dx

× {vnK,L(GG(unK , u
n
L)− F η(unK))− vnL,K(GG(unL, u

n
K)− F η(unK))}

and



26 Tadahisa Funaki et al.

T
h,k

2 =

N−1∑
n=0

∑
(L,K)∈In

k

|K|
|σK,L|

∫
K

ϕ(x, nk)dx

× {vnK,L(GG(unK , u
n
L)− F η(unK))− vnL,K(GG(unL, u

n
K)− F η(unK))}

=−
N−1∑
n=0

∑
(K,L)∈In

k

|L|
|σK,L|

∫
L

ϕ(x, nk)dx

× {vnK,L(GG(unK , u
n
L)− F η(unL))− vnL,K(GG(unL, u

n
K)− F η(unL))}.

Similarly,

Bh,k1 = −
N−1∑
n=0

∑
K∈T

∑
L∈N (K)

∫ (n+1)k

nk

∫
σK,L

F η(unK)v(γ, t) · nK,Lϕ(γ, nk)dγ(x)dt

=

N−1∑
n=0

∑
(K,L)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unK)v(γ, t) · nK,Ldγ(x)dt

+

N−1∑
n=0

∑
(L,K)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unK)v(γ, t) · nK,Ldγ(x)dt

=

N−1∑
n=0

∑
(K,L)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unK)v(γ, t) · nK,Ldγ(x)dt

−
N−1∑
n=0

∑
(K,L)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unL)v(γ, t) · nK,Ldγ(x)dt

:= Th,k1 + Th,k2

where

Th,k1 =

N−1∑
n=0

∑
(K,L)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unK)v(γ, t) · nK,Ldγ(x)dt

Th,k2 =−
N−1∑
n=0

∑
(K,L)∈In

∫ (n+1)k

nk

∫
σK,L

−ϕ(γ, nk)F η(unL)v(γ, t) · nK,Ldγ(x)dt

In order to estimate the terms |Th,k1 − Th,k1 | and |T
h,k

2 − Th,k2 |, we refer to the arguments of esti-

mating |Th,k1 − Th,k1 | and |T
h,k

2 − Th,k2 | in Proposition 4 of [7], which yields that for all sets A ∈ F ,
E
[
1A(B

h,k −Bh,k1 )
]
→ 0 as h→ 0.

The detailed proofs of the convergence of the convergence of E[1A(C̃k,h−Ck,h)] and of E[1A(D̃k,h−Dk,h)]
are given in [17]. We thus deduce that E[1AR

k,h]→ 0 as h→ 0, which concludes the proof of Lemma 5.2.

We refer to [6, 7] and [17] for the detailed proofs for the following lemma.

Lemma 5.6 (Continuous entropy inequality on the discrete solution) Assume that hypotheses (H)

hold. Let T be an admissible mesh in the sense of De�nition 3.1, N ∈ N+, let k =
T

N
be the time step and

assume that
k

h
→ 0 as h→ 0.
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Then P -a.s. in Ω, for all η ∈ A and for all ϕ ∈ C, there holds∫
Td
η(u0)ϕ(x, 0)dx+

∫ T

0

∫
Td
η(uT ,k)∂tϕ(x, t)dxdt+

∫ T

0

∫
Td
F η(uT ,k)v · ∇xϕ(x, t)dxdt

+

∫
Td

∫ T

0

η′(uT ,k)g(uT ,k)ϕ(x, t)dWT (x, t)dx

+
1

2

∫ T

0

∫
Td
η′′(uT ,k)g2(uT ,k)ϕ(x, t)Q(x, x)dxdt

≥R̃k,h,

(5.10)

where for all sets A ∈ F , E
[
1AR̃

k,h
]
→ 0 as h→ 0.

6 Convergence proof

Theorem 6.1 [Convergence to a measure-valued entropy solution of Problem (2.1)] Assume that hypotheses

(H) hold. Let T be an admissible mesh, T > 0, N ∈ N+ and let k =
T

N
satisfying that

k

h
→ 0 as h→ 0.

Then there exist a function u ∈ N 2
ω(0, T ;L2(Td × (0, 1)))∩L∞(0, T ;L2(Ω ×Td × (0, 1))) and a subsequence

of {uT ,k} which we denote again by {uT ,k} such that it converges to u in the sense of Young measures.
Moreover u is measure-valued entropy solution of Problem (2.1) in the sense of De�nition 2.2.

