
HAL Id: hal-01403948
https://hal.science/hal-01403948

Submitted on 29 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing pattern recognition or labeling in streams of
temporal data

Pierre-François Marteau

To cite this version:
Pierre-François Marteau. Assessing pattern recognition or labeling in streams of temporal data. 2nd
ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Sep 2016, Riva del
Garda, Italy. �hal-01403948�

https://hal.science/hal-01403948
https://hal.archives-ouvertes.fr

Assessing pattern recognition or labeling in

streams of temporal data

Pierre-François Marteau1,

IRISA, Université Bretagne Sud, Campus de Tohannic, Vannes, France
pierre-francois DOT marteau AT univ-ubs DOT fr

Abstract. In the data deluge context, pattern recognition or labeling
in streams is becoming quite an essential and pressing task as data flows
inside always bigger streams. The assessment of such tasks is not so easy
when dealing with temporal data, namely patterns that have a duration
(a beginning and an end time-stamp). This paper details an approach
based on an editing distance to first align a sequence of labeled temporal
segments with a ground truth sequence, and then, by back-tracing an
optimal alignment path, to provide a confusion matrix at the label level.
From this confusion matrix, standard evaluation measures can easily be
derived as well as other measures such as the ”latency” that can be quite
important in (early) pattern detection applications.

1 Introduction

In the big data and Internet of things era, data is widely generated through
streams at an increasing rate. Such data is provided by sensor applications,
measured in network monitoring and traffic management system, available as
log records or click-streams in web exploration, sequence of email, blogs data,
RSS feeds, social networks, and so many other sources. Applications requiring
pattern recognition in such streams is becoming more and more demanding, and,
consequently, the question of assessing such applications is particularly essential.
Among various type of stream data we are focusing on stream of temporal data,
also called timestamped data stream, for which data elements (samples) are
associated with a time index. The aim of this paper is, given a ground truth
sequence of time-stamped labeled segments, to propose a consolidated and ex-
tended assessment framework for pattern labeling or recognition in streams.

Fig. 1. Example of a ground truth sequence.

We consider in this paper that the ground truth sequence is given as a se-
quence of time-stamped labels, each label being characterized by a begin and an

2

end time-stamp, as depicted in figure 1. It should be stressed that, to ensure as
much as possible the independence of the assessment framework to the nature
of the stream, such sequence does not keep any reference to the data

that are conveyed by the stream except for the time location of the labeled
segments.

The output of the pattern recognition or labeling tasks in stream that we in-
tend to assess are expected to provide the same kind of sequences. The proposed
algorithm will output

– a confusion matrix from which traditional assessment measures such as pre-
cision, recall or F-measures can be derived,

– an estimation of the recognition latency that can be an issue for real-time
application,

– an estimation of the average relative duration of the matched labeled seg-
ments, that can be of some utility when assessing labeling tasks.

The contribution of this paper is the presentation of a dynamic programming
algorithm dedicated to the alignment of such sequences. We insists that it is not
one another stream segmentation or labeling method, but a proposal for the
assessment of stream segmentation or labeling methods when time occurrence
of the labels is a critical issue. The requirement for a ground-truth sequence
is a strong constraint that indeed limit the application of the proposed assess-
ment framework, but ensures in general a better acceptance and quality of the
assessment since experts are supposedly maintained into the process.

2 Previous work and problem statement

Stream classification or labeling refers essentially to three distinct tasks [1][2]

– stream classification: the task consists in affecting a class label to a given
stream. For instance, categorizing a RSS feed into some pre-defined cate-
gories such as sport, economy, society, culture, etc, is typically a stream
classification problem.

– stream segment classification: here we consider that the streams are seg-
mented (the segments are known), and the task consists in affecting a class
label to each segment. Considering a general RSS feed, naturally segmented
into time-stamped news items, the task is to affect to each news item a class
label (e.g. sport, economy, society, etc.).

