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Abstract Experimental pure bending conditions are difficult to obtain when large deformations

and displacements are required. In this work, a new principle using two universal joints is proposed

and developed to enable such pure bending conditions. This principle has been applied to design an

apparatus suitable to test small size samples (such as wires of diameter < 1mm) at small curvature

radii (≃ 5mm) and to specifically provide small size samples moment-curvature relationship. This

article underlines and validates the abilities of this new apparatus by performing and analysing

tests on samples made of well-known material.

Keywords Pure bending · Wire · Tube

1 Introduction

Various industries tend to employ miniaturized equipment which is particularly true in the medical

field where devices such as stents, biopsy needles, coils, etc. are commonly used. These devices

are mostly made up of thin components such as wire or tube, that are often subjected to bending

load. The design of such devices thus requires the knowledge of these thin components moment-

curvature relationship. This relationship is often obtained directly from experimental pure bending,
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2 G. Antherieu et al.

or numerically deduced from conventional stress-strain relationship measured under uni-axial ten-

sion/compression. For most specimens, direct numerical estimation is impossible due to anisotropy,

material heterogeneity, tension-compression asymmetry, etc. Moreover, the compressive material

behaviour is usually not experimentally easy to obtain. An experimental means able to identify the

moment-curvature relationship would thus be of great interest.

Bending experimental and theoretical approaches are well documented in the literature [1,2,

3], and are still getting significant attention [4]. Pure bending tests allow to identify the material

moment-curvature relationship. In particular, different phenomena can be studied using bending

measurements, such as tension/compression asymmetry [5] or localization in the sample [6]. How-

ever, if pure bending conditions are straightforward in numerical approach, achieving pure bending

experiments is a thorny experimental problem, especially at large deformations. This work intro-

duces and evaluates the principle of an original device to apply pure bending load. This device is

intended to be used as a means to experimentally identify the moment-curvature relationship of

slender specimens.

Pure bending is a loading configuration where the specimen is a beam bent in one of its planes

of symmetry P by two opposite, yet equal, couples
−→
M = ±M−→z , where −→z is orthogonal to the

plane of symmetry. Couples are applied to the ends B and C of the beam [1]. No other loads are

applied to the specimen. In this configuration (Fig. 1,a):

• the concave part of the specimen is loaded in compression;

• the convex part of the specimen is loaded in tension;

• the neutral surface contains fibres that are not subjected to any tensile or compressive stress;

the neutral axis is the intersection of the neutral surface with the plane of symmetry P ;

• the overall resulting force
−→
R in the section S is zero and can be written:

−→
R =

∫∫

S

σ−→x dS =
−→
0 (1)

where σ is the Cauchy stress tensor, −→x the unit vector orthogonal to the cross-section S and

dS is a surface area element;
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Title Suppressed Due to Excessive Length 3

• the overall moment
−−→
MO at the point O of the neutral axis is related to the stress in cross-section

S by:

−−→
MO = M−→z =

∫∫

S

(y−→y ) ∧ (σ−→x )dS (2)

where −→y is a unit vector contained in the cross-section S and orthogonal to −→x . The plane

defined by (−→x ,−→y ) thus represents the plane of symmetry P afore mentioned.

Fig. 1: a) Beam loaded in pure bending, b) Stress distribution in a section S

Various apparatus were designed in the literature to generate pure bending loading [7,8,9,

10,4,11]. Most of them are using classical static 4-points bending configuration (Fig. 2,a). In this

configuration only 4 forces
−→
FA to

−→
FD are applied to the specimen (Fig. 2,a): as long as displacements

remain small, these forces are supposed to remain parallel and equal to each other.

As a consequence, the overall moment applied to the specimen expressed in eq. 2 can also be

written:

−−→
MO = −xFA

−→z + (x− L)FB
−→z = −

F

2
L−→z (3)

This moment
−−→
MO = F

2
l−→z is uniform between B and C (Fig. 2, a); the moment does not depend

upon the position of the cross section. Moreover, for small displacements, no tangential forces are

observed at contact points A, B, C and D, even though friction could occur, so that the resulting

reaction force
−→
R is zero between B and C.

