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1. Introduction

This  paper  can  be  considered  as  an  addendum to  the  previous  paper  entitled  "P algorithm,  a 
dramatic  enhancement  of  the  waterfall  transformation"  [1].  In  this  former  document,  some 
suggestions have been made here and there, some ideas have emerged. These suggestions and ideas 
have unfortunately not be developped due to some lack of time and also because the authors did not 
wish to complicate the notions and concepts which were introduced.

The purpose of this present paper is to come back to these suggestions, to explore them in more 
details.  We  shall  see  that  this  exploration  will  lead  to  a  generalisation  of  many  segmentation 
transformations as watersheds, waterfalls, standard and P algorithms.  This generalisation will give 
birth to a general segmentation procedure which unify the previously mentioned tools and which 
depends on two parameters only.

This  paper  aims also  at  describing an  implementation of  this  general  segmentation tool  in  the 
MAMBA library. It is a matter of fact that, since the publication of the P algorithm, a great number 
of  requests  have  been  forwarded  to  the  authors  regarding  a  usable  implementation  of  this  P 
algorithm. This MAMBA implementation brings an answer to these requests.

2. Notations

Let us recall the notations and operators which are used in this document.

2.1. Operators
- w is the valued watershed transform. The result is a function equal to 0 inside the catchment 
basins and to the altitude of the points belonging to the watershed lines.
- h is the hierarchical image generator. This operator can be applied to any image (positive function) 
f, but in this paper, it will be used mainly on segmentations (see below).

2.2. Images
- si denotes the final valued segmentation for the hierarchical level i.
- s'i+1 denotes the initial valued segmentation for the hierarchical level i. Generally, s'i ≠ si as the 
hierarchical process at level i aims at modifying this initial  segmentation. s0 corresponds to the 
initial valued watershed (most of the time, it is a gradient watershed, but not always).
- h'i and hi are the hierarchical images corresponding respectively to s'i and si:

h'i = h(s'i) ; hi = h(si)
- m is a numerical mask. It is an image made of two kinds of pixels: pixels at 0 or pixels with a 
value equal to the maximal possible value which can be defined depending on the depth of the 
image (for instance, with a 8-bit image, this value is 255). We often denote m as m(<condition>). 
When, at point x, <condition> is true, m takes its maximum value. When <condition> is false, m is 
equal to 0 at point x.
- Binary images (sets) can also be used: Si, S'i and M. They correspond to the pixels of the above 

1



numerical images which are different from 0.

3. The various steps towards a unification

Remind that the algorithms described in [1] share the same general principle: reintroducing some of 
the contours which have been removed at each step of a waterfall transform (Fig. 1).

Fig. 1: Reminder of the three types of contours which are at stake in the waterfalls, standard and P 
algorithms. Type-1 contours should be always preserved, which is not the case in the classical  
waterfalls transformation.

3.1. An enhanced waterfalls transformation
Warning! In  [1],  standard  and  P  algorithms  were  referenced  as  "enhanced  waterfalls 
transformation". However, the enhanced waterfalls operator which is presented here is different. So, 
from now on, the expression "enhanced waterfalls" will designate only this operator. 

Among the various types of contours which are analysed, it is a matter of fact that type-1 contours 
are always significant and should be kept. Indeed, standard and P algorithms both preserve these 
contours. However, it is not the case for the classical waterfalls transformation. Therefore, before 
entering more sophisticated procedures, it is easy to define an enhanced waterfalls transformation 
where type-1 contours are systematically preserved. In fact, this operator is defined as follows. If si 

is the current level of segmentation in the hierarchy, we can define its corresponding hierarchical 
image hi. Then, the valued watershed w of hi is realised. Finally, the corresponding hierarchical 
image hi+1 = h(w(hi)) is computed. The contours of si which are higher than or equal to hi+1 belong to 
the new segmentation level si+1.

This enhanced waterfalls transformation has some advantages. Firstly, it is not necessary to cope 
with possible biases occurring with the classical operator and which are described in [1, page 25]. 
Therefore, this algorithm is faster, easier to implement, especially when we look for the complete 
waterfalls hierarchy. It is, in particular, useless to calculate again the hierarchical image at each step. 
Indeed, the hierarchical image hi+1, although it has been calculated from the initial segmentation at 
level i+1 can be used at the next step as its minima contain all  the minima, with a one-to-one 
correspondence, of the hierarchical image that would be built from the final segmentation si+1. So, at 
the  next  step,  their  respective  watershed  transforms  are  identical.  Moreover,  the  resulting 
segmentation produced by this enhanced waterfalls transform is much better, as it is illustrated on 
some examples at Fig. 2.