Proof. We multiply the inequality (5.10) by 1A, namely the characteristic function of the set A ∈ F . We
take the expectation, which yields:

E

[
1A

∫
Td
η(u0)ϕ(x, 0)dx

]
+ E

[
1A

∫ T

0

∫
Td
η(uT ,k)∂tϕ(x, t)dxdt

]
+ E

[
1A

∫ T

0

∫
Td
F η(uT ,k)v · ∇xϕ(x, t)dxdt

]

+ E

[
1A

∫ T

0

∫
Td
η′(uT ,k)g(uT ,k)ϕ(x, t)dWT (x, t)dx

]

+
1

2
E

[
1A

∫ T

0

∫
Td
η′′(uT ,k)g2(uT ,k)ϕ(x, t)Q(x, x)dxdt

]
≥E[1AR̃

k,h].

(6.1)

It follows from Lemma 4.1 that there exist an entropy process [2,14] u of L∞(0, T ;L2(Ω ×Td × (0, 1))) and
a subsequence of {uT ,k} which we denote again by {uT ,k} such that uT ,k converges to u in the sense of
Young measures. Moreover it follows from [2] and [6] that u ∈ N 2

ω(0, T ;L2(Td × (0, 1))). More precisely the
convergence in the sense of Young measures means that given a Carathéodory function Ψ : Ω×Td× (0, T )×
R→ R such that Ψ(·, ·, ·, uT ,k) is uniformly integrable, one has:

E

[∫ T

0

∫
Td
Ψ(·, uT ,k)dxdt

]
→ E

[∫ T

0

∫
Td

∫ 1

0

Ψ(·,u(·, α))dαdxdt

]
.

Recall that a function Ψ : Ω×Td× (0, T )×R→ R is a Carathéodory function if for almost all (ω, x, t) ∈ Ω×
Td× (0, T ) the function ν 7→ Ψ(ω, x, t, ν) is continuous and for all ν ∈ R, the function (ω, x, t) 7→ Ψ(ω, x, t, ν)
is measurable. In order to prove the convergence of {uT ,k} to a measure-valued stochastic entropy solution
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of Problem (2.1), we aim to pass to the limit in the inequality (6.1) as h → 0. We have proved that

E[1AR̃
k,h]→ 0 as h→ 0. It remains to study the convergence of the terms on the left-hand side of (6.1).

Study of the term E

[
1A

∫ T

0

∫
Td
η(uT ,k)∂tϕ(x, t)dxdt

]
Note that

Ψ : (ω, x, t, ν) ∈ Ω × L2(Td)× [0, T ]× R 7→ 1A(ω)∂tϕ(x, t)η(ν) ∈ R
is a Carathéodory function such that Ψ(·, ·, ·, uT ,k) is bounded in L2(Ω ×QT ). Thus

E

[
1A

∫ T

0

∫
Td
η(uT ,k)∂tϕ(x, t)dxdt

]
→ E

[
1A

∫ T

0

∫
Td

∫ 1

0

η(u(x, t, α))dα∂tϕ(x, t)dxdt

]
as h→ 0.

Study of the term E

[
1A

∫ T

0

∫
Td
F η(uT ,k)v · ∇xϕ(x, t)dxdt

]
Since F η is bounded in L2(Ω × Td × (0, T )), using the same arguments as previously, we deduce that

E

[
1A

∫ T

0

∫
Td
F η(uT ,k)v · ∇xϕ(x, t)dxdt

]
→ E

[
1A

∫ T

0

∫
Td

∫ 1

0

F η(u(x, t, α))v · ∇xϕ(x, t)dαdxdt

]
as h→ 0.

Study of the term E

[
1A

∫
Td

∫ T

0

η′(uT ,k)g(uT ,k)ϕ(x, t)dWT (x, t)dx

]
We denote by Ψ the mapping Ψ : (ω, x, t, ν) 7→ 1A(ω)η′(ν)g(ν)ϕ(x, t) ∈ R; Ψ(·, ·, ·, uT ,k) is bounded in
L∞(Ω × QT ), so that up to a subsequence Ψ(·, ·, ·, uT ,k) converges weakly in L2(Ω × QT ) to a function
χ ∈ L2(Ω ×QT ). Thus

lim
h,k→0

E

[∫
QT

Ψφdxdt

]
= lim
h,k→0

∫
Ω×QT

ΨφdxdtP(dω) =

∫
Ω×QT

χφdxdtP(dω).

