
HAL Id: hal-01403958
https://hal.science/hal-01403958

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Basic Morphological Operators Applied On Partitions
Serge Beucher

To cite this version:

Serge Beucher. Basic Morphological Operators Applied On Partitions. 2013. �hal-01403958�

https://hal.science/hal-01403958
https://hal.archives-ouvertes.fr

Basic Morphological Operators Applied On Partitions

Serge BEUCHER
CMM - Mines ParisTech

(March 26, 2013)

Abstract

This document describes morphological operators designed for partition images. Two
approaches are addressed. In the first one, each cell of the partition is considered
independently of the others and various anti-extensive operators can be defined on it.
However, these operators can be applied directly on the whole partition. There is no need to
extract each cell to transform it. The second approach, on the contrary, considers a partition
as a representation of a Delaunay graph. Morphological operators can be defined on this
graph. This document explains how these operators can be implemented directly on the
partition image.
These operators have been implemented with the MAMBA Image library.

1. Introduction

Partitions (also called partition images or mosaic images) are very common in image
analysis and in Mathematical Morphology. They can be found as the result of various
morphological operators: watershed transforms, hierarchical segmentations, labellings,
residual transforms, especially with the associated functions of a residual operator.
The classical way for handling partitions considers that each tile or cell of the partition is a
vertex of the valued Delaunay graph associated to this partition. This representation allows to
define basic morphological transforms (erosion and dilation) on this neighbourhood graph. In
this case, the partition is not modified. Only the valuations of the tiles are changed. These
operators have been seldom used in practice. It is surely due to the fact that they seem to
require the Delaunay graph associated to the partition to be obtained. However, it is possible
to define them directly on the partition image rather quickly. We shall discuss this point in
the second part of this paper.
The second approach is totally the opposite. Indeed, when a partition is available, it is very
interesting to have the capability to apply basic operators to each cell of the partition as if it
was alone and not adjacent to the other cells. However, as a partition is often represented as a
numerical function where a single grey level labels all the pixels which belong to the same
cell, it is not simple to realize efficiently, that is rapidly, such transforms. Moreover, some
operators are not always meaningful. It is the case, in particular, when dealing with extensive
transforms (as dilations for instance).
We shall explain in the first part of this document which operators can be defined and how
they can be obtained.
These operators have been implemented with the MAMBA IMAGE library [1]. The source
code is given in the appendix.

1

2. Definitions

Let us start with some definitions.

2.1. Partition image and background cells
Let be a partition of the space E:Yk , k c [1,K]

≤Yk,Yk∏, k ! k∏ : Yk 3Yk∏ =—
4

kc[1,K]
Yk = E

K is the number of connected components (tiles) of the partition.
A 2D partition image is represented by a numerical image f defined as:

x cE : f(x) = vk if x cYk
vk is an integer value also called the label of the cell Yk. If Yk and Yk’ are adjacent cells, we
have .vk ! vk∏

This definition simply means that all the pixels belonging to the same cell have the same
value but different cells may have the same label provided that they are not adjacent. Note
that, thanks to this definition (less restrictive than the definition where each cell has a unique
label), any greyscale image can be considered as a partition image (Fig. 1).
Therefore, as we may have different tiles with the same label i, we will note:

Xi = 4
vk=i

Yk

the union of all the cells Yk of the partition which share the same label i. We have:
E = 4

ic[0,n]
Xi

n is the highest label used in the partition.
The set X0 containing all the cells with a label equal to 0 will play a particular role in the
following. This set is called the background of the partition. It is perfectly allowed that a
partition does not contain any background. This background allows to define and to use
extensive operators.

Fig.1: Examples of partition images. On the left, example of a “classical” partition.
However, any grey level image can be considered as a partition (on the right).

2.2. Indicator function
Another useful definition in the sequel is the following:
Let M be a set included in E. We denote m the valued indicator function of M defined as:

m(x) = n if x cM
m(x) = 0 if not

2

n is the highest label used in the partition.

3. Operators applied to the cells of a partition

This section will explain how to define and to realize basic operators applied on each
cell of the partition. Due to the fact that all the cells are adjacent, the only operators which
should be defined must be anti-extensive otherwise the cells would overlap after
transformation. However, we shall see that it is possible to apply extensive operators on
partitions provided that a background exists in this partition.

3.1. Basic cells erosion
It is obviously possible to compute this operation cell by cell. Each cell is eroded and a new
function f’ is then built from each eroded cell thus generating a new partition where each
previous cell is separated from the others by a background region. However, this procedure
would be extremely slow. Let us describe faster ways to obtain this result.
We want to define an operator εP applied on the function f representing the partition Yk
which produces a new function f’ representing the partition where each cell Y’k is theYk

∏

erosion with a structuring element B of the initial cell Yk :
x c E : f∏(x) = vk if x cYk0

-
B

Note that B must contain its origin otherwise the erosion would not be anti-extensive (albeit
we know that, if this condition is not fulfilled, this case can be considered as a mere
translation of the transformed partition).
Note also that the initial background cells (the set X0) are also eroded. However, as every
point x which does not belong to any eroded cell is given the value 0 in f’, the background set
X0