Note that, on both cases however, the number of hierarchies is the same. Note also that, in this case, 
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the stopping criterion is the idempotence. When hi+1 is equal to 0, all the contours of si are reinjected 
and therefore si+1 = si.

Fig. 2: Examples of classical waterfalls transforms (middle images) and of enhanced waterfalls  
transforms (right images) calculated from the valued watersheds of the gradient of the original  
images (on the left). Only the last levels of hierarchy are given.

The reintroduction of type-1 contours dramatically enhances the final result. But this does not avoid 
the removal of some significant contours simply because they are lower than the final hierarchical 
image. These contours correspond to the maxima-islands introduced in [1] which appeared in the 
first levels of hierarchy and which were removed by the watershed transform (which, as a semi-
homotopic operator, is not controlled by the maxima). This can be observed in the second example: 
the road marking (white dotted line) has disappeared because it corresponds to a maximum-island 
with a rather low height in the hierarchisation process.

3.2. A first generalisation of standard and P algorithms
Standard  and  P algorithms  deal  with  the  reintroduction  of  type-2  contours.  Remind  that  these 
contours are defined as contours (belonging either to the previous segmentation or to the initial one) 
which are closer to the current hierarchical image than to 0.
Although it is claimed  that sandard and P algorithms are non parametric transforms, the definition 
of type-2 contours leads, de facto, to the introduction of a parameter equal to 2, as it is discussed in 
[1, §8.2]. As suggested in this discussion, a first generalisation of these algorithms simply consists 
in replacing this hidden parameter by an explicit one,  λ, called gain. Therefore, the definition of 
type-2  contours  is  modified  accordingly.  A  type-2  contour  is  a  contour  Ck of  the  current 
segmentation si such that its initial altitude a0(Ck) fulfils the following inequality:

λ a0(Ck)>hi+1
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where hi+1 is the hierarchical image corresponding to the initial segmentation s'i+1. λ can be any real 
positive value.
In this extension, as it was already the case in the previous definition of P and standard algorithms, 
the relationship between s0 and hi+1 is a strict inequality:

λ s0>hi+1

If the gain  λ is strictly greater than 1, this definition includes type-1 and type-2 contours. Indeed 
type-1  contours  correspond  to  points  of  s0 such  that λ s0≥hi+1 (large  inequality).  Therefore, 
multiplying the altitude of these points by λ >1 insure that the strict inequality is fulfilled. However, 
when  λ  = 1, this definition does not correspond to the enhanced waterfalls transform described 
above. Indeed, some type-1 contours (those which are strictly equal to hi+1) are removed. This is 
very annoying since type-1 contours must always be preserved. To cope with this problem, one 
solution would be to replace the strict inequality by a large one:

λ s0≥hi+1

But this solution arises a new difficulty when λ is greater than 1. It tends to reinforce the influence 
of low contrasted contours in the first levels of hierarchy. For instance, when  λ  =2, contours at 
altitude 1 are preserved when they are surrounded by at least one contour at altitude 2. This gives to 
these contours a too important weight which induces negative effects on the following hierarchies 
and on the quality of the final result.
So, the function which hi+1 should be compared to is s0, if s0≥hi+1 or λ s0 if λ s0>hi+1 .
In the digital case, these two conditions can be mixed by defining a composite function. We have:

λ s0>hi+1→λ s0≥hi+1+1→(λ s0−1)≥hi+1

Therefore, the function used for the comparison is defined as (λ s0−1)∨s0 and the condition which 
must be fulfilled to preserve contours is:

(λ s0−1)∨s0≥hi+1

This extension can be implemented in the following way:
• Compute (λ s0−1)∨s0 (s0 is the initial valued watershed transform).
• From segmentation si (step i of the hierarchisation), compute its corresponding hierarchical 

image hi: hi = h(si).
• Compute the initial segmentation s'i+1: s'i+1 = w(hi).
• Compute the hierarchical image h'i+1 from s'i+1: h'i+1 = h(s'i+1).
• Compute m ((λ s0−1)∨s0≥h 'i+1) .
• Remove the open (broken) contours in m and compute its corresponding binary mask M.
• For standard algorithm, compute M '=M∩Si and the corresponding numerical mask m'.
• For P algorithm, compute M '=M∩S0 and the corresponding numerical mask m'.
• The final segmentation si+1 is given by: si+1=m '∧(si∨hi+1)

As for the enhanced waterfalls transformation, the stopping criterion is the idempotence. This can 
be easily proved. If sN is the last non empty segmentation, we have s'N+1 = w(hN) = 0 and hN+1 = 0 (as 
hN contains a unique minimum). Therefore, M covers the entire space and sN+1 = sN.

