
HAL Id: hal-01403941
https://hal.science/hal-01403941

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Minimum for a Finsler Elastica Minimal Path
Approach

Da Chen, Jean-Marie Mirebeau, Laurent D. Cohen

To cite this version:
Da Chen, Jean-Marie Mirebeau, Laurent D. Cohen. Global Minimum for a Finsler Elastica Minimal
Path Approach. International Journal of Computer Vision, 2017, 122 (458-483). �hal-01403941�

https://hal.science/hal-01403941
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Global Minimum for a Finsler Elastica Minimal Path Approach

Da Chen · Jean-Marie Mirebeau · Laurent D. Cohen

Received: date / Accepted: date

Abstract In this paper, we propose a novel curvature pe-
nalized minimal path model via an orientation lifted Finsler
metric and the Euler elastica curve. The original minimal
path model computes the globally minimal geodesic by solv-
ing an Eikonal partial differential equation (PDE). Essen-
tially, this first-order model is unable to penalize curvature
which is related to the path rigidity property in the classical
active contour models. To solve this problem, we present an
Eikonal PDE-based Finsler elastica minimal path approach
to address the curvature-penalized geodesic energy mini-
mization problem. We were successful at adding the curva-
ture penalization to the classical geodesic energy (Caselles
et al, 1997; Cohen and Kimmel, 1997). The basic idea of
this work is to interpret the Euler elastica bending energy
via a novel Finsler elastica metric that embeds a curvature
penalty. This metric is non-Riemannian, anisotropic and asym-
metric, and is defined over an orientation lifted space by
adding to the image domain the orientation as an extra space
dimension. Based on this orientation lifting, the proposed
minimal path model can benefit from both the curvature and
orientation of the paths. Thanks to the fast marching method,
the global minimum of the curvature-penalized geodesic en-
ergy can be computed efficiently.

We introduce two anisotropic image data-driven speed
functions that are computed by steerable filters. Based on
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these orientation-dependent speed functions, we can apply
the proposed Finsler elastica minimal path model to the ap-
plications of interactive image segmentation, perceptual group-
ing and tubular structure extraction. Numerical experiments
on both synthetic and real images show that these applica-
tions of the proposed model indeed obtain promising results.

Keywords Minimal Path · Geodesic · Eikonal Equation ·
Curvature Penalty · Euler Elastica Curve · Finsler Metric ·
Anisotropic Fast Marching Method · Image Segmentation ·
Perceptual Grouping · Tubular Structure Extraction

1 Introduction

Snakes or active contour models have been studied consid-
erably, and used for object segmentation and feature extrac-
tion for almost three decades, since the pioneering work of
the snakes model proposed by Kass et al (1988). A snake is
a parametrized curve � (locally) that minimizes the energy:

E(� ) =

Z 1

0

�

w1 k� 0
(t)k2 + w2 k� 00

(t)k2 + P

�

� (t)

��

dt

with appropriate boundary conditions at the endpoints t = 0

and t = 1. � 0 and � 00 are the first- and second-order deriva-
tives of the curve � respectively. The positive constants w1

and w2 relate to the elasticity and rigidity of the curve �
and, hence, weight its internal force. This approach models
contours as curves � locally minimizing an objective en-
ergy functional E that consists of an internal and an exter-
nal force. The internal force terms depend on the first- and
second-order derivatives of the curves (snakes), and, respec-
tively, account for a prior of small length and of low cur-
vature of the contours. The external force is derived from a
potential function P , which depends on image features such
as the gradient magnitude, and it is designed to attract the
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active contours or snakes to the image features of interest
such as object boundaries.

The drawbacks of the classical active contours or snakes
model (Kass et al, 1988) are its sensitivity to initialization,
the difficulty of handling topological changes, and the diffi-
culty of minimizing the strongly non-convex path energy as
discussed by Cohen and Kimmel (1997). Regarding initial-
ization, the active contours model requires an initial guess
that is close to the desired image features, and preferably en-
closing them because energy minimization tends to shorten
the snakes. The introduction of an expanding balloon force
allows the model to be less demanding on the initial curve
given inside the objective region (Cohen, 1991). The issue
of topology changes leads, on the other hand, to the devel-
opment of active contour methods, which represent object
boundaries as the zero level set of the solution to a PDE
(Osher and Sethian, 1988; Caselles et al, 1993; Malladi et al,
1994; Caselles et al, 1997; Yezzi et al, 1997).