– pattern spotting and recognition in streams: here again we consider that
the stream is also segmented but the segments are only known for training
through manual segmentation and labeling. Hence the segments need to be
localized along the time axis, with a beginning and an end time-stamps.
This is the case for example when addressing human data such as speech
data which can be segmented into phonemes, syllables, words, or any other
acoustic or linguistic parts. This tasks is also referred to as temporal classi-
fication [3].

3

This paper addresses the assessment of approaches that tackle the third task,
obviously the most difficult one since it requires to identify segment frontiers and
segment classification as a whole. Formally, such approaches will typically output
a sequence of labeled time-stamped segments (SLTSS).

Let L be the set of labels, and T a time segment. A labeled-segment s will
be defined as a triplet (l, tb, te) ∈ L× T × T with the constraint that tb ≤ te. A
sequence of labeled time-stamped segments S will be denoted as
S = s1s2 · · · sn = (li, tbi , tei)i=1···n. We will note S(i) the ith labeled segment in
the sequence S.

Furthermore, we impose an ordering of the segments inside the sequence,
such that: ∀i, tbi ≤ tbi+1

and tei ≤ tei+1
. From this definition, it should be noted

that segments may have different lengths and successive segments can be par-
tially overlapping or disjoint.

The problem of assessing pattern spotting and recognition systems in streams
comes down to the alignment of a predicted SLTSS with a ground-truth SLTSS,
with the constraint that only time overlapping segment can be matched.

If we were dealing uniquely with sequences of symbolic labels, an edit dis-
tance, such as the Levensthein [4] or the Smith and Waterman distance [6]
proposed in bioinformatics among others, would be perfectly adapted and has
been used for various tasks in bioinformatics, natural language processing, etc,
[2]. However, the time-stamps that delimit the temporal segments introduce a
kind of fuzziness in the matching of segments that need to be coped with. It is
quite striking that, to our knowledge, no dynamic programming algorithm has
been yet proposed to solve this temporal alignment problem at a labeled segment
level (straightforwards techniques at frame or sample levels are usually used).
Although edit distance based measures have been design to cope with temporal
segment sequences such as the time warp edit distance (TWED) [5], these mea-
sures does not cope with the label attached to the temporal segments. But more
importantly, they are not suited for the alignment of SLTSS we are dealing with,
mainly because they enable the alignment of disjoint time segments which has
no meaning in our context. The purpose of the temporal alignment algorithm
that we detail hereinafter intends to bridge this apparent gap.

3 Dynamic programming algorithm for the alignment of

a pair of SLTSS

Following the mathematical definition of the Levenshtein edit distance designed
to align two strings we define δSLTSS as an edit distance allowing to align two
SLTSS S1, S2 (of length |S1| and |S2| respectively) is given by δSLTSS(S1(|S1|), S2(|S2|))
where

4

δSLTSS(S1(i), S2(j)) =































C0.max(i, j) ifmin(i, j) = 0,

min











δSLTSS(S1(i− 1), S2(j)) + C0

δSLTSS(S1(i), S2(j − 1)) + C0

δSLTSS(S1(i− 1), S2(j − 1)) + Cm(S1(i), S2(j))

otherwise.

(1)

where δSLTSS(S1(i), S2(j)) is the distance between the first i segments of S1

and the first j segments of S2, C0 > 0 is a constant penalty value corresponding
to a segment insertion or deletion and Cm(S1(i), S2(j)) ≥ 0 is the local cost
associated to the correct matching of segment S1(i) with segment S2(j) or a
substitution of the first segment by the second.

Notice that, similarly to the edit distance, but contrary to the DTW mea-
sure [7], alignment of one segment with several other (multiple matching of one
segment) is not possible.

Fig. 2. An SLTSS example with contiguous, overlapping and disjoint segments.

The fact that streams can be partially labeled, meaning that labeled segments
can be possibly not contiguous (they can be overlapping but also separated by
”blank” or ”unlabeled” segments), introduces some difficulty. One way to deal
with such kind of stream is to introduce a dedicated label NL (for no label) to
make the labeling covering the whole time axis. An example of the SLTSS we
are working with is given in Figure 2. By convention, a NL segment starts at the
end of the previous (disjoint) segment and end at the beginning of the following
(disjoint) segment.