For any φ ∈ L2(Ω × QT ), (ω, x, t, ν) 7→ φ(ω, x, t)Ψ(ω, x, t, ν) is a Carathéodory function such that
φΨ(·, uT ,k) is uniformly integrable. It is based on the fact that there exists a positive constant C3 such that

E

[∫
QT

|φΨ(·, uT ,k)|dxdt
]

=

∫
Ω×QT

|φΨ(·, uT ,k)|dxdtP(dω)

≤ C3‖Ψ(·, uT ,k)‖L2(Ω×QT )‖φ‖L2(Ω×QT ).

Thus

lim
h,k→0

∫
Ω×QT

Ψ(·, uT ,k)φdxdtP(dω) =

∫
Ω×QT

∫ 1

0

Ψ(·,u(·, α))dαφdxdtP(dω).

By identi�cation,

Ψ(·, uT ,k) ⇀

∫ 1

0

Ψ(·,u(·, α))dα (6.2)

weakly in L2(Ω ×QT ). We have that∫ T

0

η′(uT ,k)g(uT ,k)ϕdWT (x, t)

=

∫ T

0

η′(uT ,k)g(uT ,k)ϕdWT (x, t)−
∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t)

+

∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t)

=

∫ T

0

η′(uT ,k)g(uT ,k)ϕd(WT (x, t)−W (x, t)) +

∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t)
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We �rst study the term

∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t); for U ∈ L2(Ω×QT ), we de�ne the operator T̃ as

T̃ (U) =

∫ T

0

UdW (x, t) (6.3)

where W (x, t) is the Q-Brownian motion de�ned by (2.5). In view of the Ito isometry Lemma 5.4, and the
hypothesis (2.4), we have that:

E

[∫
Td

(
T̃ (U)

)2
dx

]
= E

∫
Td

(∫ T

0

UdW (x, t)

)2

dx


= E

[∫
Td

∞∑
m=1

λm

(∫ T

0

U(x, t)dβm(t)

)2

e2m(x)dx

+

∫
Td

2dx

∞∑
m1 6=m2

√
λm1λm2em1(x)em2(x)

∫ T

0

U(x, t)dβm1(t)

∫ T

0

U(x, t)dβm2(t)

]

= E

[∫
Td

∫ T

0

Q(x, x)U2(x, t)dtdx

]
+ 0

≤ Λ1 E

[∫
Td

∫ T

0

U2(x, t)dtdx

]
≤ Λ1‖U‖2L2(Ω×QT ).

This proves that T̃ is a bounded operator from L2(Ω × QT ) to L2(Ω × Td). Let T̃ ∗ : L2(Ω × Td) →
L2(Ω ×QT ) be the adjoint operator of T̃ ; then(

ψ, T̃ U
)
L2(Ω×Td)

=
(
T̃ ∗ψ,U

)
L2(Ω×QT )

for all ψ ∈ L2(Ω × Td). Next we set U = η′(uT ,k)g(uT ,k)ϕ. We recall that by (6.2),

η(uT ,k)g(uT ,k)ϕ ⇀

{∫ 1

0

η′(u(·, α))g(u(·, α))dα

}
ϕ

weakly in L2(Ω ×QT ) along a subsequence as h and k tend to zero. Thus as h and k → 0,

(
ψ, T̃ (η′(uT ,k)g(uT ,k)ϕ)

)
L2(Ω×Td)

=
(
T̃ ∗ψ, η′(uT ,k)g(uT ,k)ϕ

)
L2(Ω×QT )

→
(
T̃ ∗ψ,

{∫ 1

0

η′(u(·, α))g(u(·, α))dα

}
ϕ

)
L2(Ω×QT )

=

(
ψ, T̃

({∫ 1

0

η′(u(·, α))g(u(·, α))dα

}
ϕ

))
L2(Ω×Td)

.