’ of the final partition is larger than the initial set X0:
X0 _X0

∏

We may also remark that:
x c E : f ∏(x) = i if x c Xi 0

-
B

where Xi is the union of all the cells Yk with a label equal to i. Indeed, every cell Yk

belonging to Xi does not touch the other cells of Xi. Therefore, we have:
Xi V

-
B= 4

vk=i
Yk 0

-
B

Let us prove that f’ is equal to:
f∏ = P(f) = f.m

with m, valued indicator function of the set:
M = x : f0

-
B (x) = f/

-
B (x)

M is the mask of the points of E where the (classical) erosion of f by B is equal to the
dilation.
Denoting Zi (f) the threshold of f at level i, we have:

Zi(f) = x c E : f(x) m i
That is:

Zi(f) = 4
jmi

(Xj)

and:
Zi(f∏) = 4

jmi
Xj 0

-
B

We have also:
Xj = Zj(f)#Zj+1(f) = Zj(f)3Zj+1

c (f)

3

Therefore, we can write:
Zi(f∏) = 4

jmi
Zj(f) 3Zj+1

c (f) 0
-
B

Zi(f∏) = 4
jmi

Zj(f)0
-
B 3 Zj+1

c (f)0
-
B

Zi(f ∏) = 4
jmi

Zj(f)0
-
B 3 Zj+1(f)/

-
B

c

and:
Zi(f∏) = 4

jmi
Zj((f))3Zj+1

c ((f))

where ε and δ are simply another notations for the erosion and the dilation.
The mask M can also be defined as the threshold at 0 of the difference between the erosion
and the dilation (as the structuring element B contains its origin, we have always).(f) [(f)

 M = Z0((f) − (f))
This threshold can be written (see [5], appendix A for more details):

Z0((f) − (f)) = 4
j

Zj((f))3Zj+1
c ((f))

Let us write the threshold of the function f’. We have indeed:
Z(m) = M (i > 0)

Therefore:
f∏ = f.m u Zi(f∏) = Zi(f)3Zi(M) = Zi(f)3M

Note that when i is equal to 0, all the thresholds are equal to E. Therefore:

Zi(f∏) = Zi(f)3 4
j

Zj((f))3Zj+1
c ((f))

Zi(f∏) = 4
j

Zj((f))3Zj+1
c ((f))3Zi(f)

We can split this expression into two parts. The first one corresponds to the sections higher
than or equal to i. The second part corresponds to the sections lower than i.

Zi(f∏) = 4
jmi

Zj((f))3Zj+1
c ((f))3Zi(f) 4 4

j<i
Zj((f))3Zj+1

c ((f))3Zi(f)

Zi(f∏) = 4
jmi

Zj((f))3Zj+1
c ((f))3Zi(f) 4 4

j<i
Zj((f))3Zj+1

c ((f))3Zi(f)

 (a) (b)

In term (a), we always have as the erosion is increasing and anti-extensive.Zj((f)) _ Zi(f)
This term can be reduced to:

(a) = 4
jmi

Zj((f)) 3 Zj+1
c ((f))

Regarding term (b), we always have as the dilation is increasing andZj+1
c ((f))3Zi(f) = —

extensive. So (b) is equal to the empty set:
(b) = —

Finally, we obtain:
 Q.E.D.Zi(f∏) = 4

jmi
Zj((f))3Zj+1

c ((f))

The erosion f’ of the cells of the partition image f by a structuring element B containing its
origin is therefore obtained by the following sequence of operations:

Compute the morphological gradient of f with B.
Extract the pixels with a gradient equal to 0 (by thresholding). This produces a mask M.
Then compute the indicator function m of this set M.
We obtain finally .f∏ = f.m

4

Fig.2 illustrates this operator. The corresponding MAMBA operation (named cellErode) is
given in the appendix.

Fig.2: Cells erosion (size 1, hexagonal structuring element) of the previous partition
images (see Fig. 1)..

3.2. Cells dilations and openings
Defining the dilation of the cells of a partition is not easy as there is generally no “room”
between the different cells to insert the dilations. The only exception concerns partitions with
a background. In this case, it is possible to dilate each cell and to keep only parts of the
dilated cells which fall into the background. If we denote by b the indicator function of the
background X0, we could define the dilation δP as:

 P = f/
-
B . b - f

However, this definition is quite dangerous because, if the structuring element B is large, the
dilation of some cells, those with a high valuation, will invade the background region to the
detriment of the dilations of the cells with a lower valuation.
To cope with this problem, the only allowed structuring element B must be the elementary
structuring element (square or hexagon). This is equivalent to use a geodesic dilation. At
each step, the elementary operation is performed:

P = f/
-
B . b(f) - f

Where b(f) is the indicator function of the background of f. Then the next step of dilation is
achieved by replacing f by δP and by iterating the operation.
This transformation however is not very useful. Therefore it has not be implemented.