The trick described above shows that it is possible to use a large range of comparison functions (as 
it was already suggested in [1], page 60). The general comparison inequality will then be, at each 
step:

ψ(s0)≥hi+1

where ψ is any function such that ψ≥I (extensive function). If ψ  is not extensive, the result would 
be irrelevant.
ψ can also be any spatial function. This means that the comparison of each point of the contours to 
the current hierarchical image can be controlled not only by the height of the point but also by its 
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position in the image. This allows to introduce external  information for a better control of this 
hierarchical segmentation. For instance, trends, illumination variations, regions of interest, textured 
regions could be taken into account. This extension offers a large scope of possibilities. Now, the 
real problem is to define correctly ψ  in order that these features could be used.

Note that, although it may be indifferent to use hi+1 or h'i+1 in the standard segmentation (between 
h'i+1 and hi+1, no new minima appear), it is not true in practice. This is due to parity problems in the 
implementation of the watershed transform similar to those described in [1, page 63]. However, in P 
algorithm, using hi+1 is compulsory as new minima may be introduced at each level.

Note also that M∩S0 and M are identical for P algorithm. The intersection is not necessary.

Fig. 3: When some points of a removed contour (FOZ lower than the hierachical image in blue)  
are higher than the hierarchical image (left), they must be suppressed otherwise they will be used  
for building the next hierarchical image which is likely to be erroneous (right).

You may also notice that a step of the implementation consists in removing broken contours in the 
mask function. These broken contours appear after the comparison as some points of these contours 
may be higher than h'i+1 although their lowest altitude is lower than the hierarchical image (Fig. 3). 
Thus, these contours are not completely removed. However, they must be suppressed otherwise the 
next hierarchical image would be erroneous. The fastest way to remove these contours is through a 
watershed transform of the mask function m. This is faster than a clipping procedure and, moreover, 
it is not depending of the complexity of the broken structures. Although it seems that this step is 
necessary only when working on valued watershed functions, in fact, it is not true. This procedure 
must be applied also on mosaic-gradient image. Indeed, if the points of the initial contours have the 
same height, it is not the case when we deal with higher levels of hierarchy since a single region 
may be surrounded by contours at different altitudes.

The last level of hierarchy of the CAR image in the standard segmentation is presented at Fig. 4 for 
three different values of the gain λ: 1.5, 2.0 and 3.0. The number of remaining contours increases as 
λ increases. This is obvious as, whatever the value of the gain, the number of hierarchy levels 
remains the same (4 in this example). Therefore the unique minimum in the last hierarchical image 
has always the same value. As the standard segmentation is nothing but a threshold of the previous 
remaining contours at an altitude proportional to 1/λ of the value of this minimum, this explains the 
result.
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Fig.4: Results of the standard algorithm applied to the valued watershed of the gradient of image 
CAR (left) for different values of the gain λ (from left to right, 1.5, 2.0, 3.0).

Fig. 5: Using different values of the gain λ in P algorithm (from left to right: 1.5, 2.0 and 3.0).

In the same way, Fig. 5 illustrates some P algorithm results obtained with different values of λ (1.5, 
2.0 and 3.0). Contrary to the standard segmentation, there is not necessarily an increasing of the 
remaining contours when λ increases. This is due to the fact that, contrary to the standard algorithm, 
new minima may appear in the successive hierarchical images. For the same reason, the number of 
hierarchical levels may vary as λ varies.
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Fig.6: Last levels of hierarchy for various gains (horizontally) and offsets (vertically).
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3.3. A further extension
Introducing  the  gain  λ allows  to  bridge  the  gap  between  the  standard  segmentation  and  the 
enhanced waterfalls transform. Another extension (which was also suggested in (1], page 44) brings 
the  missing  link  between  the  standard  and  P algorithms.  Indeed,  the  only  difference  between 
standard and P algorithms lies on the fact that, in standard algorithm, only contours belonging to the 
previous hierarchy are taken into account whereas, in P algorithm, all the contours (that is contours 
belonging to the first level of hierarchy - the initial watershed) are considered. When computing the 
(i+1)th level of hierarchy in standard algorithm, contours of Si  are used, while contours of S0 are 
considered in P algorithm. So, it is possible to define a hierarchical segmentation where contours 
belonging to an intermediary level of hierarchy would be taken into account. This is achieved by 
introducing an offset k between the current level of hierarchy and the level  which is used to select 
the contours to be compared to the current hierarchical image.

