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1 Introduction

Let Γ be a Coxeter graph, and let (W, S) be the Coxeter system of Γ. A symmetry of
Γ is a permutation g of S such that mg(s),g(t) = ms,t for all s, t ∈ S , where (ms,t)s,t∈S is
the Coxeter matrix of Γ. Let G be a group of symmetries of Γ. Then G is necessarily
finite, and it can be viewed as a group of automorphisms of W . We denote by WG the
subgroup of W fixed under the action of G. Mühlherr [7] and Hée [4], independently
of one another, proved that WG is a Coxeter group. None of them gave explicitly the
Coxeter graph Γ̃ which defines WG . However, a third proof, different from the other
two, with an explicit description of Γ̃, is given in Crisp [2, 3].

Let Π = {εs | s ∈ S} be a set in one-to-one correspondence with S , let V be the real
vector space having Π as a basis, and let 〈., .〉 be the symmetric bilinear form on V
defined by 〈εs, εt〉 = − cos(π/ms,t) if ms,t 6= ∞ and 〈εs, εt〉 = −1 if ms,t = ∞. For
every s ∈ S we define the linear transformation fs : V → V by fs(x) = x − 2〈x, εs〉εs .
Then the map S → GL(V), s 7→ fs , induces a celebrated faithful linear representation
f : W → GL(V), called the canonical representation of W (see Bourbaki [1]). In our
context, the triple (V, 〈., .〉,Π) will be called the canonical root basis of Γ.

Let G be a group of symmetries of Γ. Then G acts on V sending εs to εg(s) for all
s ∈ S , and this action leaves invariant the canonical form 〈., .〉. Hence, the canonical
representation f : W → GL(V) is equivariant, in the sense that f (g(w)) = g◦ f (w)◦g−1

for all g ∈ G and all w ∈ W , and therefore f induces a linear representation f G :
WG → GL(VG), where VG = {x ∈ V | g(x) = x for all g ∈ G}.

A naive question would be: Is f G : WG → GL(VG) the canonical representation of
WG ? A positive answer would provide a way to (re)prove that WG is a Coxeter group
and to determine the Coxeter graph of WG . Unfortunately, simple calculations show
that f G is not the canonical representation in general. Nevertheless, one can transpose
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this question to a larger family of linear representations, the rooted representations
introduced by Krammer [5, 6], and, in this context, the answer is yes. Our purpose is
to show that.

A root basis of Γ is a triple (V, 〈., .〉,Π), where V is a finite dimensional real vector
space, 〈., .〉 is a symmetric bilinear form on V , and Π = {εs | s ∈ S} is a collection
of vectors in V in one-to-one correspondence with S , that satisfies the following
properties:

(a) 〈εs, εs〉 = 1 for all s ∈ S;

(b) for all s, t ∈ S , s 6= t , we have

〈εs, εt〉 = − cos(π/ms,t) if ms,t 6=∞ ,

〈εs, εt〉 ∈ (−∞,−1] if ms,t =∞ ;

(c) there exists χ ∈ V∗ such that χ(εs) > 0 for all s ∈ S .

As mentioned above, if Π is a basis of V and 〈εs, εt〉 = −1 whenever ms,t =∞, then
(V, 〈., .〉,Π) is called the canonical root basis of Γ.

This definition is taken from Krammer’s thesis [5, 6]. It is both, a generalization of the
canonical spaces and canonical forms defined by Bourbaki [1], and a new point of view
on the theory of reflection groups developed by Vinberg [8]. Note also that Condition
(c) in the above definition often follows from Conditions (a) and (b), but not always
(see Krammer [6, Proposition 6.1.2]).

Let (V, 〈., .〉,Π) be a root basis of Γ. For every s ∈ S we define the linear transforma-
tion fs : V → V by fs(x) = x − 2〈x, εs〉εs . The following theorem can be proved for
any root basis in the same way as it is proved in Bourbaki [1] for the canonical root
basis.

Theorem 1.1 (Krammer [5, 6]) The map S → GL(V), s 7→ fs , induces a faithful
linear representation f : W → GL(V).