The difficulty of minimizing the non-convex snakes en-
ergy (Kass et al, 1988) leads to important practical prob-
lems because the curve optimization procedure often be-
comes stuck at a local minimum of the energy functional,
which makes the results sensitive to curve initialization and
image noise. This limitation is still the case for the level set
approach on geodesic active contours (Malladi et al, 1995;
Caselles et al, 1997). To address this local minimum sensi-
tivity issue, Cohen and Kimmel (1997) proposed an Eikonal
PDE-based minimal path model to find the global minimum
of the geodesic active contours energy (Caselles et al, 1997),
in which the penalty associated to the second-order deriva-
tive of the curve was removed from the snakes energy. Thanks
to this simplification, a fast, reliable and globally optimal
numerical method allows to find the energy minimizing curve
with prescribed endpoints, namely, the fast marching method
(Sethian, 1999), which is based on the formalism of viscos-
ity solutions to Eikonal PDE. These mathematical and al-
gorithmic guarantees of Cohen and Kimmel’s minimal path
model (Cohen and Kimmel, 1997) have important practical
consequences, leading to various approaches for image anal-
ysis and medical imaging (Peyré et al, 2010; Cohen, 2001).

In the basic formulations of the minimal paths-based in-
teractive image segmentation models (Appleton and Talbot,
2005; Appia and Yezzi, 2011; Mille et al, 2014), the com-
mon proposal is that the object boundaries can be delin-
eated by a set of minimal paths constrained by user-provided
points. In (Li and Yezzi, 2007; Benmansour and Cohen, 2011),
vessels were extracted under the form of minimal paths over
the radius lifted space. Therefore, each extracted minimal
path consists of both the centerline positions and the corre-
sponding thickness values of a vessel.

To reduce the user intervention, Benmansour and Cohen
(2009) proposed a growing minimal path model for object
segmentation with unknown endpoints. This model can re-

cursively detect keypoints, each of which can be used as a
new source point for the fast marching front propagation.
Thus this model requires only one user-provided point to
start the keypoints detection procedure. Kaul et al (2012)
applied the growing minimal path model to detect compli-
cated curves with arbitrary topologies and developed criteria
to stop the growth of the minimal paths. Rouchdy and Co-
hen (2013) proposed a geodesic voting model for vessel tree
extraction by a voting score map that is constructed from a
set of geodesics with a common source point.

Recently, improvements of the minimal path model have
been devoted to extend the isotropic Riemannian metrics to
the more general anisotropic Riemannian metrics by taking
into account the orientation of the curves (Bougleux et al,
2008; Jbabdi et al, 2008; Benmansour and Cohen, 2011).
Such orientation enhancement can solve some shortcuts prob-
lems suffered by the isotropic minimal path models (Co-
hen and Kimmel, 1997; Li and Yezzi, 2007). Kimmel and
Sethian (2001) designed an orientation lifted Riemannian
metric for the application of path planning, providing an
alternative way to take advantage of the orientation infor-
mation. This isotropic orientation lifted Riemannian met-
ric (Kimmel and Sethian, 2001) was built over a higher di-
mensional domain by adding an extra orientation space to
the image domain.

Bekkers et al (2015) considered a data-driven extension
of the sub-Riemannian metric on SE(2), which shows that
the sub-Riemannian structure outperforms the isotropic Rie-
mannian structures on SE(2) in retinal vessel tracking. The
numerical solver used by Bekkers et al (2015) is based on
a PDE approach with an upwind discretization and itera-
tive evolution scheme, which requires expensive computa-
tion time. To solve this problem, Sanguinetti et al (2015)
used the fast marching method (Mirebeau, 2014a) as the
Eikonal solver to track the sub-Riemannian geodesics. The
sub-Riemannian geodesic model (Petitot, 2003) reintroduced
curvature penalization to the geodesic energy, similar to the
Euler elastica bending energy (Nitzberg and Mumford, 1990)
considered in this paper, yet it differs in two ways: firstly, the
Euler elastica bending energy involves the squared curva-
ture, a stronger penalization than Petitot’s sub-Riemannian
geodesic energy which is roughly linear in the curvature.
Secondly, minimal geodesics for Petitot’s sub-Riemannian
model occasionally feature cusps, which sometimes may not
be desirable for the applications of interest. In contrast, Eu-
ler elastica curves can avoid such cusps.