Implementing this extension consists in using simply Sj = Si-k instead of Si or S0 in the computation 
of the mask image M '=M∩Sj . When k = 0, the standard segmentation is performed. When k = +∞ 
(sufficiently high in practice - 255 for a greyscale 8-bit image), P algorithm is realised.
Note that if (i - k) is negative, Sj (which does not exist) is replaced by S0. It is equivalent to define 
Sj as:

Sj=Smax(i−k ,0)

Note also that, when k > 0, some contours may oscillate in the successive hierarchies. However, due 
to the way the successive hierarchies are stored and coded (see below), this oscillation is most of the 
time masked and consequently has no effect on the hierarchies.

Fig. 6 shows the results (last levels of hierarchy) of this extended segmentation procedure applied to 
image TOOLS for different values of the gain  λ and the offset k. When no image is given, this 
simply means that no change occurred since the previous segmentation obtained with a lower offset. 
Although it is difficult to bring into general from a single example, it seems nevertheless that the 
best results are obtained when the offset is maximum and for values of the gain around 2, which 
tends to validate the heuristic choice of these parameters made in [1].

4. Mamba implementations and performance

All the segmentation procedures described above have been implemented with the Mamba Image 
library. This open source library (X11 license),  written in C and Python, is entirely devoted to 
mathematical  morphology.  It  is  freely  available  (version  1.0)  with  its  documentation  [2]  at 
http://www.mamba-image.org.  These  new operators  are  not  implemented in  the  current  version 
(they will be in the next one). Therefore, the Python source code of these operators is given in 
annex,  together  with some add-ons which are  needful  to  use  them with the  current  version of 
Mamba.

The purpose of this implementation is twofold. Firstly, it answers some requests made to the author 
for an efficient and simple implementation of P algorithm. Unfortunately, until now, the available 
implementations of waterfalls and P algorithms use non open mathematical morphology software 
libraries.  This  implementation  fills  a  gap.  Secondly,  it  provides  a  strong  basis  for  further 
experimentations with these tools, especially for tests on public image databases.

4.1. Description of the operators
Here is a brief description of the operators available in this Mamba implementation (see the annex 
for details).
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-  hierarchy generates the hierarchical image from the initial image (imIn) which can be a valued 
watershed or a mosaic-gradient or even a simple gradient. Image imMask (which is binary) contains 
the watershed lines of the initial image. The hierarchical image is put in imOut. The algorithm used 
to build the hierarchical image has been described in [3] and [1, page 20]. This operator is used by 
the other segmentation processes.

-  hierarchicalLevel computes the next level of hierarchy from the current one, imIn (which is a 
valued  watershed  or  a  mosaic-gradient).  From  imIn,  its  hierarchical  image  is  built,  then  the 
watershed transform is computed. Finally, a correction is applied (its description is given in [1, page 
25]) in order to be sure that the next hierarchy is embedded in the previous one. This operator is 
only used by the classical waterfalls generator. It is useless for the other segmentation processes as 
the above mentioned correction is no more necessary.

- waterfalls is the classical waterfalls algorithm. From the initial image imIn (valued watershed or 
mosaic-gradient), it iterates the  hierarchicalLevel operator to obtain the successive hierarchies of 
the waterfalls transformation in imOut. Each point in imOut takes the index value of the hierarchy 
where it appears for the last time (index 0 denotes the first level of hierarchy).

-  enhancedWaterfalls implements  the enhanced waterfalls  transform where type-1 contours are 
always reintroduced. This implementation is faster than the waterfalls algorithm as the correction 
used in the previous approach (in  hierarchicalLevel) is no longer necessary. Contours which are 
partly below the hierarchical  image at  each step are totally removed by means of  a  watershed 
transformation which acts as a skeleton by influence zones (SKIZ).