The representation f : W → GL(V) of Theorem 1.1 is called the rooted representation
of W associated with (V, 〈., .〉,Π).

Let G be a group of symmetries of Γ, and let (V, 〈., .〉,Π) be a root basis. As for the
canonical root basis, we assume that G embeds in GL(V), satisfies g(εs) = εg(s) for
all g ∈ G and all s ∈ S , and leaves invariant the form 〈., .〉. Then the representation
f : W → GL(V) is equivariant in the sense that f (g(w)) = g ◦ f (w) ◦ g−1 for all g ∈ G
and all w ∈ W , and therefore f induces a linear representation f G : WG → GL(VG),
where VG = {x ∈ V | g(x) = x for all g ∈ G}. The goal of this paper is to prove the
following.
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Theorem 1.2 (1) The group WG is a Coxeter group.

(2) Let Γ̃ denote the Coxeter graph of WG . There exists a subset Π̃ of VG such that
(VG, 〈., .〉, Π̃) is a root basis of Γ̃, and the induced representation f G : WG →
GL(VG) is the rooted representation associated with (VG, 〈., .〉, Π̃). In particular,
f G is faithful.

A similar approach is adopted in Hée [4, Section 3], with different definitions. One
can easily show that the root system obtained from a root basis is a root system in Hée
sense [4], and that part of the results of the paper, such as the fact that (VG, 〈., .〉, Π̃) is a
root basis, can be deduced from Hée [4]. However, to get the explicit expression of the
Coxeter graph Γ̃ of WG , one would need extra arguments that can be either a rewrite
of Lemma 3.3, or some arguments similar to that given in Crisp [2, 3]. More generally,
the whole theorem is more or less in the literature. In particular, as mentioned before,
Part (1) is explicit in Mühlherr [7], Hée [4] and Crisp [2, 3]. But, our aim is to provide
a new point of view on the question with unified, short and self-contained proofs.

A more precise statement of Theorem 1.2 is given in Section 2. In particular, the
Coxeter graph Γ̃ and the set Π̃ are explicitly described. Section 3 is dedicated to the
proofs.

2 Statement

The length of an element w ∈ W , denoted by lg(w), is the shortest length of an
expression of w over the elements of S . An expression w = s1 · · · s` is called reduced
if ` = lg(w). It is known that, if W is finite, then W has a unique longest element, that
is, an element w0 ∈ W such that lg(w) ≤ lg(w0) for all w ∈ W , and this element is an
involution (see Bourbaki [1]).

For X ⊂ S , we denote by ΓX the full subgraph of Γ spanned by X , and by WX the
subgroup of W generated by X . The subgroup WX is called a standard parabolic
subgroup of W . By Bourbaki [1], (WX,X) is a Coxeter system of ΓX . If WX is finite,
then we denote by wX the longest element of WX .

Let G be a group of symmetries of Γ. Now, we define a Coxeter matrix M̃ = M̃G =

(m̃X,Y )X,Y∈S (and its associated Coxeter graph, Γ̃). This will be the Coxeter matrix
(and the Coxeter graph) of WG (see Theorem 1.2 and Theorem 2.2).

We denote by O the set of orbits of G in S , and we set S = {X ∈ O | WX is finite}.
Then S is the set of indices of M̃ (which is the set of vertices of Γ̃). Let X,Y ∈ S .
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• If ms,t = 2 for all s ∈ X and all t ∈ Y , then we set m̃X,Y = m̃Y,X = 2.

• Let k ∈ {1, 2, 3, 4, 5}. If ΓX∪Y is a disjoint union of copies of the Coxeter
graph depicted in Figure 2.1 (k), where the vertices corresponding to x1, x2, . . .

belong to X and the vertices corresponding to y1, y2, . . . belong to Y , then we set
m̃X,Y = m̃Y,X = m if k = 1, m̃X,Y = m̃Y,X = 4 if k ∈ {2, 3}, m̃X,Y = m̃Y,X = 8
if k = 4, and m̃X,Y = m̃Y,X = 6 if k = 5. In this case we say that (X,Y) is a
bi-orbit of type k .