Schoenemann et al (2012) proposed a model to address
the problems of using curvature regularization for region-
based image segmentation by a graph-based combinational
optimization method. This curvature regularization model
can find a solution that corresponds to the globally opti-
mal segmentation which is initialization-independent, and
has proven to obtain promising segmentation and inpaint-
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(a) (b) (c) (d)

Fig. 1 (a) Edge saliency map. (b) Minimal path with isotropic Riemannian metric. (c) Minimal path with anisotropic Riemannian metric. (d)
Minimal path with the proposed Finsler elastica metric. The red curves are the extracted minimal paths with the initial source positions and end
positions indicated by the red and green dots respectively. The arrows in (d) indicate the tangents.

ing results especially for objects with long and thin struc-
tures. Ulen et al (2015) proposed a curvature and torsion
regularized shortest path model for tubular structure seg-
mentation, where the curvature and the torsion were approx-
imately computed by B-Splines. The solution of their en-
ergy functional including curvature and torsion penalization
terms can be efficiently obtained by using line graphs.

Tai et al (2011) introduced an efficient method to solve
the minimization problem of the Euler elastica energy with
applications to image denosing, inpainting, and zooming.
Other approaches of interest using the curvature penaliza-
tion include the image segmentation models such as (El-
Zehiry and Grady, 2010; Schoenemann et al, 2011; Zhu et al,
2013) and the image inpainting model introduced by Shen
et al (2003).

1.1 Motivation

In contrast with the classical snakes energy (Kass et al, 1988),
Eikonal PDE-based minimal path methods are first order
models, which do not penalize the second-order derivative
of a curve, i.e., the curvature, and therefore do not enforce
the smoothness of the geodesic, leading sometimes to unde-
sired result as shown in Fig. 1, in which we would like to
extract a boundary that is as smooth as possible between the
two given points indicated by red and green dots. In Fig. 1a
we show the edge saliency map. Figs. 1b and 1c are the
minimal paths obtained by using the isotropic Riemannian
metric (Cohen and Kimmel, 1997) and the anisotropic Rie-
mannian metric (Bougleux et al, 2008), respectively, both
of which are unable to find expected smooth boundaries and
suffer from the shortcut problem due to the lack of curvature
penalization in these metrics. In contrast, the minimal path
model presented in this paper reintroduces the curvature,
in the form of weighted Euler elastica curves as studied in
(Nitzberg and Mumford, 1990; Mumford, 1994). Therefore,
the geodesics extracted by the proposed metric can catch the
smooth object boundary, as shown in Fig. 1d, with arrows
indicating the corresponding tangents at the given positions.

1.2 Contributions

The contribution of this paper is three fold:

1. Firstly, we propose a novel globally minimized minimal
path model, namely, the Finsler elastica minimal path
model, with curvature penalization and Finsler metric.
We establish the connection between the Euler elastica
curves and the minimal paths with respect to a Finsler
elastica metric. With an adequate numerical implemen-
tation, leveraging orientation lifting, asymmetric Finsler
metrics and anisotropic fast marching method, the pro-
posed model still allows to find the globally minimizing
curves with prescribed points and tangents.

2. As a second contribution, we present the mathematical
convergence analysis of the proposed Finsler elastica met-
rics and the corresponding Finsler elastica minimal paths.
Furthermore, we discuss numerical options for geodesic
distance and minimal paths computation and settle for
an adaptation of the fast marching method proposed by
Mirebeau (2014b).

3. Finally, we provide two types of image data-driven speed
functions that are computed by steerable filters. These
speed functions are therefore orientation dependent, by
which we apply the proposed Finsler elastica minimal
path model to closed contour detection, perceptual group-
ing and tubular structure extraction. Closed contour de-
tection is performed in an interactive manner, where the
contour is concatenated by a set of piecewise smooth
geodesics. It connects a set of user-provided orientation
lifted points. With a procedure similar to the closed con-
tour detection method, we apply our model to percep-
tual grouping based on the criteria of connectivity and
smoothness. Moreover, we also provide a method for
simplifying the tubular structure extraction application.