There is another case where the dilation of the cells can be performed with any structuring
element B. This is allowed in the definition of the opening gP of each cell by B. This operator
is simply defined by:

P = P /B
Indeed, in this case, the dilation by , transposed structuring element, is always contained in

-
B

the non background initial cells.
The corresponding MAMBA operation (named cellsOpen) is given in the appendix. Fig. 3
shows an example of opening of a partition.

5

Fig. 3: Hexagonal opening of size 3 (right) of the cells of the partition (left).

3.3. Elementary operators applied on cells
Most of the morphological operators use combinations of basic transforms defined on simple
structuring elements composed by doublets of points in a given direction. It is, for instance,
the case in the MAMBA library. Considering a structuring element L made of two points,
extremities of a vector a, two basic operators are defined:

L[f(x)] = inf(f(x), f(x + a))
and

L[f(x)] = sup(f(x), f(x + a))
Combining these two operators (respectively called infNeighbor / inFarNeighbor and
supNeighbor / supFarNeighbor in MAMBA) leads to the definition of many morphological
transformations. These two operators can also be written:

 if L[f(x)] = f(x) f(x) [f(x + a)
 if notL[f(x)] = f(x + a)

 if L[f(x)] = f(x) f(x) m f(x + a)
 if notL[f(x)] = f(x + a)

However, when defining the erosion of the cells of a partition, the basic transformationP
which is used can be written:

 if P
L[f(x)] = f(x) f(x) = f(x + a)

 if notP
L[f(x)] = 0

The definition of this operator is similar to the two previous ones. Replacing the two
inequalities by a strict equality when comparing the values of the two pixels amounts to
consider any pixel with a value different from the value of the pixel at the origin of the
structuring element as a pixel belonging to the outside of the cell. This is precisely what we
want.
A dual operator can also be defined. We can write:P

L

 if P
L[f(x)] = f(x) f(x) ! f(x + a)

 if notP
L[f(x)] = 0

These two operators have been programmed with MAMBA. They are named equalNeighbor
and nonEqualNeighbor and are given in the appendix.
These two operators allow to define hit-or-miss and thinnings transforms applied to each non
background cell of the partition.
Let (T, T’) be a doublet of structuring elements, with . We can define:T3T∏ = —

 if P
T[f(x)] = f(x) f(x) = f(x∏),≤x∏ cTx

6

 if notP
T[f(x)] = 0

 if P
T∏[f(x)] = f(x) f(x) ! f(x∏),≤x∏ cTx

∏

 if notP
T∏[f(x)] = 0

The Hit-or-Miss transform of the partition P by (T, T’) is therefore:P

P
T,T∏

= P
T . P

T∏

We see that, in order to get non zero and anti-extensive transforms, the common origin of
both structuring elements T and T’ must belong to T.
A partition thinning is defined by:P

P = I − P

P(f) = f − P(f)
These operators (cellsHMT, cellsThin and cellsFullThin) have been implemented and are
given in the appendix. Fig. 4 gives the result of a complete thinning operator applied on a
partition image when an homotopic structuring element is used (D element, see [3]).

Fig. 4: Complete D thinning operator applied to partition cells. When a cell is not simply
connected, this operator cannot reduce it to a single point (homotopy preservation).

3.4. Distance function
A fast computation of the distance function of each non background cell can bedP(f)
achieved easily.

Fig. 5: Distance function of the cells (right) of the partition (left).

7

We simply need to perform a size one erosion of the partition image. Then, after a
thresholding of the eroded partition, we compute the distance function of the binary set. The
final distance function is obtained by adding the indicator function of the initial non
background cells (Fig. 5).
Here is the detailed algorithm:

Compute the size 1 cells erosion, P(f)
Extract from the eroded partition the non zero pixels: X = x : P(f(x)) ! 0
Compute the distance function of X, d(X)
Define the indicator function k: k(x) = 1 if f(x) > 0
Compute the cells distance function : dP dP(f) = d(X) + k

This operator is named cellsComputeDistance in the appendix.

3.5. Cells reconstructions
Cells reconstruction is a very important tool when dealing with partitions. Two main
operators are needed. The first one consists in reconstructing among the different cells of a
partition those which are marked. The marker set (binary) M allows to select some cells in
the initial partition f. The final partition RP(f, M) is composed of these marked cells (their
label value is preserved) and of background cells. The second operator aims at replacing the
label value of some cells by a new one. The cells to be modified are pointed by a marker, the
new value being the grey level of the marker. These two operators are in fact very similar and
they are built the same way. We can consider that the first operator is equivalent to the
second one where each marker value is identical to the label value of the corresponding
marked cell. If each cell of the partition had a unique value (as many labels as cells), these
two transformations could be implemented easily through the definition of a lookup table
where the initial labels would be replaced by new ones according to the values indicated by
the markers. However, with the extended definition of a partition given above, the
implementation is more complex.

Fig. 6: Profile of a partition image f in a given direction.