• We set m̃X,Y = m̃Y,X =∞ in the remaining cases.

x1 y1m x1 y1 x2 x1 y1 y2 x2

(1) (2) (3)

x1 y1 y2 x24

x1

x2

x3y1

(4) (5)

Figure 2.1: Bi-orbits.

The next lemma will be used in the definition of the set Π̃. It is well-known and can
be easily proved using [1, Chapter V, Section 4, Subsection 8].

Lemma 2.1 Let (V, 〈., .〉,Π) be a root basis of Γ. Suppose that W is finite and that
Π spans V . Then 〈., .〉 is a scalar product, and (V, 〈., .〉,Π) is the canonical root basis
of Γ. In particular, Π is a basis of V .

We turn back to the hypothesis of Theorem 1.2, that is, Γ is any Coxeter graph, G is
a group of symmetries of Γ, and (V, 〈., .〉,Π) is a root basis of Γ. We assume that
G embeds in GL(V) so that the form 〈., .〉 is invariant under the action of G, and
g(εs) = εg(s) for all s ∈ S and all g ∈ G.

Let X be an element of S , that is, an orbit of G in S such that WX is finite. Set
ΠX = {εs | s ∈ X}, and denote by VX the linear subspace of V spanned by ΠX , and
by 〈., .〉X the restriction of 〈., .〉 to VX × VX . By Lemma 2.1, ΠX is a basis of VX and
〈., .〉X is a scalar product. Let aX =

∑
s∈X εs . Note that aX ∈ VG , hence, by the above,

aX 6= 0 and ‖aX‖ > 0. We set ε̃X = aX
‖aX‖ for all X ∈ S , and Π̃ = Π̃G = {ε̃X | X ∈ S}.

The main result of the paper, with a precise statement, is the following.

Theorem 2.2 (1) The set SW = {wX | X ∈ S} generates WG , and (WG,SW) is a
Coxeter system of Γ̃.
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(2) The triple (VG, 〈., .〉, Π̃) is a root basis of Γ̃, and the induced representation
f G : WG → GL(VG) is the rooted representation associated with (VG, 〈., .〉, Π̃).
In particular, f G is faithful.

Remark The proof of Part (1) of Theorem 2.2 uses the induced representation f G :
WG → GL(VG). Nevertheless, the conclusion of Part (1) is always true because there
is always a root basis which satisfies the hypothesis of the theorem: the canonical root
basis.

3 Proof

We assume given a Coxeter graph Γ, a root basis (V, 〈., .〉,Π) of Γ, and a group G of
symmetries of Γ. We assume that G embeds in GL(V), satisfies g(εs) = εg(s) for all
g ∈ G and all s ∈ S , and leaves invariant the form 〈., .〉.

Let f : W → GL(V) be the rooted representation of W associated with (V, 〈., .〉,Π).
From now on, in order to simplify the notations, we will assume that W acts on V via
f , and we will write w(x) in place of f (w)(x) for w ∈ W and x ∈ V . Lemmas 3.1 to
3.4 are preliminaries to the proof of Theorem 2.2. Lemma 3.1 (1) is well-known. It is
a direct consequence of Mühlherr [7, Lemma 2.8], and its proof can be found in the
beginning of the proof of Mühlherr [7, Theorem 1.3]. Lemma 3.1 (2) is also know. Its
proof is implicit in Crisp [2], but, as far as we know, it is not explicitly given anywhere
else.

Lemma 3.1 (1) The group WG is generated by SW .

(2) We have (wXwY )m̃X,Y = 1 for all X,Y ∈ S such that m̃X,Y 6=∞.