More contributions have been added regarding the original
conference paper presented in (Chen et al, 2015), such as
the applications of interactive closed contour detection for
image segmentation and perceptual grouping, respectively.
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1.3 Paper Outline

In Section 2 we briefly introduce the existing minimal path
models, the concept of Finsler metric, and algorithms for
distance computation and path extraction. The relationship
between the Euler elastica bending energy and the Finsler
elasica metric is analyzed in Section 3. In Section 4 we intro-
duce two data-driven speed functions which are dependent
of orientations. The applications of the Finsler elastica mini-
mal path model are presented in Section 5. Experiments and
Conclusion are presented in Sections 6 and 7, respectively.

2 Background on the Minimal Path Models

2.1 Cohen-Kimmel Minimal Path Model

Let ⌦ ⇢ R2 or R3 denote the image domain. The classi-
cal Cohen-Kimmel minimal path model (Cohen and Kim-
mel, 1997) was designed to find the global minimum of
the geodesic energy which measures the length of Lipschitz
paths � : [0, 1] ! ⌦ as follows

LI
(�) =

Z 1

0

⇣

w + P

�

�(t)

�

⌘

k�0(t)k dt, (1)

where k · k denotes the canonical Euclidean norm. w is a
positive constant and P : ⌦ ! R+ is a potential function
which usually depends on the image gradient magnitude or
gray levels as suggested by Cohen and Kimmel (1997).

The minimal action map U : ⌦ ! R+ associated to
a source point s, is the global minimum of the length (1)
among all paths joining s to any point x 2 ⌦:

U(x) := inf{LI
(�); � 2 A

s,x

}, 8x 2 ⌦, (2)

where A
s,x

is the collection of all Lipschitz paths.
The Cohen-Kimmel minimal path model considers an

orientation-independent isotropic Riemannian metric. For any
vector u 2 R2 or R3, this metric is defined by

F I
(x,u) :=

p

hu,MI(x)ui, 8x 2 ⌦, (3)

where h·, ·i denotes the scalar product over R2 or R3 and
MI is a symmetric positive definite tensor field which is
proportional to the identity matrix I

d

:

MI(x) =
�

w + P (x)

�2
I

d

, 8x 2 ⌦. (4)

The minimal action map U defined in (2) satisfies the fol-
lowing Eikonal PDE (Cohen and Kimmel, 1997):
(

krU(x)k = w + P (x), 8x 2 ⌦\{s},
U(s) = 0,

(5)

where rU is the Euclidean gradient of U with respect to the
position in the domain. The geodesic C

s,x

, linking the source

point s to x, is obtained through the gradient descent or-
dinary differential equation (ODE), solved backwards from
t = 1 to t = 0:
(

C0
s,x

(t) / rU(C
s,x

(t)),

C
s,x

(1) = x,

(6)

where / denotes positive collinearity.

2.2 Anisotropic Riemannian Metric Extension

Bougleux et al (2008) and Jbabdi et al (2008) extended the
isotropic Riemannian metric (3) to the anisotropic Rieman-
nian case invoking a symmetric positive definite tensor field

MA(x) =

n

X

i=1

P

i

(x)v

i

(x)v

T
i

(x), 8x 2 ⌦, (7)

where n is the dimension of the domain ⌦ and the vector
fields v

i

are related to the image data. P
i

: ⌦ ! R+ are the
image data-driven functions associated to v

i

.
Based on the tensor field MA (7), the anisotropic Rie-

mannian metric FA can be expressed as:

FA
(x,u) :=

p

hu,MA(x)ui. (8)

The minimal action map U associated to the anisotropic Rie-
mannian metric FA satisfies the Eikonal PDE:
(

krU(x)kM�1
A (x) = 1, 8x 2 ⌦\{s},

U(s) = 0,

(9)

where we denote that kukM =

p

hu,Mui.
The geodesic C

s,x

can be tracked by solving the ODE,
again solved backwards from t = 1 to t = 0:
(

C0
s,x

(t) / M�1
A (C

s,x

(t))rU(C
s,x

(t)),

C
s,x

(1) = x.

(10)

Benmansour and Cohen (2011) proposed an anisotropic
radius lifted Riemannian metic, as a special case of FA (8),
to deal with the problem of extracting both the centerline
positions and the corresponding radius values of a tubular
structure simultaneously.