Indeed, using the geodesic reconstruction can be a solution but if, in the one hand, the size of
the cells is very small (one pixel wide for instance) and/or, in the other hand, the markers are
placed on the boundary of the cells, the geodesic reconstruction will not work because either
this reconstruction will invade non marked adjacent cells or some cells will not be
reconstructed despite the fact that they are marked. One solution to this issue consists in
using directional reconstructions. This operator already exists in the MAMBA library

8

(buildNeighbor). Fig. 6 to 14 illustrate how to use it. Note that, as the process is directional,
the illustrations which are monodimensional describe nevertheless the exact algorithm as it
uses buildNeighbor which is a true monodimensional operator.

Let us consider a profile in a given direction α of a partition f (Fig. 6). The first step of the
algorithm will consist in detecting all the grey levels transitions in a given direction by means
of a directional gradient for instance (Fig. 7):g

g = f/
-
L − f0

-
L

Where is a doublet of adjacent points in direction α.L

Fig. 7: Directional gradient of the previous profile.

Fig. 8: Mask function h corresponding to the zeros of the previous gradient image.

Note that the transition is detected whatever its orientation (upward or downward). This can
be observed in the previous figure when the thickness of a cell is equal to 1. In this case, two
adjacent transitions appear.

Then, a mask function h is defined corresponding to the zero values of the previous one (Fig.
8):

 if h(x) = n g (x) = 0
 if not.h(x) = 0

(Remind that n is the highest label value of the partition).

9

Fig. 9: Initial profile and marker function m. This function marks the cells which will be
rebuilt and gives their new values.

Consider now the marker set M, that is the set which indicates the cells of the partition to be
rebuilt and, more precisely, the associated valued function m where each marker is given a
grey value corresponding to the new label of every marked cell (Fig. 9).

Fig. 10: Dilation of the previous markers to insure that the directional reconstruction will
be initiated.

Fig. 11: Intersection of the previous markers with the mask (reconstruction will occur
inside the mask).

10

It is necessary to perform an initial directional dilation of m in order to be sure that the
following directional reconstruction will occur in any case, especially when a marker is
placed at the boundary of a cell. The direction of the dilation is the same as the direction of
the previous directional gradient. Note that this dilation will never mark unwanted cells for
the reason explained below. We obtain a new marker function (Fig.10).m∏ = m/

-
L

Computing the function allows to keep only parts of m’ which are less than h (Fig.(m∏ . h)
11).

A directional geodesic reconstruction of the function h can then be achievedR (h, m∏ . h)
using the function . The direction used is obviously the direction of the previousm∏ . h
gradient (Fig. 12). The intersection with h prevents the possible marking of adjacent cells
which have been addressed above.

Fig. 12: Directional reconstruction of the mask.

Note that some markers may have disappeared in . These markers correspond to thinm∏ . h
cells in the current direction α. However, it is not at all a problem as we will see in the
sequel. Note also that the purpose of the directional gradient is to provide a gap between
adjacent cells in order to prevent the propagation of the reconstruction into non marked cells.
This gap also prevents the initial directional dilation of the markers to overlap on the adjacent
non marked cells.

Fig. 13: Reintroduction of the markers which are too thin to be taken into account in the
reconstruction.

11

At the end of this step, we just have to reintroduce the markers which have been suppressed
during the process (Fig. 13). In fact, these markers have not contributed to the reconstruction
in the current direction. This reintroduction is simply achieved by a supremum with the
reconstruction:

R (h,m∏ . h)-m

The resulting image can be used as a new marker for iterating the entire process in another
directions until idempotence (Fig. 14).

Fig. 14: Final reconstruction when all the directions are used iteratively.

Note that it is not necessary that the marker function be composed of flat connected
components. Indeed, if different values appear in a marker, the corresponding marked cell
will be given a new value equal to the maximum of the marker values.

Two operators are implemented in Mamba. The first one, cellsBuild extracts from an initial
partition image cells which are marked by a marker function and labels them with the label of
the marker. The second one, cellsExtract, simply extracts cells which are marked by a binary
marker.

Fig.15: Cells of the left partition image which are marked (marker set in red) are
extracted, unmarked ones become background cells (right).

Fig. 15 illustrates this transformation applied to extract marked cells of a partition image.

12

Fig. 16: The upper right partition image is used as a marker to rebuild and to value the
cells of the upper left partition. The result of the operation is the lower image.

Fig. 16 shows a cells reconstruction of a partition image which uses as markers the cells of
another partition image.

Fig. 17: Opening by reconstruction of size 8 (right image) of the cells of the left partition
image.

Finally, by combining the cells erosion and the cells reconstruction, it is very simple to define
a reconstruction opening operator which applies simultaneously on each cell of a partition.

13

This operator can be found in the appendix (it is named cellsOpenByBuild) and Fig.17
illustrates it.

4. Operations on the partition graph

In the previous part, we considered the partition image as a patchwork of cells. The
same operation is performed on every cell of the partition independently of the adjacent cells.
Everything happens as if each cell was extracted, was processed and reinserted again in the
partition.

Fig. 18: Representation of a partition as a valued graph.

In this section, on the contrary, a partition image will be considered as a representation of a
valued Delaunay graph (Fig. 18). Each cell of the partition corresponds to a valued vertex of
the graph, the grey value of the cell being equal to the value of the vertex. Vertices
corresponding to adjacent cells are connected by an edge in the graph.