We conclude that along a subsequence

T̃ (η′(uT ,k)g(uT ,k)ϕ) ⇀ T̃

({∫ 1

0

η′(u(·, α))g(u(·, α))dα

}
ϕ

)
weakly in L2(Ω × Td),
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as h and k → 0, or in other words, in view of the de�nition (6.3) of T̃ ,∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t)→
∫ T

0

(∫ 1

0

η′(u(·, α))g(u(·, α))dα

)
ϕdW (x, t)

Therefore, one obtains

E

[∫
Td

∫ T

0

η′(uT ,k)g(uT ,k)ϕdW (x, t)dx

]
→ E

[∫
Td

∫ T

0

(∫ 1

0

η′(u(·, α))g(u(·, α))dα

)
ϕdW (x, t)dx

]
weakly in L2(Ω × Td), as h and k → 0.

Next, we consider the term

Ih := Ih(ω, x) =

∫ T

0

η′(uT ,k)g(uT ,k)ϕd(WT (x, t)−W (x, t)). (6.4)

To begin with, we prove below the following result:

Lemma 6.1 Suppose that Ah ∈ L2(Ω × Td × (0, T )) is (Ft)-adapted [i.e., Ah(·, t, x) is Ft-measurable in ω
for every x ∈ Td and for every t > 0], such that

‖Ah‖L∞(Ω×Td×(0,T )) ≤ C, (6.5)

for some positive constant C which does not depend on h. Then

Ih := Ih(ω, x) =

∫ T

0

Ahd(WT (x, t)−W (x, t))→ 0 (6.6)

strongly in L2(Ω × Td) as h→ 0.

Proof: We �rst rewrite

WT (x, t) =
∑
K∈T

1

|K|

∫
K

W (y, t)dy · 1K(x)

=

∞∑
m=1

√
λm

∑
K∈T

emK1K(x) · βm(t),

where

emK =
1

|K|

∫
K

em(y)dy.

Then, the di�erence of stochastic integrals in (6.6) can be rewritten as

Ih(ω, x) :=

∞∑
m=1

√
λm

(∑
K∈T

emK1K(x)− em(x)

)∫ T

0

Ah(x, t)dβm(t).

We have that

‖Ih‖2L2(Ω×Td) =

∫
Td
dx‖Ih(·, x)‖2L2(Ω)

=

∫
Td
dxE

( ∞∑
m=1

√
λm

(∑
K∈T

emK1K(x)− em(x)

)∫ T

0

Ah(x, t)dβm(t)

)2


=

∫
Td
dx

∞∑
m=1

λm

(∑
K∈T

emK1K(x)− em(x)

)2

E

(∫ T

0

Ah(x, t)dβm(t)

)2


+

∫
Td

2dx

∞∑
m1 6=m2

√
λm1

λm2

(∑
K∈T

em1

K 1K(x)− em1
(x)

)(∑
K∈T

em2

K 1K(x)− em2
(x)

)

× E

[∫ T

0

Ah(x, t)dβm1
(t)

∫ T

0

Ah(x, t)dβm2
(t)

]
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Therefore, by the independence of the Brownian motions {βm(t)} and by the Itô isometry for the stochastic
integrals (5.5) and (5.6), in view of (6.5)

‖Ih‖2L2(Ω×Td)

=

∫
Td
dx

∞∑
m=1

λm

(∑
K∈T

emK1K(x)− em(x)

)2

E

[(∫ T

0

A2
h(x, t)dt

)]

+

∫
Td
dx

[
2

∞∑
m1 6=m2

√
λm1λm2

(∑
K∈T

em1

K 1K(x)− em1(x)

)(∑
K∈T

em2

K 1K(x)− em2(x)

)

× E

[∫ T

0

A2
h(x, t)dt

]
δm1,m2

]

=

∫
Td
dx

∞∑
m=1

λm

(∑
K∈T

emK1K(x)− em(x)

)2 ∫ T

0

E[Ah(x, t)2]dt

≤C
∞∑
m=1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

.

(6.7)

By Cauchy-Schwarz's inequality, we have that∥∥∥∥∥∑
K∈T

emK1K(·)

∥∥∥∥∥
2

L2(Td)

=
∑
K∈T

(emK)2|K|

=
∑
K∈T

1

|K|

(∫
K

em(y)dy

)2

≤
∑
K∈T

∫
K

e2m(y)dy = ‖em‖2L2(Td) = 1,

for all m ∈ {1, 2, ...}, which implies that∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

≤ 4 for each m ∈ {1, 2, ...}.

Next we prove that
∞∑
m=1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

tends to zero as size(T ) tends to zero.