2.3 Isotropic Orientation Lifted Riemannian Metric
Extension

In order to take into account the local orientation in the im-
age, it is possible to include orientation information in the
energy minimization. For this purpose, the image domain
⌦ ⇢ R2 can be extended to the orientation lifted space ¯

⌦

by product with an abstract orientation space S1 (Kimmel
and Sethian, 2001), i.e., ¯

⌦ = ⌦⇥S1 ⇢ R3 and the problem
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is to find a minimal path in the new lifted space ¯

⌦. Each
point ¯x in the orientation lifted path is thus a pair composed
of a point x in the image domain⌦ and an orientation ✓, i.e.,
¯

x = (x, ✓).
For any point ¯

x and any vector ¯

u = (u, ⌫) 2 R2 ⇥
R, where ⌫ denotes the orientation variation, the isotropic
orientation lifted Riemannian metric F IL is expressed by

F IL
(

¯

x,

¯

u) :=

1

�IL(¯x)

p

kuk2 + ⇢|⌫|2, (11)

where �IL :

¯

⌦ ! R+ is an orientation-dependent speed
function relying on the image data and ⇢ > 0 is a constant.

Following the form of (3), the metric F IL defined in (11)
can be written by using a tensor field MIL

MIL(¯x) =
1

�

2
IL(¯x)

D

⇢

, (12)

where D

⇢

= diag(1, 1, ⇢) is a diagonal matrix. Note that
⇢ can be extended to a positive scalar function that is de-
pendent of the image data. For simplicity, we set ⇢ to be a
positive constant in this paper, as suggested in (Kimmel and
Sethian, 2001; Péchaud et al, 2009).

The curve length of an orientation lifted curve � :=

(�, ✓) : [0, 1] ! ¯

⌦ with respect to the isotropic orientation
lifted Riemannian metric F IL can be expressed as

LIL
(�) =

Z 1

0
F IL

(�(t), �

0
(t)) dt

=

Z 1

0

1

�IL(�(t))

p

h�0(t), MIL(�(t)) �
0
(t)i dt

=

Z 1

0

1

�IL(�(t))

p

k� 0
(t)k2 + ⇢|✓0(t)|2 dt, (13)

where �0(t) = (�

0
(t), ✓

0
(t)) 2 R3, for all t 2 [0, 1].

The idea of orientation lifting was applied to tubular
structure extraction by Péchaud et al (2009) with additional
radius lifting, typically accounting for the radius r of the
tubular structure in the processed image. Orientation lift-
ing often improves the results from (Cohen and Kimmel,
1997; Li and Yezzi, 2007), but suffers from the fact that
for the geodesic curve length of an orientation lifted curve
� = (�, ✓) : [0, 1] ! ¯

⌦, nothing in (13) constrains the path
direction �

0
(t) to align with the orientation vector associ-

ated to orientation ✓(t), where t 2 [0, 1]. In other words,
this isotropic orientation lifted Riemannian metric F IL can-
not penalize the curvature of the geodesic, a point which is
addressed in this paper.

2.4 General Minimal Path Model and Finsler Metric

The general minimal path problem is posed on a bounded
domain ⌦ ⇢ Rn equipped with a metric F(x,u) depending

on positions x 2 ⌦ and orientations u 2 Rn. This metric F
defines at each point x a norm

F
x

(u) := F(x,u). (14)

These norms must be positive F
x

(u) > 0 whenever u 6= 0,
1-homogeneous, and obey the triangular inequality. How-
ever, in general we allow them to be asymmetric :

F
x

(u) 6= F
x

(�u), (15)

One can measure the curve length of a regular curve � with
respect to the metric F :

LF (�) =

Z 1

0
F
�

�(t), �

0
(t)

�

dt, (16)

The minimal action map U(x) is defined by:

U(x) := inf{LF (�); � 2 A
s,x

}, (17)

which is the unique viscosity solution to an Eikonal PDE (Li-
ons, 1982; Sethian and Vladimirsky, 2003):
(

F⇤
x

�

rU(x)
�

= 1, 8x 2 ⌦\{s},
U(s) = 0,

(18)

where F⇤
x

is the dual norm of F
x

defined for all u 2 Rn by

F⇤
x

(u) := sup

v 6=0

hu,vi
F

x

(v)

. (19)

Based on the definition of the dual norm in (19), the corre-
sponding optimal direction map  is then obtained by

 (x,u) := argmax

v 6=0

hu,vi
F

x

(v)

, 8x 2 ⌦, 8u 2 Rn

. (20)

The geodesic C
s,x

, joining the source point s to any point
x 2 ⌦, is the solution to the following ODE involving the
minimal action map U and the optimal direction map  
(

C0
s,x

(t) /  

⇣

C
s,x

(t),rU
�

C
s,x

(t)

�

⌘

,

C
s,x

(1) = x.