Fig. 3. Matching situation involving a ground truth A labeled segment aligned with a
predicted A labeled segment.

5

The main difference with the Levenstein’s distance is the local matching cost
that is defined for δSLTSS as:

Cm(S1(i), S2(j)) =



















































∞ if time intervals [tbi ; tei] and [tbj ; tej] are disjoint,

∞ if li 6= lj and (li = NL or lj = NL)

and [tbi ; tei] and [tbj ; tej] overlap

(false positive or false negative),

C0 if li 6= lj and li 6= NL and lj 6= NL

and [tbi ; tei] and [tbj ; tej] overlap (substitution),

1.0−
min(tei ,tej)−max(tbi ,tbj)

max(tei ,tej)−min(tbi ,tbj)
otherwise (correct match)

(2)
Basically, the local matching cost is evaluated according to the following

cases:

– it is infinite if the segments do not overlap or if the labels are distinct with
one being equal to NL (we prohibit the matching of non overlapping segments
or NL labeled segments with non NL labeled segments),

– it equals C0 if labels are different and distinct to NL,
– otherwise it reduces to 1.0 minus the degree of overlapping of the two seg-
ments. Hence, if the two segments are equal (fully overlapping), the cost is
null, and if the segments share a single sample, then the cost is 1.0.

Figure 3 shows an example of a partial matching with an overlap that will
produce a matching cost verifying 0 < Cm < 1.0. The ∞ cost penalty prohibits
the matching of non overlapping segments or segments that are differently la-
beled. Hence, the substitution operation (switching a label by another) is only
allowed if the segments overlap, with a cost of C0.

To favor the matching operation over the substitution, insertion and deletion
operations, the local penalty cost C0 is set up to 2.0, the double of the matching
cost with overlap worse case.

In addition, the average latency estimation (LAT) and the average match
duration (DUR) can be estimated. When a match is detected, the latency and
the duration measures of the matched segments are defined accordingly to Fig-
ure 3. The latency is defined as the difference of the matched mid-segment time
locations, while the match duration is the length of the overlap between the two
matched segments.

The evaluation of the errors is performed by back-tracing the best path
provided by the recursive equation 2. This process is a bit tricky in the presence
of repetitions or multiple errors. Repetitions as exemplified in figure 4 and pos-
sibly multiple errors such as the double errors depicted in figure 5 will produce

6

Fig. 4. Repetition of a matching label A. NL stands for no label.

Fig. 5. Double errors situation (A v.s. BB). NL stands for no label.

false positive (FP) and false negative (FN) errors. More precisely one of the rep-
etitions will correspond to a correct match operation while the other occurrences
of the repetition will correspond to a deletion (or insertion) operation and will
be accounted for FP errors. Similarly, in the presence of multiple errors on a set
of overlapping segments, one of the error will be accounted for 1 FN and 1 FP
(substitution), while the other errors will be accounted for 1 FP error each. For
instance, in figure ??, the first error will account for 1 FN and 1 FP (substitution
A -¿ B), the second error will account for 1 FP.

The implementation of δSLTSS is described in a simplified form in Algorithm
1, which is decomposed in three blocks depicted in Algorithms 2, 3 and 41.
Following are the conventions used to described these algorithms:

– the vector or matrix indexes start from 0: basically the first element of a
vector V is located at V [0]. The same applies for matrix elements.

– If L = {l1, l2, ..., l|L|} is the set of labels (with NL /∈ L), li will correspond

to the ith row or column of the confusion matrix (referred to as CM in the
algorithms). idx(l) = i > 0 will correspond to the index of label l in the CF
matrix (idx(li) = i).

– row and column at index 0 in the CM matrix will correspond to NL (no
label).