- standardSegment performs the standard segmentation with a gain λ as parameter (it is equal to 2 
by default). The operator starts by computing the image equal to (λ s0−1)∨s0 , where s0 is the initial 
valued watershed image in imIn. At each step, this image is compared to the current hierarchical 
image and contours which are above this hierarchical image and which were still present in the 
previous segmentation level are kept. The others are removed by a watershed transform.

- segmentByP computes P algorithm with a gain λ (2 by default). This algorithm is very similar to 
the previous one. The only difference (but it is of outmost importance) comes from the fact that all 
the initial contours are considered, not only those still present in the previous step of hierarchy. This 
small difference induces dramatic changes in the result of the segmentation.

-  generalSegment mixes and extends the standard and P algorithms by introducing the offset k 
which allows to choose the hierarchy level used in the comparison with the current hierarchical 
image. More precisely, the offset indicates how far in the past we go to select the contours which 
will be compared.
generalSegment could be the only implemented operator. Indeed, if the offset is equal to 1, this 
operator is identical to standardSegment. If offset is equal to 255, it is identical to segmentByP. Note 
also that the smallest value for the offset is 1 and not 0 in the software implementation (offset is 
defined from the hierarchical level to be built and not from the last already built one).

- extendedSegment is the last implemented operator. It can be considered as experimental. Contrary 
to the others, the function used in the comparison (namely (λ s0−1)∨s0 ) is not computed at the 
beginning of the process. Instead, a function ψ (see above) must be determined and entered in the 
operator. It corresponds to the imTest image. This extended segmentation should allow to take into 
account variations of luminance in the background, to reduce the influence of textured regions or 
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other features which may deteriorate the quality of the final segmentation.

All these operators store the successive hierarchies in the imOut image and they also return the 
number of hierarchy levels. Each level of hierarchy can be obtained by simply thresholding the 
imOut image.

4.2. Performances
These operators are built directly on the images. Although Mamba is fast, this could lead to slow 
operations compared to the performances which could be obtained by using approaches based on 
graphs  [4].  However,  these  operators  widely  use  the  watershed  transform  and  the  geodesic 
reconstruction which are implemented in Mamba by means of hierarchical queues [5, 6].  These 
transformations are fast, so the computation speed of the hierarchical segmentation operators is not 
so bad as it is shown in the table below. These values have been obtained on 256x256 grey scale 
images  with  a  dual  core  Intel  processor  running  at  2.66  GHz  on  Windows  XP.  The  average 
computation time per hierarchy level is less than 30 ms (Fig. 7). A better value could be obtained by 
using a more powerful processor and with a Linux operating system (mainly because it is a 64-bit 
OS). Preliminary tests indicate that a speed increase of about 50% can be expected.

Image Number of
hierarchies

Computation
time (ms)

ROAD 4 110
ROUTE 4 110

CAR 5 141
TOOLS 7 219
BIRDS 7 187
PLANE 8 235
EAGLE 12 344

Fig. 7: Computation time for the generation of the successive hierarchical levels in P algorithm.  
The average time for computing one level is about 29 ms with the configuration described above.
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On the other side, it  is  difficult  to be sure that  an implementation with graphs would be more 
efficient because this implementation needs to generate the graph from the image at the beginning 
of  the  process  and  to  do  the  reverse  operation  at  the  end.  Anyway,  at  this  time,  this  graph 
implementation does not exist for P algorithm yet.

5. Conclusion and next steps

We have shown, through the introduction of two parameters, that various hierarchical segmentation 
algorithms belong to the same class of operators. By simply varying these two operators (gain λ and 
offset k), it is possible to sweep continuously a whole range of transformations, from the enhanced 
waterfalls transform (λ = 1, k = 0) to P algorithm (λ = 2, k = +∞) to standard segmentation (λ = 2, 
k  = 0).

We have also provided a Mamba-based implementation of this class of transformations which is fast 
enough to allow the exploration of its efficiency, its properties and its characteristics. The first tests 
which have been realised reinforce the interest for P algorithm and for its parametric version. The 
introduction of the offset, although it seems promising, validates, at first, the choice of an infinite 
offset for potentially providing the best results for the segmentations. However, this path, together 
with the use of a general comparison image (extended segmentation) need to be further explored.