(21)

Numerically, the ODE expressed in (21) is solved backwards
from t = 1 to t = 0, using Heuns or Runge-Kutta’s meth-
ods, or more robustly using the numerical method proposed
by Mirebeau (2014a).

The metric F considered in this paper combines a sym-
metric part, defined in terms of a positive definite tensor field
M, and an asymmetric part involving a vector field !:

F(x,u) :=

p

hu,M(x)ui � h!(x), ui, (22)

for all x 2 ⌦ and any vector u 2 Rn. The asymmetric part
should obey the following smallness condition to ensure that
the Finsler metric F is positive:

h!(x),M�1
(x)!(x)i < 1, 8x 2 ⌦. (23)
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Equation (22) defines an anisotropic Finsler metric in gen-
eral. This is an anisotropic Riemannian metric if the vec-
tor field ! is identically zero, and an isotropic metric if in
addition the tensor field M is proportional to the identity
matrix or diagonal matrix D

⇢

in (12). Therefore, the gen-
eral Eikonal PDE (18) and the geodesic back tracking equa-
tion (21) reduce respectively to equations (5) and (6) for the
isotropic case, and respectively to equations (9) and (10) for
the anisotropic case.

2.5 Computation of the Minimal Action Map

In order to estimate the minimal action map U , presented
in (17) and (18), a discretization grid Z of the image do-
main ⌦ is introduced - or of the extended domain ¯

⌦ in the
case of an orientation lifted metric. For each point x 2 Z, a
small mesh S(x) of a neighbourhood of x with vertices in Z

is constructed. For example, S(x) can be the square formed
by the four neighbours of x in the classical fast marching
method (Sethian, 1999) on a regular orthogonal grid used
in (Cohen and Kimmel, 1997). In contrast with Sethian’s
classical fast marching method which solves the discrete ap-
proximation of the Eikonal PDE itself, an approximation of
the action map U , with the initial source point s, is calcu-
lated by solving the fixed point system (Tsitsiklis, 1995):
(

U(x) = ⇤U(x), for all x 2 Z\{s},
U(s) = 0,

(24)

where the involved Hopf-Lax update operator is defined by:

⇤U(x) := min

y2@S(x)

n

F(x,x� y) + I

S(x) U(y)
o

, (25)

where I

S(x) denotes the piecewise linear interpolation op-
erator on the mesh S(x), and y lies on the boundary of
S(x). The equality U(x) = ⇤U(x), replacing in (24) the
Eikonal PDE: F

x

(rU(x)) = 1 of (18), is a discretization of
Bellman’s optimality principle, which is similar in spirit to
the Tsitsiklis approach (Tsitsiklis, 1995). It reflects the fact
that the minimal geodesic C

s,x

, from s to x, has to cross the
mesh boundary @S(x) at least once at some point y; there-
fore it is the concatenation of a geodesic C

s,y

from s to y,
which length is approximated by piecewise linear interpola-
tion, and a very short geodesic C

y,x

from y to x, approxi-
mated by a segment of geodesic curve length F(x,x � y).
The N -dimensional fixed point system (24), with N = #Z

the number of grid points, can be solved by a single pass fast
marching method as described in Algorithm 1 in Appendix.