For some materials (shape memory alloys -SMA- among others), large strain loading is required

to fully characterize specimens. Moreover, these materials are sometimes only available as thin

samples. A bending apparatus able to reach high strain (εxx ∼ 10%) on small size samples (∼ 1mm

diameter) is thus required to test such materials, which implies reaching small curvature radii and

allowing large displacement of the specimen extremities. With a conventional 4 points bending
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4 G. Antherieu et al.

Fig. 2: Various bending devices: a) conventional 4-points bending, b) device developped by Reelunn
et al.[4], c) apparatus presented in this paper

set-up such displacement would yet induce tangent friction forces at contact points A, B, C and

D. In these conditions, the specimen would not be loaded in pure bending (
−→
R 6=

−→
0 , eq 1). This

limitation applies to numerous other devices which are dedicated to pure bending [11,9,10].

According to the authors, the pure bending device designed by Kyriakides et al. is the most

appropriate to meet the required set-up characteristics. Reedlunn et al. miniaturized this system,

leading to a bending apparatus able to provide results on smaller samples (tubes of 3.176mm outer

diameter) [4]. This apparatus is a 4-points bending device using four rollers mounted on two loading

wheels (Fig. 2,b). This system overcomes the limitation of conventional 4-point bending machines:

the use of rollers enables the specimen to slide along its own axis. Tangential force elements are

thus maintained close to zero; the specimen slides until it reaches its equilibrium position, so that

the resulting reaction force
−→
R is zero (eq. 1). Yet, this system presents a limited curvature range
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Title Suppressed Due to Excessive Length 5

radii due to the constant distance between the two loading wheels. Moreover, the sliding of the

specimen leads to a variation of the loaded length during the testing.

To circumvent these limitations, an innovative pure bending principle has been proposed to keep

a constant loaded length during testing, and to reach a wide range of curvatures. This principle

has been used to design an apparatus able to reach 5mm radius of curvature from a initial linear

geometry, with wire diameters of less than 1mm.

The principle is also based on a 4-points mechanism (Fig. 2,c): one grip is static (points C and

D) while the other grip (points A and B) can freely move in every directions. This mobile grip

only applies the couple
−−→
MO to the sample through the contact points A and B. As the mobile

grip applies no resulting load to the specimen, the resulting reaction force
−→
R in the specimen cross

section is zero (eq. 1). This insures both pure bending and the possibility to reach small curvature

radii. To our knowledge no device using this technical solution or presenting the same ability has

ever been presented in the literature.

This paper presents the apparatus (section 2), the validation process (section 3), and prelimi-

nary experimental bending results (section 4).

2 Experimental set-up

2.1 Pure bending apparatus

An original pure bending apparatus has been developed. The technical solutions chosen to obtain

the required mobility of the moving grip are presented in Fig. 3. As a rough description:

• the bending couple
−→
M is applied to extremity H of shaft 1;

• the required grip mobilities are insured by two universal joints (Fig. 3,a) located at both ex-

tremities of shaft 2. These mechanical linkages transmit the bending load, and minimize both

shear and torsion in the specimen;

• the ball bearing at the specimen extremity also minimizes torsion and shear loads in the speci-

men;

• using a counterweight, the centre of gravity of the shaft 2 is designed to be localized at the

centre of the universal joint. This prevents the specimen from being loaded with shaft 2 own

weight.
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6 G. Antherieu et al.

Fig. 3: Bending apparatus: a) 3

4
view, b) and c) front views in different positions during a bending

test.

Two extremal specimen positions along with sectional views of the grips and specimen ex-

tremities are presented Fig. 3 b and c. The miniaturized apparatus used in this work can fit

in a 60mm × 90mm × 100mm volume. The principle of this pure bending apparatus has been

patented [12].
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Title Suppressed Due to Excessive Length 7

2.2 Measurement methods

During the bending test, both the bending moment
−−→
MO (section 2.2.1) and the curvature radius R

(section 2.2.2) are measured. In the following part, the measurement methods are presented along

with the related errors.