Algorithm 1 returns a confusion matrix (obtained by back-tracing the best
alignment provided by the dynamic programming algorithm), the number of
repetitions, the average match duration DUR, the average match latency LAT .
From this confusion matrix it is easy to evaluate assessment measures such as :

1 The code will be made available for the community at the earliest feasible opportu-
nity

7

Algorithm 1 δSLTSS : alignment of a ground-truth (S1) and a predicted (S2)
labeled segment sequences

1: procedure δSLTSS(S1, S2)
2: Double D[|S1|+ 1][|S2|+ 1]; ⊲ the distance matrix
3: Integer CF [|L|+ 1][|L| + 1] = Zeros(|L|+ 1, |L|+ 1); ⊲ the confusion matrix
4: Integer match count = 0;
5: for i = 0 to |S1| do D[i][0] = i · C0; ⊲ D initialization

6: for j = 0 to |S2| do D[0][j] = j · C0;

7: //D Calculation
8: for i = 1 to |S1| do
9: for j = 1 to |S2| do
10: D[i][j] = min{D[i − 1][j] + C0;
11: D[i][j − 1] + C0;
12: D[i− 1][j − 1] + Cm(S1(i), S2(j))};

13: //BACK-TRACE
14: i = |S1|, j = |S2|;
15: REP = 0, DUR = 0, LAT = 0;
16: while i > 0 and j > 0 do

17: m = min(D[i− 1][j], D[i][j − 1], D[i − 1][j − 1]);
18: switch(m)
19: case (D[i− 1][j − 1]): MATCH/SUBST BLOCK;
20: break;
21: case (D[i− 1][j]): DELETE1 BLOCK;
22: break;
23: case (D[i][j − 1]): DELETE2 BLOCK;
24: break;

25: DUR = DUR/match count;
26: LAT = LAT/match count;
27: return CF , REP , DUR, LAT ;

Algorithm 2 MATCH/SUBST BLOCK

1: if S1(i) and S2(j) have the same label (l1(i) = l2(j)) then ⊲ correct match
2: match count ++;
3: DUR = DUR + overlap(S1(i), S2(j);
4: LAT = LAT + latency(S1(i), S2(j);

5: CF [idx(l1(i))][idx(l1(i))] + +; ⊲ idx(l1(i)) is the raw or column index for l1(i)
6: i = i− 1, j = j − 1;

Algorithm 3 DELETE1 BLOCK

1: if S1(j) 6= NL then ⊲ false negative error
2: CF [0][idx(l2(j))] + +;
3: else NL deletion in GT
4: j = j − 1;

– Micro Average Accuracy (MAA): 1/|L|
∑|L|

i=1(TPi + TNi)/(TPi + FPi +
TNi + FNi),

8

Algorithm 4 DELETE2 BLOCK

1: if S2(j) 6= NL then ⊲ false positive error
2: CF [idx(l1(i))][0] + +;
3: else NL deletion in PRED
4: i = i− 1;

– the Micro Average Precision (MAP): 1/|L|
∑|L|

i=1 TPi/(TPi + FPi),

– the Micro Average Recall (MAR): 1/|L|
∑|L|

i=1 TPi/(TPi + FNi),

– Micro Average F1 (MAF1): MAF1 = 2.MAP.MAR/(MAP+MAR).

The algorithmic complexity of δSLTSS is clearlyO(|S1|.|S2|), or simplyO(N2)
for sequences of length N .

4 Example

Table 1 presents a simple example based on a pair of short sequences. The set of
admissible labels is L = {1, 2, 3, 4, 5}. NL is the ”no label” extra label. Table 2
present the back-trace process output along a best alignment path. Finally, table
3 gives the confusion matrix provided by the backtracking. Clearly, if we except
the NL label, three correct matches have been detected, 1 label of the ground
truth has not been predicted (label 3), which results in a false negative error, 1
mismatch (substitution) has been detected between labels 2 (GT) and 4 (PRED)
and 1 prediction has led to a false positive error (label 5 has been repeated in the
predicted sequence). The ”best” alignment provided by the algorithm is given
in Figure 6

Table 1. Ground-truth sequence (left) and predicted sequence (right)

index Label tb te
0 3 0 45

1 NL 46 50

2 5 51 101

3 2 102 152

4 4 153 203

5 1 204 254

index Label tb te
0 NL 0 30

1 NL 31 50

2 NL 51 88

3 5 89 90

4 NL 91 95

5 5 96 106

6 2 107 152

7 NL 153 174

8 2 175 195

9 NL 196 203

10 1 204 254

On this example, the mean latency and mean duration have been respectively
evaluated to 9.16 and 35 time units.