Introducing parameters arises the problem of the choice of their optimal values in particular for the 
gain  λ. Here again, a gain equal to 2.0 produces very often good results. However, it would be 
interesting to verify this point and, moreover, to find ways to automatically determine its best value. 
To this regard, the next step will consist in using image databases to test these operators and to try 
to assess their robustness. Instead of using the Berkeley database as it was the case in [1], database 
which provides a two important semantic content so that it is difficult to compare segmentations 
provided by human beings and by a low level algorithm, we intend to use a simpler database, the 
Segmentation  Evaluation  Database  (available  at  http://www.wisdom.weizmann.ac.il/~vision/ 
Seg_Evaluation_DB/index.html)  which  seems  more  appropriate  to  test  the  efficiency  of  these 
segmentation algorithms.
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7. Annex

This annex contains the source scripts of the various operators described above. These scripts are 
somewhat  redundant  as  the  general  structure  of  each  operator  is  very  similar.  However,  we 
preferred to keep this redundacy in order to clearly show the modifications which allow to extend 
these different operators.

To run these scripts, you will need to install Mamba, version 1.0. This software library is available 
at  http://www.mamba-image.org.  Read  carefully  the  documentation  before  installation  (Mamba 
requires other Python libraries, in particular the Python Imaging Library).

Important! These scripts require that you add in existing Mamba modules some operators which 
do not exist yet in version 1.0. You need in particular the multiplication of an image by a real 
constant value. This operator is available below. Just copy the Python script and add it at the end of 
the miscellaneous.py module:

def mulRealConst(imIn, v, imOut, nearest=False):
    """
    Multiplies image imIn by a real positive constant value v and puts the 
    result in image imOut. inIn and imOut can be 8-bit or 32-bit images.
    If imOut is a greyscale image (8-bit), the result is saturated (results
    of the multiplication greater than 255 are limited to this value).
    The constant v is truncated so that only its two first decimal digits
    are taken into account.
    If 'nearest' is true, the result is rounded to the nearest integer value.
    If not (default), the result is simply truncated.    
    """

    if imIn.getDepth()==1 or imOut.getDepth()==1:
        mamba.raiseExceptionOnError(mambaCore.ERR_BAD_DEPTH)
    imWrk1 = mamba.imageMb(imIn, 32)
    imWrk2 = mamba.imageMb(imIn, 1)
    v1 = int(v * 100)
    if imIn.getDepth()==8:
        imWrk1.reset()
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        mamba.copyBytePlane(imIn, 0, imWrk1)
    else:
        mamba.copy(imIn, imWrk1)
    mamba.mulConst(imWrk1, v1, imWrk1)
    if nearest:
        mamba.addConst(imWrk1, 50, imWrk1)
    mamba.divConst(imWrk1, 100, imWrk1)
    if imOut.getDepth()==8:
        mamba.threshold(imWrk1, imWrk2, 255, mamba.computeMaxRange(imWrk1)[1])
        mamba.copyBytePlane(imWrk1, 0, imOut)
        imWrk2.convert(8)
        mamba.logic(imOut, imWrk2, imOut, "sup")
    else:
        mamba.copy(imWrk1, imOut)
        

Note also that, if you want to apply these operators on mosaic-gradient images, you will have to 
patch  this  transformation  in  the  module  segment.py.  Indeed,  this  operator  is  faulty  in  Mamba, 
version  1.0.  To  apply  the  patch,  simply  copy  the  script  below  and  replace  the  corresponding 
function in segment.py.

def mosaicGradient(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Builds the mosaic-gradient image of 'imIn' and puts the result in 'imOut'.
    The mosaic-gradient image is built by computing the differences of two
    mosaic images generated from 'imIn', the first one having its watershed
    lines valued by the suprema of the adjacent catchment basins values, the
    second one been valued by the infima.
    """
    