2.2.1 Bending load measurement

In this study the bending moment
−−→
MO is produced by an actuator wire pulling a pulley (not drawn

on the figure). The wire is translated using a Gabo Eplexor 500N tensile machine. The wire load is

measured using a 25N load cell. A preliminary calibration study provided an error on the moment

−−→
MO estimated to be 1.10−4Nm.

2.2.2 Curvature measurement

The specimen deformed shape between point B and C is a perfect arc of circle during the loading

if the following hypotheses are fulfilled:

• the specimen is loaded in pure bending (Hyp. H1);

• the initial shape of the neutral fibre is a straight line or a circle, with initial curvature radius

R0 (Hyp. H2);

• the material is homogeneous between B and C (Hyp. H3);

• the cross section is identical in each section between B and C (Hyp. H4).

It should be underlined here that the resulting specimen shape should remain a circle even if the

material mechanical behaviour would be non-linear or asymmetrical in tension and compression.

In this work, the shape of the specimen between points B and C has been emphasized by studying

the local curvature radii variations. The following section details the applied methodology.

Pictures were taken during the test and synchronized with the load measurement
−−→
MO. The

specimens local curvatures were then estimated along the specimens using these pictures (Fig. 4).

Different steps are required:

• The median line of the sample is identified, providing several median points P = (p1, ..., pn)

(Fig. 4).The coordinates of points pi are noted (xi, yi);
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8 G. Antherieu et al.

• the identified radius Rj
id is computed locally on a mobile window containing 2K+1 points, and

centred on a point pj ;

• using these points, a circle is fitted in the least mean-square sense. The distance between the

circle and a point pi of the mobile window is written:

d
j
i (Xo, Yo, R

j
id) = |‖

−−→
Opi‖ −R

j
id| = |

√

(Yo − yi)2 + (Xo − xi)2 −R
j
id| (4)

where the unknowns are the circle centre coordinates Xo, Yo and its radius R
j
id. These unknowns

are estimated in the least mean square sense by minimizing the function Φ =
j+K
∑

i=j−K

d
j
i

2
(Xo, Yo, Rid).

Local curvature radii Rj
id are estimated along the whole specimen by moving the mobile window

point after point. The window size 2K + 1 is adjusted so that the window length is at least two

times the specimen thickness.

3 Numerical validation of radius measurement

Radius measurement requires the evaluation of a second derivative and is thus very sensitive to

noise. This is inherent to experimental conditions such as lighting, image resolution/pixelation,

etc. that induce noise on median points pi identification. The noise sensitivity to image resolu-

tion/pixelation has been numerically estimated on two cases:

• dealing with uniform curvature radius on a numerical circle;

• dealing with non-uniform curvature radius on a numerical spiral.

Perfect arc of circle and spiral numerical pictures were created (Fig. 4, a and c). Pixel size was

chosen to be 1px = 0.0125mm so as to mimic pictures obtained experimentally. The analytical

spiral local curvature radius function can be written:

Rspiral = αθ + β (5)

where α is the radius increasing rate and β is the initial radius. The chosen values for α, β, the

circle radius Rcircle and the line thickness are reported in Table 1.

The identified local curvature radii Rid along the curvilinear abscissa of the specimen s(mm)

are presented Fig. 4 b,d. Concerning the numerical circle, the method was able to identify Rid
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Title Suppressed Due to Excessive Length 9

Rcircle α β Line thickness

5mm 6.25
π
mm 3.125mm 0.5mm

Table 1: Numerical circle and spiral parameters

with a mean relative error of 2.4 10−3mm and corresponding standard deviation of 1.0 10−2mm

in comparison with the circle radius Rcircle (Fig. 4,a). When curvature radius is not uniform

(numerical spiral), error er associated with the local curvature radius estimation remains lower than

1% (Fig. 4,b). Corresponding mean relative error was measured as 9.9 10−3mm with a standard

deviation of 1.4 10−2mm.