9

Table 2. Back-trace of the alignment process. PRED means predicted sequence, GT
means ground truth sequence. The local alignments are given line by line and each
segment is presented as: sequence index (label | tb − te)

GROUND TRUTH PREDICTION EVENTS

5 (1|204-254) 10 (1|204-254) correct match

4 (4|153-203) 9 (NL|196-203) delete NL in PRED

4 (4|153-203) 8 (2|175-195) mismatch (1 FP and 1 FN)

3 (2|102-152) 7 (NL|153-174) delete NL in PRED

3 (2|102-152) 6 (2|107-152) correct match

2 (5|51-101) 5 (5|96-106) correct match

1 (NL|46-50) 4 (NL|91-95) delete NL in PRED

1 (NL|46-50) 3 (5|89-90) delete in PRED (FP)

1 (NL|46-50) 2 (NL|51-88) delete NL in PRED

1 (NL|46-50) 1 (NL|31-50) match NL

0 (3|0-45) 0 (NL|0-30) delete in GT (FN)

0 (3|0-45) 0 (NL|0-30) delete NL in PRED

Table 3. Confusion matrix provided by the back-trace of the alignment process.
GT stands for ground-truth and PR for predicted

GT/PR NL 1 2 3 4 5

NL 1 0 0 1 0 0

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 1 0 0 0 0 1

Fig. 6. Alignment provided by the algorithm for the pair of SLTSS used in the example.
In red/bold the mismatch, in orange/bold the insertion/deletion, in green the correct
matches.

5 Conclusions

The assessment of temporal pattern labeling or recognition tasks in streams
is not trivial. It requires to align sequences of labeled time-stamped segments
that either partially overlap or are disjoint. We have proposed to use an editing
distance to find first an optimal alignment (basically an alignment with a mini-
mal cost) dedicated to this specific alignment problem. Following backward this
optimal alignment allows for the inventory of the various kind of mismatch (sub-
stitutions, false positive or false negative) errors as well as the correct matches.

10

The choice of the local alignment costs has been made to favor correct label
matches and to penalize mismatched labels.

This algorithm provides a confusion matrix from which standard evaluation
measures can be easily derived. Furthermore, it evaluates the average latency
and the relative average duration of the correct matches, which can be useful to
”rank” applications that require pattern spotting and recognition (e.g. speech
or gesture recognition applications) as soon as possible, or a precise temporal
location of the labels.

This algorithm requires a ground-truth sequence in input, which is indeed a
limitation to its use. In the other hand, since experts are generally involved in
the construction of the ground-truth, it ensures a human control of the quality
of the assessment procedure and possibly a better acceptance.

References

1. Alex Graves. Supervised sequence labelling with recurrent neural networks. PhD
thesis, Technical University Munich, 2008.

2. Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks, volume
385 of Studies in Computational Intelligence. Springer, 2012.

3. Mohammed Waleed Kadous. Temporal Classification: Extending the Classification

Paradigm to Multivariate Time Series. PhD thesis, New South Wales, Australia,
Australia, 2002. AAI0806481.

4. Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, in-
sertions and reversals. Soviet Physics Doklady, 10(8):707–710, feb 1966. Doklady
Akademii Nauk SSSR, V163 No4 845-848 1965.

5. P. F. Marteau. Time warp edit distance with stiffness adjustment for time se-
ries matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(2):306–318, Feb 2009.

6. Temple F. Smith and Michael S. Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147(1):195–197, 1981.

7. T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics,
4(1):52–57, 1968.

	Assessing pattern recognition or labeling in streams of temporal data
	Introduction
	Previous work and problem statement
	Dynamic programming algorithm for the alignment of a pair of SLTSS
	Example
	Conclusions