4.1. Erosion and dilation of the partition graph
Elementary morphological operators can be defined on this graph ([8], [9]).
Let G(V,E) the Delaunay graph corresponding to a partition P. V is the set of vertices (that is
the cells of the partition) and E the set of edges connecting the adjacent cells. The elementary
dilation of G is a new valued graph G’(V, E) with the same structure (same vertices and(G)
edges) but where the new value of each vertex i is given by:vi

∏

vi
∏ = sup

kcNi

(vk)

Ni being the neighborhood of i composed of i and of all its neighboring vertices (Fig. 19).

Similarly, we can define the eroded graph as the graph where the new value ofG∏∏ = (G) vi
∏∏

each vertex i is given by:
vi
∏∏ = inf

kcNi
(vk)

Dilations and erosions of larger sizes can be defined by iteration:
n(G) =

n

) ..) (G)

n(G) =
n

) ..) (G)

14

Fig. 19: Neighborhood of a vertex v0 in a graph which is considered for the definition of
the dilation and the erosion.

New partition images can be associated to the new graphs. If P is the partition corresponding
to G and f, the corresponding image, we have:

f(x) = vi if x cYi
Yi being a cell of the partition P.
A new partition P’ corresponds to the graph . This partition is represented by aG∏ = (G)
function f’ defined by:

f∏(x) = vi
∏ = sup

kcNi

(vk) if x c Yi

Fig. 20: Each of the two adjacent cells (a) and (b) is adjacent to a maximal cell with the
same value v1 (upper left). The corresponding graph is shown in the upper right. After
dilation of the graph, the cells (a) and (b) have merged (lower left) and the edge joining
these two cells (in blue) has been contracted (lower right).

15

However, the cells of the partition P’ are not identical to the cells Yi of the initial partitionYi
∏

P. Indeed, two or more adjacent cells in the partition P (with different values) may have the
same value after dilation or erosion of the graph. So, these initial cells of the partition P will
be merged into a single cell in P’ as they were adjacent and they now have the same value.
Therefore the partition P’ is the representation of a new graph G* which is different from the
graph . This new graph is obtained by merging some adjacent vertices and byG∏ = (G)
connecting the resulting vertex to the remaining ones (Fig. 20). This operation is called edge
contraction.

4.2. Defining graph operators on partitions
Performing morphological transforms on graphs is an interesting approach (albeit not really
new as any operator applied on a digital image is in fact realized on a neighborhood graph).
However, these transformations are seldom used (except in hierarchical segmentations). This
is surely due to the fact that the step consisting in generating a graph from a partition image
followed by the reverse step to build the resulting partition image is a tedious and
time-consuming task, especially if we want to go back and forth between the image and the
graph representations. Indeed, using a graph representation allows to deeply reduce the
amount of data to be processed, but this also prevents to see the result of the operations,
which is a very annoying drawback.

Fig. 21: Graph dilation (upper right) and erosion (lower right) performed directly on the
partition image (left).

Fortunately, it is possible to define graph operators by acting directly on the partition image
without the need to explicitely build the corresponding graph. Let P be the partition image

16

associated to the graph G. We can obtain directly the partition P’ associated to the graph
 by the following operation:G∏ = (G)

Dilate the function f representing the partition P.
Perform a reconstruction of the partition P with as marker:(f)

P t f tRP(f, (f)) = f∏ t P∏

The dilation of the partition image f allows to mark each cell with the supremum value of all
its neighbors. This partial marking is then propagated into the entire cell by means of the
reconstruction.
In the same way, the partition P’’ associated to the graph is obtained by a simpleG∏∏ = (G)
inversion of the function f at start followed by another inversion of the result (Fig. 21).

Iterating these operations, that is performing a size n dilation or erosion on the graph G,
requires that the initial partition image f be kept in order to use it at each step of the
operation. The algorithm is therefore the following (for dilation):

Let f’ = f (initialisation)
Perform the operation n times to get a size n dilation (in f’).RP(f, (f∏)) = f∏

If, on the contrary, we simply iterate the transformation on the partition produced by the
previous step, the edge contraction associated to the operation induces a faster propagation of
the extremal cells values (maxima in case of dilation, minima for the erosion), as shown at
Fig. 22.

Fig. 22: Difference between a classical size 2 graph dilation (left) and an iteration of two
dilations performed on the partition (right).

These two basic operators can be found in the appendix. They are named partitionErode and
partitionDilate.