Fix ε > 0, since

∞∑
m=1

λm is a converging series, there exists a M ∈ N, such that

∞∑
m=M+1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

≤ 4

∞∑
m=M+1

λm ≤
ε

2
. (6.8)

Next we consider the term

M∑
m=1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

. Let m ∈ {1, 2, ...} be arbitrary; there holds

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

= λm

∥∥∥∥∥∑
K∈T

(
1

|K|

∫
K

em(y)dy − em(x)

)
1K(x)

∥∥∥∥∥
2

L2(Td)



32 Tadahisa Funaki et al.

=λm

∫
Td
dx

(∑
K∈T

(
1

|K|

∫
K

em(y)dy − em(x)

)
1K(x)

)2

=λm

∫
Td
dx

(∑
K∈T

(
1

|K|

∫
K

em(y)dy − em(x)

)2

1K(x)

)

+ λm

∫
Td
dx

∑
K1 6=K2

(
1

|K1|

∫
K1

em(y)dy − em(x)

)(
1

|K2|

∫
K2

em(y)dy − em(x)

)
1K1(x)1K2(x)

=λm
∑
K∈T

∫
K

(
1

|K|

∫
K

em(y)dy − em(x)

)2

dx = λm
∑
K∈T

∫
K

(
1

|K|

∫
K

em(y)dy − 1

|K|

∫
K

em(x)dy

)2

dx

=λm
∑
K∈T

∫
K

1

|K|2

(∫
K

(em(y)− em(x))dy

)2

dx ≤ λm
∑
K∈T

1

|K|

∫
K

∫
K

(em(y)− em(x))
2
dxdy.

We denote by B(h) the ball with center 0 and radius h with h = size(T ). Then

λm
∑
K∈T

1

|K|

∫
K

∫
K

(em(y)− em(x))
2
dxdy

≤λm
∑
K∈T

1

|K|

∫
K

dx

∫
B(h)

dz (em(x+ z)− em(x))
2

=λm

∫
B(h)

dz
∑
K∈T

1

|K|

∫
K

(em(x+ z)− em(x))
2
dx

≤λm|B(h)| supz∈B(h)

∑
K∈T

1

|K|

∫
K

(em(x+ z)− em(x))
2
dx.

Since the condition (3.1) holds, it follows that

|B(h)| = Cdh
d ≤ Cd

α
|K|,

for some positive constant Cd. Let Td ⊂⊂ O where O is a open set. We suppose that em is prolonged by
periodicity on Rd and that dist(Td, ∂O) ≤ size(T ). Therefore

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

≤λm
Cd
α
|K| supz∈B(h)

∑
K∈T

1

|K|

∫
K

(em(x+ z)− em(x))
2
dx

=λm
Cd
α

supz∈B(h)‖em(·+ z)− em(·)‖2L2(Td).

Let ε > 0 be arbitrary. It follows from the density of C(O) into L2(O) that there exists a function g ∈ C(O)
such that

‖em(·+ z)− g(·+ z)‖L2(Td) + ‖em(x)− g(x)‖L2(Td) ≤
2ε

3
· α

2MλmCd
,

for all z ∈ B(h). Thus there exists a positive constant δ such that for all z ∈ B(h)

‖em(·+ z)− em(·)‖L2(Td)

≤‖em(·+ z)− g(·+ z)‖L2(Td) + ‖g(·+ z)− g(·)‖L2(Td) + ‖g(·)− em(·)‖L2(Td)

≤ α

2MλmCd
ε
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for all h < δ.

Using the fact that the sum is �nite, we have

M∑
m=1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

≤ ε

2
. (6.9)

Combining (6.8) and (6.9), we deduce that if h < δ

∞∑
m=1

λm

∥∥∥∥∥∑
K∈T

emK1K(·)− em(·)

∥∥∥∥∥
2

L2(Td)

≤ ε.

which in view of (6.7) completes the proof of (6.6).

It follows from Lemma 6.1 that the integral Ih de�ned by (6.4) converges to zero as h and k tend to zero.