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn)
    imWrk5 = mamba.imageMb(imIn)
    imWrk6 = mamba.imageMb(imIn, 1)
    mosaic(imIn, imWrk2, imWrk3, grid=grid)
    mamba.sub(imWrk2, imWrk3, imWrk1)
    mamba.logic(imWrk2, imWrk3, imWrk2, "sup")
    mamba.negate(imWrk2, imWrk2)
    mamba.threshold(imWrk3, imWrk6, 1, 255)
    mC.multiplePoints(imWrk6, imWrk6, grid=grid)
    mamba.convertByMask(imWrk6, imWrk3, 0, 255)
    se = mC.structuringElement(mamba.getDirections(grid), grid)
    mC.dilate(imWrk1, imWrk4, se=se)
    mC.dilate(imWrk2, imWrk5, se=se)
    while mamba.computeVolume(imWrk3) != 0:
        mC.dilate(imWrk1, imWrk1, 2, se=se)
        mC.dilate(imWrk2, imWrk2, 2, se=se)
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.logic(imWrk2, imWrk3, imWrk2, "inf")
        mamba.logic(imWrk1, imWrk4, imWrk4, "sup")
        mamba.logic(imWrk2, imWrk5, imWrk5, "sup")
        mC.erode(imWrk3, imWrk3, 2, se=se)
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    mamba.negate(imWrk5, imWrk5)
    mamba.sub(imWrk4, imWrk5, imOut)

Here is below the main script. Just copy it entirely and store it in a file named hierarchies.py. Then, 
you simply need to run this script to have all the hierarchical operators available in the Mamba 
Image library.

"""
This module provides a set of functions to perform hierarchical segmentations
operations using mamba. it works with imageMb instance as defined in mamba.
This module contains the waterfalls algorithm and various hierarchical
operators (enhanced waterfalls, standard hierarchy and P algorithm).
"""

# Contributor: Serge BEUCHER, Nicolas BEUCHER

import mamba
import mambaComposed as mC

def hierarchy(imIn, imMask, imOut, grid=mamba.DEFAULT_GRID):
    """
    Construction of a hierarchical image from image 'imIn' and with 'imMask'.
    The binary image 'imMask' controls the dual reconstruction (propagation)
    of 'imIn'.
    This operator is mainly used to build hierarchical images from valued
    watershed images.
    The hierarchical image is put in 'imOut'.
    """
    
    imWrk = mamba.imageMb(imIn)
    if mamba.checkEmptiness(imIn):
        mamba.copy(imIn, imOut)
    else:
        mamba.convertByMask(imMask, imWrk, 255, 0)
        mamba.logic(imIn, imWrk, imWrk, "sup")
        mamba.hierarDualBuild(imIn, imWrk)
        mamba.copy(imWrk, imOut)

def hierarchicalLevel(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Computes the next hierarchical level of image 'imIn' in the
    waterfalls transformation and puts the result in 'imOut'.
    This operation makes sure that the next hierarchical level is embedded
    in the previous one.
    'imIn' must be a valued watershed image.
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn, 1)
    imWrk2 = mamba.imageMb(imIn, 1)
    imWrk3 = mamba.imageMb(imIn, 1)
    imWrk4 = mamba.imageMb(imIn, 32)
    mamba.threshold(imIn,imWrk1, 0, 0)
    mamba.negate(imWrk1, imWrk2)
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    hierarchy(imIn, imWrk2, imWrk0, grid=grid)
    mC.minima(imWrk0, imWrk2, grid=grid)
    mamba.label(imWrk2, imWrk4, grid=grid)
    mamba.watershedSegment(imWrk0, imWrk4, grid=grid)
    mamba.copyBytePlane(imWrk4, 3, imWrk0)
    mamba.threshold(imWrk0, imWrk2, 0, 0)
    mamba.diff(imWrk1, imWrk2, imWrk3)
    mC.build(imWrk1, imWrk3)
    se = mC.structuringElement(mamba.getDirections(grid), grid)
    mC.dilate(imWrk3, imWrk1, 1, se)
    mamba.diff(imWrk2, imWrk1, imWrk1)
    mamba.logic(imWrk1, imWrk3, imWrk1, "sup")
    mamba.convertByMask(imWrk1, imWrk0, 255, 0)
    mamba.logic(imIn, imWrk0, imOut, "inf")

def waterfalls(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Classical waterfall algorithm. All the hierarchical levels of greyscale
    image 'imIn' (which must be a valued watershed) are computed.
    'imOut' contains all these hierarchies which are embedded, so that
    hierarchy i is simply obtained by a threshold in range [i+1, 255].
    This transformation returns the number of hierarchical levels.
    """
    