5. Conclusion

The operators which have been presented here have been originally defined and
designed in order to be able to apply transformations and to collect information (size, shape,

17

topology, etc.) on the cells of a partition image as if each cell was processed individually.
However, all the cells are transformed at the same time, which increases dramatically the
processing speed by avoiding the excruciatingly slow individual analysis approach.
To achieve this, we showed that the definition of two new basic transformations applied on
doublets of points (and) allows to define on the cells of a partition P a whole range ofP

L
P
L

anti-extensive operators: erosion, opening, Hit-or-Miss transform, thinnings.
Geodesic reconstruction algorithms applied to the cells of a partition have also been
designed. These algorithms widely use the recursive directional reconstruction
implementation which exists in the Mamba Image library. Although this implementation is
slower than approaches based on hierachical queues, it is currently the only one which allows
to cope with propagation issues which appear when the thickness and area of the cells are
very small. However, this reconstruction remains very fast.
Remind also that these operators can be applied on any digital image, thanks to the extended
definition of a partition image which was introduced and used for their design.
So, these operators are unquestionably useful when applied on partition images produced by
many morphological transformations: watershed transform (especially the one which does
not generate boundaries between the different catchment basins) [2], hierarchical
segmentations (waterfalls, P algorithms, etc.)[6], [7], residual operators (in particular ultimate
openings and granulometric functions) [4]. These operators bring efficient and fast tools for
cells filtering, extraction and measurement. It would also be possible to use them to address
some more complex issues: comparison and mixing of partitions, watermarking algorithms,
markers extraction and tracking, features extraction...
Finally, we have revisited the basic morphological transformations on graphs. As, in most
cases in image analysis, graphs are built from partitions, it is interesting to be able to perform
graph operations while staying in the partition image representation of the graph. Indeed
graph dilation and erosion can be obtained directly on the partition associated to the graph by
means of the cell reconstruction defined in the first part of this document.

6. References

[1] Beucher N.: MAMBA documentation (MambaApi Reference Manual). Web documents,
2009-2011.
(available at http://www.mamba-image.org).
[2] Beucher N., Beucher S.: Hierarchical Queues: general description and implementation in
MAMBA Image library. http://www.mamba-image.org / CMM-Armines-Mines ParisTech
publication, april 2011.
(available at http://cmm.ensmp.fr/~beucher/publi/HQ_algo_desc.pdf).
[3] Beucher S.: Segmentation d'images et morphologie mathématique. Doctorate thesis, Paris
School of Mines, june 1990, pp. 23-24.
(available at http://cmm.ensmp.fr/~beucher/publi/SB_these.pdf).
[4] Beucher S.: Numerical residues. Image and Vision Computing 25, ISMM05 Special
Issue, pages 405-415, 2007.
(available at http://cmm.ensmp.fr/~beucher/publi/SB_NumRes_IVC_Rev1.pdf).
[5] Beucher S.: About a problem of definition of the geodesic erosion. CMM/Mines
ParisTech publication, september 2011.
(available at http://cmm.ensmp.fr/~beucher/publi/GeodesicErode_eng.pdf).
[6] Beucher S.: Towards a unification of waterfalls, standard and P algorithms. CMM/Mines
ParisTech publication, January 2012.

18

(available at http://cmm.ensmp.fr/~beucher/publi/Unified_Segmentation.pdf).
[7] Beucher S., Marcotegui B.: P algorithm, a dramatic enhancement of the waterfall
transformation..CMM/Mines Paristech publication, september 2009.
(available at http://cmm.ensmp.fr/~beucher/publi/P-Algorithm_SB_BM.pdf).
[8] Burger F., Gandillot X., Treillard P.: Transformations morphologique sur un graphe,
application à l’étude des lymphocytes. Internship report, Paris School of Mines / Ecole
Polytechnique, 1982.
[9] Vincent L.: Graphs and Mathematical Morphology. Signal Processing, Vol. 16, n°4, april
1989, pp. 365-388.

This document is copyrighted under the Creative Commons "Attribution Non-Commercial
No Derivatives"license. For terms of use, see http://creativecommons.org/about/licenses/.

7. Appendix

The various partition operators presented above have been implemented with the Mamba
Image library. The Python source code is given below.
These operators have been gathered in a Pyhon module named partitions.py. This module is
available at http://cmm.ensmp.fr/~beucher/Mamba/partitions.py.

"""
This module contains operators acting on partitions. Two types of operators are
defined: operators acting on each cell of the partition independently, or
operators considering each cell of the partition as a node of a weighted graph.
In the first case, each cell of the partition is considered as a binary set and
the defined operation is applied on each cell to produce a new transformation
(which is not necessarily a partition). In the second case, the partition is
considered as a graph and morphological operators are defined on this graph.
These operators provide morphological transformations on graphs, without the
need to explicitly define this graph structure from the partition.
"""

Contributor: Serge BEUCHER

import mamba
import mambaComposed as mC

def cellsErode(imIn, imOut, n=1, se=mC.DEFAULT_SE, edge=mamba.FILLED):
 """
 Simultaneous erosion of size 'n' (default 1) of all the cells of the partition
 image 'imIn' with 'se' structuring element. The resulting partition is put in
 'imOut'.
 'edge' is set to FILLED by default.
 This operation works on 8-bit and 32-bit partitions.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn, 1)
 mC.dilate(imIn, imWrk1, n=n, se=se)