Proof As mentioned above, the proof of Part (1) can be found in Mühlherr [7]. So,
we only need to prove Part (2). Let X ⊂ S be such that ΓX is a disjoint union of
vertices (i.e. ΓX has no edge). Then WX is finite and wX =

∏
s∈X s. Let X = {s, t}

be a pair included in S such that ms,t = m < ∞. Then WX is finite, wX = (st)
m
2 if

m is even, and wX = (st)
m−1

2 s if m is odd. Now, let X,Y ∈ S . If ms,t = 2 for all
s ∈ X and t ∈ Y , then wX and wY commute, hence (wXwY )2 = 1, as wX and wY are
both involutions. Suppose that (X,Y) is a bi-orbit of type j, where j ∈ {1, 2, 3, 4, 5}.
Let Γ1, . . . ,Γ` be the connected components of ΓX∪Y . For i ∈ {1, . . . , `}, we denote
by Zi the set of vertices of Γi , and we set Xi = X ∩ Zi and Yi = Y ∩ Zi . We have
wX =

∏`
i=1 wXi and wY =

∏`
i=1 wYi . Moreover, using the above observation together
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with Theorem 1.1, it is easily checked that (wXiwYi)
m̃X,Y = 1 for all i. It follows that

(wXwY )m̃X,Y =
∏`

i=1(wXiwYi)
m̃X,Y = 1.

Lemma 3.2 Let X ∈ S . Then one of the following two alternatives holds.

(I) ΓX is a disjoint union of vertices (i.e. ΓX has no edge).

(II) There exists m ∈ N, m ≥ 3, such that ΓX is a disjoint union of copies of the
Coxeter graph depicted in Figure 2.1 (1).

Proof For s ∈ X we set vs(X) = |{t ∈ X | ms,t ≥ 3}|. Since WX is finite, the
connected components of ΓX are trees (see Bourbaki [1]), hence there exists s ∈ X
such that vs(X) ≤ 1. On the other hand, since G acts transitively on X , we have
vs(X) = vt(X) for all s, t ∈ X . So, either vs(X) = 0 for all s ∈ X , or vs(X) = 1 for all
s ∈ X . If vs(X) = 0 for all s ∈ X , then we are in Alternative (I). If vs(X) = 1 for all
s ∈ X , then we are in Alternative (II).

Let X ∈ S . We say that X is of type I if ΓX satisfies Condition (I) of Lemma 3.2, and
that X is of type IIm if ΓX satisfies Condition (II).

Lemma 3.3 Let X,Y ∈ S , X 6= Y . Then

〈ε̃X, ε̃Y〉 = − cos(π/m̃X,Y ) if m̃X,Y 6=∞ ,

〈ε̃X, ε̃Y〉 ∈ (−∞,−1] if m̃X,Y =∞ .

Proof Observe that, if ms,t = 2 for all s ∈ X and all t ∈ Y , then 〈ε̃X, ε̃Y〉 = 0 and
m̃X,Y = 2. Hence, we can assume that there exist s ∈ X and t ∈ Y such that ms,t ≥ 3.
Since G acts transitively on X and leaves invariant Y , it follows that, for all s ∈ X ,
there exists t ∈ Y such that ms,t ≥ 3. Similarly, for all t ∈ Y , there exists s ∈ X such
that ms,t ≥ 3.

Recall that aX =
∑

s∈X εs , aY =
∑

t∈Y εt ε̃X = aX
‖aX‖ , ε̃Y = aY

‖aY‖ . Choose s ∈ X
and set vX = |{t ∈ Y | ms,t ≥ 3}| and pX =

∑
t∈Y〈εs, εt〉 = 〈εs, aY〉. Since G

acts transitively on X and leaves invariant Y , these definitions do not depend on the
choice of s. Similarly, choose t ∈ Y and set vY = |{s ∈ X | ms,t ≥ 3}| and
pY =

∑
s∈X〈εt, εs〉 = 〈εt, aX〉. The hypothesis that there exist s ∈ X and t ∈ Y such

that ms,t ≥ 3 implies that vX ≥ 1 and vY ≥ 1.

Let s ∈ X and t ∈ Y . If ms,t ≥ 3, then 〈εs, εt〉 ≤ −1
2 , and if ms,t = 2, then 〈εs, εt〉 = 0.

It follows that

(3–1) pX ≤ −
vX

2
.
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On the other hand, we have

(3–2) |X| vX = |Y| vY .