Study of the term
1

2
E

[
1A

∫ T

0

∫
Td
η′′(uT ,k)g2(uT ,k)ϕ(x, t)Q(x, x)dxdt

]
:

Since Ψ : (ω, x, t, ν) ∈ Ω × Td × (0, T )× R 7→ 1A(ω)η′′(ν)g(ν)ϕ(x, t)Q(x, x) ∈ R is a Carathéodory function
such that Ψ(·, ·, ·, uT ,k) is bounded in L2(Ω × Td × (0, T )), we deduce that:

E[1A

∫ T

0

∫
Td
η′′(uT ,k)g2(uT ,k)ϕ(x, t)Q(x, x)dxdt]

→E[1A

∫ T

0

∫
Td

∫ 1

0

η′′(u(x, t, α))g2(u(x, t, α))ϕ(x, t)Q(x, x)αdxdt],

as h→ 0, for all m ≥ 1.
We deduce that for all sets A ∈ F , for all η ∈ A and for all ϕ ∈ C

E[1A

∫
Td
η(u0)ϕ(x, 0)dx] + E[1A

∫ T

0

∫
Td

∫ 1

0

η(u(x, t, α))dα∂tϕ(x, t)dxdt]

+ E[1A

∫ T

0

∫
Td

∫ 1

0

F η(u(x, t, α))v · ∇xϕ(x, t)dαdxdt]

+ E[1A

∫ T

0

∫
Td

∫ 1

0

η′(u(x, t, α))ϕ(x, t)dαdW (x, t)dx]

+
1

2
E[1A

∫ T

0

∫
Td

∫ 1

0

η′′(u(x, t, α))g2(u(x, t, α))ϕ(x, t)Q(x, x)dαdxdt]

≥ 0.

(6.10)

In turn (6.10) implies that for all χ ∈ L2(Ω)

E[χ

∫
Td
η(u0)ϕ(x, 0)dx] + E[χ

∫ T

0

∫
Td

∫ 1

0

η(u(x, t, α))dα∂tϕ(x, t)dxdt]

+ E[χ

∫ T

0

∫
Td

∫ 1

0

F η(u(x, t, α))v · ∇xϕ(x, t)dαdxdt]

+ E[χ

∫ T

0

∫
Td

∫ 1

0

η′(u(x, t, α))ϕ(x, t)dαdW (x, t)dx]

+
1

2
E[χ

∫ T

0

∫
Td

∫ 1

0

η′′(u(x, t, α))g2(u(x, t, α))ϕ(x, t)Q(x, x)dαdxdt]

≥ 0.

Hence u is a measure-valued entropy solution of Problem (2.1) in the sense of De�nition 2.2.
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7 Numerical simulations

Taking inspiration from the numerical computations in [1], we propose to perform numerical simulations for
a stochastic Burgers equation involving a Q-Brownian motion:

∂u

∂t
+

∂

∂x

(
u2

2

)
= αQẆ (x, t) (7.1)

in the space interval [0, 1] together with periodic boundary conditions and the initial condition u(x, 0) =
u0(x). The constant αQ is the amplitude of the noise term.

We consider the case that the Q-Brownian motion is given by

W (x, t) =

∞∑
m=1

√
λm
{
βm(t)em(x) + γm(t)fm(x)

}
,

with {em(x), fm(x)} = {
√

2 sin(2mπx),
√

2 cos(2mπx)}, m = 1, 2, ... and {βm(t), γm(t)}, m = 1, 2, ... is a
sequence of independent (Ft)-Brownian motions.

We suppose that Q is the Laplacian operator u → −u′′ with periodic boundary conditions, then the
eigenvalue λm and eigenfunctions em and fm of Q which satisfy

Qem = λmem, Qfm = λmfm

for all m = 1, 2, ... and such that λm = 4m2π2. We remark that Burgers equation is not included in the class
of problems studied in this article, since the �ux function f(u) = u2/2 is only locally Lipschitz continuous.

The following formula follows from [26]. For all u in the domain of (−∆)−β , there holds, for the d-
dimensional torus,

(−∆)−βu =

∞∑
m=1

λ−βm

{
(u, em)L2(Td) em + (u, fm)L2(Td) fm

}
,

which amounts to say that the eigenvalues of (−∆)−β are λ−βm , where {λm} are the eigenvalues of the
Laplacian operator −∆.

7.1 Numerical scheme

We propose the following numerical scheme for the discretization of the equation (7.1)

1

∆t
(un+1
i − uni ) +

1

∆x

(
Fni+ 1

2
− Fni− 1

2

)
=
αQ
∆t

(
Wn+1
i −Wn

i

)
, (7.2)

for all i ∈ {1, 2, ...I} and n = {0, 1, ...N − 1}. If we choose Q = (−∆)−β , the stochastic force terms are of the
form

Wn
i =

M∑
m=1

√
λ−βm

{
βm(tn)em(xi) + γm(tn)fm(xi)

}
with {em(x), fm(x)} = {

√
2 sin(2mπx),

√
2 cos(2mπx)} and λ−βm = (4m2π2)−β and M a truncation number.