19

 mC.erode(imIn, imOut, n=n, se=se, edge=edge)
 mamba.generateSupMask(imOut, imWrk1, imWrk2, False)
 mamba.convertByMask(imWrk2, imWrk1, 0, mamba.computeMaxRange(imIn)[1])
 mamba.logic(imOut, imWrk1, imOut, "inf")

def cellsOpen(imIn, imOut, n=1, se=mC.DEFAULT_SE, edge=mamba.FILLED):
 """
 Simultaneous opening of size 'n' (default 1) of all the cells of the partition
 image 'imIn' with 'se' structuring element. The resulting partition is put in
 'imOut'.
 'edge' is set to FILLED by default.
 This operation works on 8-bit and 32-bit partitions.
 """

 imWrk = mamba.imageMb(imIn)
 cellsErode(imIn, imWrk, n, se=se, edge=edge)
 mC.dilate(imWrk, imOut, n, se=se.transpose())

def cellsComputeDistance(imIn, imOut, grid=mamba.DEFAULT_GRID, edge=mamba.EMPTY):
 """
 Computation of the distance function for each cell of the partition image 'imIn'.
 The result is put in the 32-bit image 'imOut'.
 This operator works on hexagonal or square 'grid' and 'edge' is set to EMPTY by
 default.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn, 1)
 se = mC.structuringElement(mamba.getDirections(grid), grid)
 cellsErode(imIn, imWrk1, 1, se=se, edge=edge)
 mamba.threshold(imWrk1, imWrk2, 1, 255)
 mamba.computeDistance(imWrk2, imOut, grid=grid, edge=edge)
 mamba.addConst(imOut, 1, imOut)

def equalNeighbor(imIn, imOut, nb, grid=mamba.DEFAULT_GRID, edge=mamba.FILLED):
 """
 This operator compares the value of each pixel of image 'imIn' with the value
 of its neighbor in direction given by 'nb'. If the values are equal, the pixel
 is unchanged. Otherwise, it takes value 0.
 This operator works on hexagonal or square 'grid' and 'edge' is set to FILLED
 by default.
 This operator works for 8-bit and 32-bit images.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn, 1)
 mamba.copy(imIn, imWrk1)
 mamba.copy(imIn, imOut)
 mamba.supNeighbor(imIn, imWrk1, nb, 1, grid=grid, edge=edge)
 mamba.infNeighbor(imOut, imOut, nb, 1, grid=grid, edge=edge)
 mamba.generateSupMask(imOut, imWrk1, imWrk2, False)
 mamba.convertByMask(imWrk2, imWrk1, 0, mamba.computeMaxRange(imIn)[1])
 mamba.logic(imOut, imWrk1, imOut, "inf")

def nonEqualNeighbor(imIn, imOut, nb, grid=mamba.DEFAULT_GRID, edge=mamba.FILLED):
 """

20

 This operator compares the value of each pixel of image 'imIn' with the value
 of its neighbor in direction given by 'nb'. If the values are different, the pixel
 is unchanged. Otherwise, it takes value 0.
 This operator works on hexagonal or square 'grid' and 'edge' is set to FILLED
 by default.
 This operator works for 8-bit and 32-bit images.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn)
 imWrk3 = mamba.imageMb(imIn, 1)
 mamba.copy(imIn, imWrk1)
 mamba.copy(imIn, imWrk2)
 mamba.supNeighbor(imWrk1, imWrk1, nb, 1, grid=grid, edge=edge)
 mamba.infNeighbor(imWrk2, imWrk2, nb, 1, grid=grid, edge=edge)
 mamba.generateSupMask(imWrk1, imWrk2, imWrk3, True)
 mamba.convertByMask(imWrk3, imWrk1, 0, mamba.computeMaxRange(imIn)[1])
 mamba.logic(imIn, imWrk1, imOut, "inf")

def cellsHMT(imIn, imOut, dse, edge=mamba.EMPTY):
 """
 A Hit-Or-Miss transform is performed on each cell of the partition 'imIn'. 'dse'
 is a double structuring element (see thinthick.py module). The result is put
 in 'imOut'. 'edge' is set to EMPTY by default.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn)
 cse0 = dse.getStructuringElement(0)
 cse1 = dse.getStructuringElement(1)
 mamba.copy(imIn, imOut)
 mamba.copy(imIn, imWrk1)
 for dir in cse1.getDirections(withoutZero=True):
 equalNeighbor(imWrk1, imWrk2, dir, grid=cse1.getGrid(), edge=edge)
 mamba.logic(imOut, imWrk2, imOut, "inf")
 for dir in cse0.getDirections(withoutZero=True):
 nonEqualNeighbor(imWrk1, imWrk2, dir, grid=cse0.getGrid(), edge=edge)
 mamba.logic(imOut, imWrk2, imOut, "inf")

def cellsThin(imIn, imOut, dse, edge=mamba.EMPTY):
 """
 A simple thinning transform is performed on each cell of the partition 'imIn'.
 'dse' is a double structuring element (see thinthick.py module). The result
 is put in 'imOut'. 'edge' is set to EMPTY by default.
 """

 imWrk = mamba.imageMb(imIn)
 cellsHMT(imIn, imWrk, dse, edge=edge)
 mamba.sub(imIn, imWrk, imOut)

def cellsFullThin(imIn, imOut, dse, edge=mamba.EMPTY):
 """
 A full thinning transform is performed on each cell of the partition 'imIn'
 until idempotence. 'dse' is a double structuring element. The result
 is put in 'imOut'. 'edge' is set to EMPTY by default.
 """