A global radius estimate can also be identified on the specimen by considering all the identified

median points pi in the window. With this setting, the circle global curvature radius Rglobal has

been identified as Rglobal = 4.996mm (error of 0.08%) on the numerical circle picture.

For curvature radii higher than β = 3.125mm, local curvature radius identification errors are

thus considered negligible and independent of the curvature; these results confirm the ability of the

method to estimate local curvature radii along specimens.

4 Experimental pure bending validation

Since the performances of our measurement method have been evaluated, the apparatus ability to

apply pure bending load to specimens has now to be demonstrated: experiments on well-known

materials were thus performed for validation. These tests aim at demonstrating the validity of

hypothesis H1 (section 2.2.2).

Specimens were selected so as to fulfil hypotheses H2, H3 and H4. In these conditions, regardless

the mechanical behaviour of the tested material, if a pure bending test is achieved (H1), then:

• the specimen curvature should be uniform between points B and C (circular shape) (i);

• experimental and theoretical bending moments should be equal (eq. 2) (ii);

In this section, assessments (i) and (ii) were checked on two materials presenting very different

mechanical behaviours: work-hardened steel and annealed copper specimens.
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10 G. Antherieu et al.

Fig. 4: Numerical pictures with identified median points (thin blue line) and a typical mobile window
(thick blue line) centred on a median point (red spot), along with estimated Rid and corresponding
error er: a) and b) circle, c) and d) spiral.

4.1 Steel specimens

A first bending test has been performed using work-hardened steel (not annealed) wires (diameter

0.5mm) at room temperature (Fig. 6).

The local fitting method described previously has been applied on various pictures to examine

the local curvature along the sample during the bending test (Fig. 5). Results underline the local

curvature uniformity along the sample at different stages of loading. This uniformity confirms the

pure bending hypothesis H1.
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Title Suppressed Due to Excessive Length 11

For further validation, the material elastic modulus deduced from the pure bending test has

been compared to the elastic modulus identified during the uni-axial tension test.

Fig. 5: Steel specimen–local fitting method used to check the local curvature uniformity: a) Local
curvature along the sample for various pictures , b) A typical result, with the identified median
points pi (thin blue line) located between the first point p1 (green diamond) and the final point
pn (green triangle), along with a typical computing window (thick blue line) centred on a median
point pj (red spot), c) Another typical result.

Under Bernoulli hypotheses, and taking the origin of the coordinates at the neutral axis of the

cross section (Fig. 1,b), the strain gradient in the section can be written:

εxx = y(
1

R
−

1

R0

) (6)

where R0 and R are the initial and current curvature radii respectively. It should be underlined

here that equation 6 remains valid regardless the material mechanical behaviour.

In the specific case of a linear-elastic behaviour, the bending moment
−−→
MO can be easily deduced

from eq. 2 and 6 [1]:

−−→

MO = EI(
1

R
−

1

R0

)−→z (7)

where E is the Young’s modulus and I the second moment of area. Steel specimen tensile behaviour

was determined experimentally using a Gabo Eplexor 500N machine with a 500N load cell at nearly

isothermal strain rate in room temperature (Fig. 6,a):
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12 G. Antherieu et al.

• Young modulus found during the tensil test is ETension
steel = 200GPa;

• offset yield point was taken at 0.2% plastic strain. The corresponding offset yield stress and

strain are Rp0.2 = 1.66GPa and εp0.2 = 1.03%

In the linear-elastic domain, the experimental bending load increases linearly with curvature ( 1

R
)

as predicted by the theory (Fig. 6,b):

• results show good linearity, both during loading for MO < Mp0.2 = 0.021Nm and unloading;

• the identified Young modulus with the experimental moment is EBending
steel = 205GPa; this value

is consistent with the literature [13] and with the experimental tensile behaviour, even if the

use of bending tests are usually not recommended to measure elastic moduli,

• conjectured offset yield curvature Cp0.2 = 33 m−1 was determined from tensile behaviour , for

curvatures 1

R
> Cp0.2 the elasto-plastic domain is reached, and the bending moment

−−→
MO is no

longer linear with curvature: the sample is plastically strained.