This is the number of edges in Γ connecting an element of X with an element of Y . A
direct calculation shows that

(3–3) ‖aX‖ =

{ √
|X| if X is of type I ,√
|X|(1− cos(π/m)) if X is of type IIm .

Finally, by definition of pX ,

(3–4) 〈aX, aY〉 = |X| pX .

Case 1: X and Y are of type I . Applying Equations (3–2), (3–3), and (3–4) we get

(3–5) 〈ε̃X, ε̃Y〉 =
pX
√

vY√
vX

.

Applying Equation (3–1) to this equality we get 〈ε̃X, ε̃Y〉 ≤ −
√

vXvY
2 . It follows that, if

either vX ≥ 4, or vY ≥ 4, or vX, vY ≥ 2, then 〈ε̃X, ε̃Y〉 ≤ −1. If vX = 1, vY ≥ 2 and
pX ≤ − cos(π/4) = − 1√

2
, then, by Equation (3–5), 〈ε̃X, ε̃Y〉 ≤ −1. If vX = 1, vY = 3

and pX = − cos(π/3) = − 1
2 , then, by Equation (3–5), 〈ε̃X, ε̃Y〉 = −

√
3

2 = − cos(π/6).
In this case (Y,X) is a bi-orbit of type 5 and m̃Y,X = m̃X,Y = 6. If vX = 1, vY = 2 and
pX = − cos(π/3) = −1

2 , then, by Equation (3–5), 〈ε̃X, ε̃Y〉 = −
√

2
2 = − cos(π/4). In

this case (Y,X) is a bi-orbit of type 2 and m̃Y,X = m̃X,Y = 4. If vX = 1, vY = 1 and
pX = − cos(π/m) with m 6= ∞, then, by Equation (3–5), 〈ε̃X, ε̃Y〉 = − cos(π/m). In
this case (Y,X) is a bi-orbit of type 1 and m̃Y,X = m̃X,Y = m. Finally, if vX = vY = 1
and pX ≤ −1, then, by Equation (3–5), 〈ε̃X, ε̃Y〉 = pX ≤ −1. In this case (Y,X) is a
bi-orbit of type 1 and m̃Y,X = m̃X,Y =∞.

Case 2: X is of type IIm and Y is of type I . Applying Equations (3–2), (3–3), and
(3–4) we get

(3–6) 〈ε̃X, ε̃Y〉 =
pX
√

vY√
vX(1− cos(π/m))

.

Applying Equation (3–1) to this equality, we get

(3–7) 〈ε̃X, ε̃Y〉 ≤ −
√

vXvY

2
√

(1− cos(π/m))
.

If m ≥ 5, then
√

1− cos(π/m) < 1
2 , hence, by Equation (3–7), 〈ε̃X, ε̃Y〉 ≤ −

√
vXvY ≤

−1. So, we can assume that m ∈ {3, 4}. Then we have
√

1− cos(π/m) ≤ 1√
2

and, by

Equation (3–7), 〈ε̃X, ε̃Y〉 ≤ −
√

vXvY√
2

. It follows that, if either vX ≥ 2, or vY ≥ 2, then
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〈ε̃X, ε̃Y〉 ≤ −1. If vX = 1, vY = 1 and pX ≤ − cos(π/4) = − 1√
2

, then, by Equation

(3–6), 〈ε̃X, ε̃Y〉 ≤ −1. If vX = 1, vY = 1, pX = − cos(π/3) = −1
2 and m = 4, then,

by Equation (3–6), 〈ε̃X, ε̃Y〉 = −
√

2+
√

2
2 = − cos(π/8). In this case (Y,X) is a bi-orbit

of type 4 and m̃Y,X = m̃X,Y = 8. If vX = 1, vY = 1, pX = − cos(π/3) = − 1
2 and

m = 3, then, by Equation (3–6), 〈ε̃X, ε̃Y〉 = − 1√
2

= − cos(π/4). In this case (Y,X) is
a bi-orbit of type 3 and m̃Y,X = m̃X,Y = 4.