More precisely,

αQ
∆t

(
Wn+1
i −Wn

i

)
=
αQ
∆t

M∑
m=1

√
2

√
λ−βm

( (
βm(tn+1)− βm(tn)

)
sin(2mπxi) +

(
γm(tn+1)− γm(tn)

)
cos(2mπxi)

)
=αQ

√
2

∆t

M∑
m=1

1

(2mπ)β

((βm(tn+1)− βm(tn)√
∆t

)
sin(2mπxi) +

(
γm(tn+1)− γm(tn)√

∆t

)
cos(2mπxi)

) (7.3)
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where
βm(tn+1)− βm(tn)√

∆t
and

γm(tn+1)− γm(tn)√
∆t

follow the Gaussian law N (0, 1).

We recall that in the simulation of stochastic Burgers equation [1], the authors proposed the following
scheme,

1

∆t
(un+1
i − uni ) +

1

∆x

(
Fni+ 1

2
− Fni− 1

2

)
= α

√
1

∆x∆t
Gni (7.4)

with

α

√
1

∆x∆t
Gni = α

√
1

∆x∆t

√
2

I

 I−1
2∑

m=1

(
Cnm
mβ

cos(2mπxi)−
Snm
mβ

sin(2mπxi)

)
= α

√
2

∆t

 I−1
2∑

m=1

(
Cnm
mβ

cos(2mπxi)−
Snm
mβ

sin(2mπxi)

)
Comparing (7.4) with (7.3), we deduce that those two formulas are equivalent when M = (I − 1)/2 and

α =
αQ

(2π)β
, where I is the number of volumes.

7.1.1 Burgers equation involving a Brownian motion

In order to compare the numerical results, we propose to perform simulations for a stochastic Burgers
equation involving a Brownian motion:

∂u

∂t
+

∂

∂x

(
u2

2

)
= αβ̇(t), (7.5)

where β(t) is an (Ft)-Brownian motion. We propose the following numerical scheme for the discretization of
the equation (7.5)

1

∆t
(un+1
i − uni ) +

1

∆x

(
Fni+ 1

2
− Fni− 1

2

)
=

α

∆t

(
βn+1 − βn

)
,

where βn+1−βn follows the Gaussian distribution N (0, tn+1− tn). We remark that for each time step n, we
use the same random variable βn+1 − βn for all i ∈ {1, 2, ...I}.

7.2 Numerical results

In this section, we present some numerical results. The initial condition is given by u0(x) = sin(2πx)+0.5.
We subdivide the space interval [0, 1] into 201 volumes and we perform 16 384 realizations for each �xed αQ
and β. The numerical results are presented in two periods in space.

First we present the results in the deterministic case, namely the case that the source term is equal to
zero.

Figure 1: Solutions in the deterministic case
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Figure 2: The positions of the shock

The �gures show that after a certain time, a shock appears and moves with a constant speed.

7.3 Comparsion between two di�erent types of noise term

We consider the case that αQ = 1 and β = 1, so that α = 1/2π and we compare the numerical results of two
di�erent types of noise.

7.3.1 Empirical mean value and one single realization

For the Brownian motion case;

Figure 3: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 0.05
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Figure 4: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 1

Figure 5: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 20

For the Q-Brownian motion case;

Figure 6: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 0.05
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Figure 7: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 1

Figure 8: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 20

The mean value of the realizations is close to the deterministic solution in both cases. For single realiza-
tions, at time t = 1 the Brownian motion shifts the position of the shock; and in the Q-Brownian motion
case, the stochastic solution is perturbed around the deterministic solution.

7.3.2 Variance and covariance for two �xed points

We �rst present the variance Var [u(xi, t)] for all i ∈ {1, 2, ...I} at di�erent times t = 0.05, t = 1 and t = 20,

Figure 9: Variance in the case of Brownian motion (left) and Q-Brownian motion (right) for �xed time
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We then present the discrete L1 norm of the variance as a function of time, namely

‖Var [u(·, t)]‖L1([0,1]) =

I∑
i=1

|Var [u(xi, t)]| dx.