Fig. 6: a) Tensile testing on work-hardened steel with offset yield point at 0.2% plastic strain, b)
Bending testing on work-hardened steel.

As expected, the measured moment
−−→
MO variation is in accordance with the theory.

4.2 Copper specimens

Experiments have also been performed on soft annealed copper wires (diameter 0.6mm) at room

temperature (Fig. 8).
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Title Suppressed Due to Excessive Length 13

Again, the local fitting method have been used to check the local curvature uniformity along

the sample at different stages of loading (Fig. 7). At low curvatures, experimental lighting defects

unfortunatly led to a shift in the identification of median points pi, which biased the local curvatures

estimation (cf. section 2.2.2). Nevertheless, local curvature uniformity along the sample at different

stages of loading confirms the pure bending hypothesis H1.

Fig. 7: Copper specimen–local fitting method used to check the local curvature uniformity:: a) Local
curvature along the sample for various pictures , b) A typical result, with the identified median
points pi (thin blue line) located between the first point p1 (green diamond) and the final point
pn (green triangle), along with a typical computing window (thick blue line) centred on a median
point pj (red spot), c) Another typical result.

Although the specimens were loaded beyond the linear elastic field, the general bending moment

expression given in eq 2 remains valid. The tensile behaviour of the specimen σtension
xx (ε) was

determined experimentally using a Gabo Eplexor 500N machine with a 500N load cell, during a

quasi-static isothermal test at room temperature (Fig. 8, a). Specimen mechanical behavior has

been assumed to be symmetrical in tension-compression [14]. The conjectured bending moment

versus curvature has simply been calculated using eq 2, knowing the σxx(ε) function in tension and

compression. Comparison between the conjectured and experimental moment
−−→
MO is presented in

Fig. 8. Corresponding mean relative error was found to be −1.8 10−5Nm with a standard deviation
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14 G. Antherieu et al.

Fig. 8: Bending test on copper: comparison between experimental and theoretical results

of 5.7 10−5Nm. This error is one order of magnitude less than the error on bending moment

measurement (10−4Nm).

These experimental results thus confirm the ability of our device to apply pure bending moments

to specimens.

4.3 Discussion

Experimental results afore-presented validate the apparatus potency to be used as a means to access

moment-curvature relationship of slender specimens even if large displacements and deformation

are required. To improve the current device, the load cell sensitivity could be enhanced, enabling

a more accurate bending moment estimation. Moreover, the quality of the experimental pictures

could be improved by addressing the following points:
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• enhancement of the camera resolution;

• improvement of the lighting conditions so as to improve the identification of the median points

pi (issues presented in section 4.2).

These modifications would reduce the related error of curvature identification.

5 Conclusion

An innovative principle to perform pure bending at high deformation and allowing large displace-

ments for specimen extremities has been proposed. This principle has been applied and an appa-

ratus has been developed and tested. This apparatus is a tool to experimentally identify material

moment-curvature relationship. The errors associated with the apparatus and with the measure-

ment methods are estimated to be: 10−4Nm on the bending moment measurement, and 0.08% on

the global radius of curvature. The bending apparatus has been tested on small samples (wires

with a diameter of 0.5 mm) made of conventional work-hardened steel and copper. In both cases

the curvature uniformity along the sample proved the device ability to apply pure bending load to

specimens. The measured bending moments versus curvature were also analysed and proved to be

consistent with literature and theory. The apparatus was thus able to provide reliable experimen-

tal results at small curvature radii (5mm). This pure bending apparatus will be used for further

investigations, such as determining specific material behaviour in bending.
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