21

 imWrk = mamba.imageMb(imIn)
 mamba.copy(imIn, imOut)
 v1 = mamba.computeVolume(imOut)
 v2 = 0
 while v1 != v2:
 v2 = v1
 for i in range(mamba.gridNeighbors(dse.getGrid())):
 cellsThin(imOut, imOut, dse, edge=edge)
 dse = dse.rotate()
 v1 = mamba.computeVolume(imOut)

def cellsBuild(imIn, imInOut, grid=mamba.DEFAULT_GRID):
 """
 Geodesic reconstruction of the cells of the partition image 'imIn' which are
 marked by the image 'imInOut'. The marked cells take the value of their
 corresponding marker. The result is stored in 'imInOut'.
 The images can be 8-bit or 32-bit images.
 'grid' can be set to HEXAGONAL or SQUARE.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn)
 imWrk3 = mamba.imageMb(imIn, 1)
 vol = 0
 prec_vol = -1
 dirs = mamba.getDirections(grid)[1:]
 while (prec_vol!=vol):
 prec_vol = vol
 for d in dirs:
 mamba.copy(imIn, imWrk1)
 mamba.copy(imIn, imWrk2)
 mamba.supNeighbor(imWrk1, imWrk1, d, 1, grid=grid)
 mamba.infNeighbor(imWrk2, imWrk2, d, 1, grid=grid)
 mamba.generateSupMask(imWrk2, imWrk1, imWrk3, False)
 mamba.convertByMask(imWrk3, imWrk1, 0, mamba.computeMaxRange(imIn)[1])
 mC.linearDilate(imInOut, imWrk2, d, 1, grid=grid)
 mamba.logic(imWrk2, imWrk1, imWrk2, "inf")
 mamba.buildNeighbor(imWrk1, imWrk2, d, grid=grid)
 mamba.logic(imWrk2, imInOut, imInOut, "sup")
 vol = mamba.computeVolume(imInOut)

def cellsExtract(imIn, imMarkers, imOut, grid=mamba.DEFAULT_GRID):
 """
 Geodesic reconstruction and extraction of the cells of the partition image
 'imIn' which are marked by the binary marker image 'imMarkers'. The marked
 cells keep their initial value. The result is stored in 'imOut'.
 The images can be 8-bit or 32-bit images.
 'grid' can be set to HEXAGONAL or SQUARE.
 """

 imWrk1 = mamba.imageMb(imIn)
 imWrk2 = mamba.imageMb(imIn)
 mamba.copy(imIn, imWrk1)
 mamba.convertByMask(imMarkers, imWrk2, 0, mamba.computeMaxRange(imIn)[1])
 mamba.logic(imIn, imWrk2,imOut, "inf")
 cellsBuild(imWrk1, imOut, grid=grid)

22

def cellsOpenByBuild(imIn, imOut, n=1, se=mC.DEFAULT_SE):
 """
 Opening by reconstruction of size 'n' (default 1) of the partition image
 'imIn'. 'se' defines the structuring element. The result is put in 'imOut'.
 The images can be 8-bit or 32-bit images.
 """

 imWrk = mamba.imageMb(imIn)
 mamba.copy(imIn, imWrk)
 cellsErode(imIn, imOut, n=n, se=se)
 cellsBuild(imWrk, imOut, grid=se.getGrid())

def partitionErode(imIn, imOut, n=1, grid=mamba.DEFAULT_GRID):
 """
 Graph erosion of the corresponding partition image 'imIn'. The size is given
 by 'n'. The corresponding partition image of the resulting eroded graph is
 put in 'imOut'.
 'grid' can be set to HEXAGONAL or SQUARE.
 """

 imWrk = mamba.imageMb(imIn)
 mamba.negate(imIn, imWrk)
 mamba.copy(imWrk, imOut)
 se = mC.structuringElement(mamba.getDirections(grid), grid)
 for i in range(n):
 mC.dilate(imOut, imOut, se=se)
 cellsBuild(imWrk, imOut, grid=grid)
 mamba.negate(imOut, imOut)

def partitionDilate(imIn, imOut, n=1, grid=mamba.DEFAULT_GRID):
 """
 Graph dilation of the corresponding partition image 'imIn'. The size is given
 by 'n'. The corresponding partition image of the resulting dilated graph is
 put in 'imOut'.
 'grid' can be set to HEXAGONAL or SQUARE.
 """

 imWrk = mamba.imageMb(imIn)
 mamba.copy(imIn, imOut)
 mamba.copy(imIn, imWrk)
 se = mC.structuringElement(mamba.getDirections(grid), grid)
 for i in range(n):
 mC.dilate(imOut, imOut, se=se)
 cellsBuild(imWrk, imOut, grid=grid)

23