Figure 10: L1 norm of the variance as a function of time in the case of Brownian motion (left) and Q-Brownian motion (right)

These results show that in the Brownian motion case, the L1 norm is increasing as a function of time;
meanwhile in the Q-Brownian motion case, the L1 norm of the variance tends to a stable value as time
increases. Since the L1 norm of the variance is increasing in the Brownian motion case, we propose to
compare the results to the case that the amplitude α = 1/π, which is twice as the previous amplitude that
we considered.

Figure 11: L1 norm of the variance as a function of time in the case of the Brownian motion with α = 1/2π (left) and α = 1/π
(right).

Remark 7.1 The phenomena that a richer randomness in noise implies less �uctuation in the solution can
be observed in a di�erent setting of SPDEs. Consider a stochastic heat equation du = ∆udt + dW (x, t) on
Rd with an initial value u(x, 0) = 0 for simplicity and with an additive noise W (x, t) which is a Q-Brownian

motion. Then the solution u is given in a mild form u(x, t) =
∫ t
0

∫
Rd p(t − s, x, y)dW (y, s)dy, and therefore

its variance is easily computed as

Var(u(x, t)) =

∫ t

0

ds

∫
Rd×Rd

p(s, x, y1)p(s, x, y2)Q(y1, y2)dy1dy2,

where p is the heat kernel. In particular, if W is the space-time white noise, Q(y1, y2) = δ(y1 − y2), so

that Var(u(x, t)) =
∫ t
0
p(2s, x, x)ds =

√
t/(2π) when d = 1. While, if W is the Brownian motion β(t) only
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in time, Q(y1, y2) = 1, so that Var(u(x, t)) = t for every d ≥ 1. Indeed, u(x, t) = β(t) in this case. This
simple example, though it is totally di�erent from our equation, indicates that the �uctuation of the solution
determined from the noise with richer randomness is asymptotically smaller as the time grows.

We �x x1 = 0.25 and x2 = 0.75 and then present the covariance Cov [u(x1, t), u(x2, t)] as a function of
time, where

Cov [u(x1, t), u(x2, t)] = E [(u(x1, t)− E [u(x1, t)])(u(x2, t)− E [u(x2, t)])]

Figure 12: Covariance in the case of Brownian motion (left) and Q-Brownian motion (right) as a function of time

The covariance tends to a �xed value as time increases and the limit values are close in the two cases.

7.3.3 Comparison between di�erent amplitudes in the Q-Brownian motion case

In order to study the in�uence of the amplitude of the noise in the Q-Brownian motion case, we propose to
consider the case that αQ = 2π and β = 1

Figure 13: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 0.05
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Figure 14: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 1

Figure 15: Empirical average (left) and one realization (right) comparing with the solution in the deterministic case at t = 20

We present the L1 norm of the variance in this case:

Figure 16: The L1 norm of the variance in the cases that αQ = 1 (left) and αQ = 2π (right) as a function of time

In these two cases, the L1 norm of the variance tends to a constant as time increases, and as the amplitude
of the noise is stronger, the limit value is larger, which is as it could be expected.
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7.4 Some conclusions and discussions

In the Q-Brownian motion case, we have considered cases that Q = −∆−1 with the series truncated
by a �xed number M = 100 for the numerical simulations. We consider di�erent noise amplitudes, namely
αQ = 1, β = 1 and αQ = 2π, β = 1. The numerical results show that when αQ is larger, one realization in
stochastic case is more dispersed. The average of the realizations is a good approximation of the deterministic
solution and as time tends to in�nity it converges to the space-average of the initial function [12], which
is constant 1/2 in our case. While the deterministic solution is discontinuous at the shock, the average of
the realizations of stochastic solutions has a smoothing e�ect. When the amplitude is larger, the smoothing
e�ect is stronger, and the average goes faster to the space-average.

While comparing the results of the Brownian motion case and theQ-Brownian motion case, the averages of
realizations approximate the solution in the deterministic case. In single realizations, the Brownian motion
type noise shifts the shock position; meanwhile in the Q-Brownian motion case, one single realization is
perturbed around the deterministic solution. If we consider the variance, the L1 norm of the empirical
variance increases as a function of time in the Brownian motion case while the L1 norm of variance tends to
a constant which depends on the amplitude of the noise term.

Acknowledgement The authors would like to thank Ludovic Goudenège, Max von Renesse and Hendrik
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