Case 3: X is of type IIm and Y is of type IIm′ . Applying Equations (3–2), (3–3) and
(3–4) we get

〈ε̃X, ε̃Y〉 =
pX
√

vY√
vX(1− cos(π/m))(1− cos(π/m′))

.

Applying Equation (3–1) to this equality we get

〈ε̃X, ε̃Y〉 ≤ −
√

vXvY

2
√

(1− cos(π/m))(1− cos(π/m′))
.

Since
√

(1− cos(π/m)) ≤ 1√
2

and
√

(1− cos(π/m′)) ≤ 1√
2

, it follows that 〈ε̃X, ε̃Y〉 ≤
−√vXvY ≤ −1.

Lemma 3.4 Let X ∈ S , and let x ∈ VG . Then wX(x) = x− 2〈x, ε̃X〉ε̃X .

Proof Let Γ′ be a Coxeter graph, and let (W ′, S′) be its associated Coxeter system,
such that W ′ is finite. Let w′0 be the longest element of W ′ , and let (V ′, 〈., .〉′,Π′) be
the canonical root basis of Γ′ . Then, by Bourbaki [1], w′0(Π′) = −Π′ .

Let X ∈ S . Recall that ΠX = {εs | s ∈ X}. By Lemma 2.1 and the above, we have
wX(ΠX) = −ΠX , hence wX(aX) = −aX , therefore wX(ε̃X) = −ε̃X .

Recall that VX denotes the linear subspace of V spanned by ΠX . For all x ∈ V and
all u ∈ WX there exists y ∈ VX such that u(x) = x + y. This is true by definition for
all s ∈ X , hence it is true for all u ∈ WX . Let x ∈ VG . Let y ∈ VX be such that
wX(x) = x + y. Let y =

∑
s∈X λsεs be the expression of y in the basis ΠX . For g ∈ G

we have

x +
∑
s∈X

λsεs = wX(x) = g(wX)(g(x)) = g(wX(x))

= g(x) +
∑
s∈X

λs g(εs) = x +
∑
s∈X

λsεg(s) ,

hence λs = λg−1(s) for all s ∈ X . Since G acts transitively on X , it follows that λs = λt

for all s, t ∈ X . So, there exists λ ∈ R such that wX(x) = x + λaX = x + λ ‖aX‖ε̃X .
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We have

〈x, ε̃X〉 = 〈wX(x),wX(ε̃X)〉 = 〈x + λ ‖aX‖ε̃X,−ε̃X〉 = −〈x, ε̃X〉 − λ ‖aX‖ ,

hence λ ‖aX‖ = −2〈x, ε̃X〉. So, wX(x) = x− 2〈x, ε̃X〉ε̃X .

Proof of Theorem 2.2 We have 〈ε̃X, ε̃X〉 = 1 for all X ∈ S by definition. We have

〈ε̃X, ε̃Y〉 = − cos(π/m̃X,Y ) if m̃X,Y 6=∞ ,

〈ε̃X, ε̃Y〉 ∈ (−∞,−1] if m̃X,Y =∞ ,

by Lemma 3.3. Let χ ∈ V∗ be such that χ(εs) > 0 for all s ∈ S . Let χ̃ : VG → R
be the restriction of χ to VG . Then, for X ∈ S , χ̃(ε̃X) = 1

‖aX‖
∑

s∈X χ(εs) > 0. So,
(VG, 〈., .〉, Π̃G) is a root basis of Γ̃.

Let (W̃, S̃) be a Coxeter system of Γ̃, where S̃ = {s̃X | X ∈ S} is a set in one-
to-one correspondence with S . By Lemma 3.1, the map S̃ → SW , s̃X 7→ wX ,
induces a surjective homomorphism γ : W̃ → WG . By Lemma 3.4, the composition
f G ◦ γ : W̃ → GL(VG) is the rooted representation associated with (VG, 〈., .〉, Π̃).
By Theorem 1.1, it follows that f G ◦ γ is injective, hence γ is an isomorphism. So,
(W,SW) is a Coxeter system of Γ̃, and f G : WG → GL(VG) is the rooted representation
associated with (VG, 〈., .〉, Π̃).
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