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn, 1)
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk3, 1, 255)
    while mamba.computeVolume(imWrk3) != 0:
        mamba.add(imOut, imWrk3, imOut)
        hierarchicalLevel(imWrk1, imWrk2, grid=grid)
        mamba.threshold(imWrk2, imWrk3, 1, 255)
        mamba.copy(imWrk2, imWrk1)
        nbLevels += 1
    return nbLevels

def enhancedWaterfalls(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Enhanced waterfall algorithm. Compared to the classical waterfalls
    algorithm, this one adds the contours of the watershed transform which are
    above the hierarchical image associated to the next level of hierarchy. This
    waterfalls transform also ends to an empty set. All the hierarchical levels
    of image 'imIn' (which is a valued watershed) are computed. 'imOut' contains
    all these hierarchies which are embedded, so that hierarchy i is simply 
    obtained by a threshold [i+1, 255] of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOu't must be 
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk1 = mamba.imageMb(imIn)
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    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 32)   
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        mamba.add(imOut, imWrk4, imOut)
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mC.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk4, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk4))
        hierarchy(imWrk3, imWrk4, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk2, imWrk1, imWrk4, strict=True)
        mamba.convertByMask(imWrk4, imWrk3, 255, 0)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.label(imWrk4, imWrk5, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk5, grid=grid)
        mamba.copyBytePlane(imWrk5, 3, imWrk1)
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
    
def standardSegment(imIn, imOut, gain=2.0, grid=mamba.DEFAULT_GRID):
    """
    General standard segmentation. This algorithm keeps the contours of the 
    watershed transform which are above or equal to the hierarchical image 
    associated to the next level of hierarchy when the altitude of the contour
    is multiplied by a 'gain' factor (default is 2.0). This transform also ends 
    by idempotence. All the hierarchical levels of image 'imIn'(which is a 
    valued watershed) are computed. 'imOut' contains all these hierarchies which
    are embedded, so that hierarchy i is simply obtained by a threshold [i+1, 255]
    of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    mC.mulRealConst(imIn, gain, imWrk6)
    mC.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])  
    mamba.copyBytePlane(imWrk6, 0, imWrk0)
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    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        mC.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels

def segmentByP(imIn, imOut, gain=2.0, grid=mamba.DEFAULT_GRID):
    """
    General segmentation by P algorithm. This algorithm keeps or reintroduces
    the contours of the initial watershed transform which are above or equal to
    the hierarchical image associated to the next level of hierarchy when the
    altitude of the contour is multiplied by a 'gain' factor (default is 2.0).
    This transform also ends by idempotence. All the hierarchical levels of
    image 'imIn' (which is a valued watershed) are computed. 'imOut' contains all
    these hierarchies which are embedded, so that hierarchy i is simply obtained
    by a threshold [i+1, 255] of image imOut.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    mC.mulRealConst(imIn, gain, imWrk5)
    mC.floorSubConst(imWrk5, 1, imWrk5)
    mamba.threshold(imWrk5, imWrk4, 255, mamba.computeMaxRange(imWrk5)[1])  
    mamba.copyBytePlane(imWrk5, 0, imWrk0)
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    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        mC.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk4, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk4))
        hierarchy(imWrk3, imWrk4, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk4, strict=False)
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk5, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk5, grid=grid)
        mamba.copyBytePlane(imWrk5, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
    
def generalSegment(imIn, imOut, gain=2.0, offset=1, grid=mamba.DEFAULT_GRID):
    """
    General segmentation algorithm. This algorithm is controlled by two
    parameters: the 'gain' (identical to the gain used in standard and P
    segmentation) and a new one, the 'offset'. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level. If 'offset' is
    equal to 1, this operator corresponds to the standard segmentation, if
    'offset' is equal to 255 (this value stands for the infinity), the operator
    is equivalent to P algorithm.
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    mC.mulRealConst(imIn, gain, imWrk6)
    mC.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])  
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    mamba.copyBytePlane(imWrk6, 0, imWrk0)
    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mC.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
    
def extendedSegment(imIn, imTest, imOut, offset=255, grid=mamba.DEFAULT_GRID):
    """
    Extended (experimental) segmentation algorithm. This algorithm is controlled
    by image 'imTest'. The current hierarchical image is compared to image
    'imTest'. This image must be a greyscale image. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level (by default,
    'offset' is equal to 255, so that the initial segmentation is used).
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn', 'imTest' and 'imOut' must be greyscale images.
    'imIn', 'imTest' and 'imOut' must be different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
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    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mC.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imTest, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
    

This  whole  procedure will  not  be  necessary with the  next  version (1.1)  of  Mamba which will 
contain these new operators.
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