The classical fast marching methods (Sethian, 1999; Tsit-
siklis, 1995) using the square formed neighbourhood S have
difficulty to deal with the computation of geodesic distance
maps with respect to anisotropic metrics, especially when

the anisotropy gets large. An adaptive construction method
of such stencils S was introduced in (Mirebeau, 2014a) for
anisotropic 3D Riemannian metric, and in (Mirebeau, 2014b)
for anisotropic 2D Finsler metric, providing that the stencils
or mesh S(x) at each point x 2 ⌦ or ¯

⌦ satisfies some ge-
ometric acuteness property depending on the local metric
F(x, ·). Such adaptive stencils based fast marching meth-
ods lead to breakthrough improvements in terms of compu-
tation time and accuracy for strongly anisotropic geodesic
metrics. When the above mentioned geometric properties
do not hold, the fast marching method is in principle not
applicable, and slower multiple pass methods must be used
instead, such as the Adaptive Gauss Siedel Iteration (AGSI)
of Bornemann and Rasch (2006). The present paper involves
a 3D Finsler metric (37), for which we constructed stencils
by adapting the 2D Finsler metric construction method pro-
posed by Mirebeau (2014b). Although these stencils lack the
geometric acuteness condition, we found that the fast march-
ing method still provided good approximations of the paths,
while vastly improving computation performance. In Sec-
tion 3.3, the complexity will be discussed more.

Note that whenever we mention fast marching method in
the next sections, we mean the fast marching method with
adaptive stencils proposed by Mirebeau (2014b).

3 Finsler Elastica Minimal Path Model

In this section, we present the core contribution of this pa-
per: the orientation lifted Finsler metric embedding curva-
ture penalty term, defined over the orientation lifted domain
¯

⌦ = ⌦ ⇥ S1 ⇢ R3, where S1 = [0, 2⇡) denotes the an-
gle space with periodic boundary conditions and ⌦ ⇢ R2

denotes the image domain.

3.1 Geodesic Energy Interpretation of the Euler Elastica
Bending Energy via a Finsler Metric

The Euler elastica curves were introduced to the field of
computer vision by Nitzberg and Mumford (1990) and Mum-
ford (1994). They minimized the following bending energy:

L( ˆ� ) :=
Z

L

0

1

�0

�

ˆ

� (s)

�

�

1 + ↵

2
(s)

�

ds, (26)

where ˆ

� : [0, L] ! ⌦ is a regular curve with non-vanishing
velocity,  is the curvature of curve ˆ

� , L is the Euclidean
curve length of ˆ

� , and s is the arc-length. Parameter ↵ > 0

is a constant. �0 is an image data-driven speed function.
For the sake of simplicity, we set �0 ⌘ 1, yielding the

simplified Euler elastica bending energy

`(

ˆ

� ) =

Z

L

0

�

1 + ↵

2
(s)

�

ds, (27)
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(a) (b)

Fig. 2 Visualization for the metrics F1 and F� with ↵ = 1 by Tissot’s indicatrix. (a) Tissot’s indicatrix for the metric F1 (37) with ↵ = 1 are
flat 2D disks embedded in 3D space, aligned with the direction v✓ (several directions ✓ are shown). (b) Tissot’s indicatrix for the Finsler elastica
metrics F� are ellipsoids, which flatten and approximate a limit disk as �!1.

where the general case will be studied in Section 3.4.
The goal of this section is to cast the Euler elastica bend-

ing energy ` (27) in the form of curve length with respect to
a relevant asymmetric Finsler metric. We firstly transform
the elastica problem into finding a geodesic in an orienta-
tion lifted space. For this purpose, we denote by

v

✓

= (cos ✓, sin ✓) (28)

the unit vector corresponding to ✓ 2 S1.
Let � : [0, 1] ! ⌦ be a regular curve with non-vanishing

velocity and � = (�, ✓) : [0, 1] ! ¯

⌦ be its canonical ori-
entation lifting. For any t 2 [0, 1], ✓(t) is defined as being
such that:

v

✓(t) :=
�

0
(t)

k� 0
(t)k . (29)

According to the definition of v
✓

in (28), one has
✓

�

0
(t)

k� 0
(t)k

◆?
= (v

✓(t))
?

= (� sin ✓(t), cos ✓(t)), (30)

where u? denotes the vector that is perpendicular to a vector
u. It is known that

d

dt

✓

�

0
(t)

k� 0
(t)k

◆

= (t)k� 0
(t)k

✓

�

0
(t)

k� 0
(t)k

◆?
, (31)

where  is the curvature of path � . Then we have the fol-
lowing equations:

d

dt

v

✓(t) =
d

dt

(cos ✓(t), sin ✓(t))

= ✓

0
(t)

�

� sin ✓(t), cos ✓(t)

�

= ✓

0
(t)

✓

�

0
(t)

k� 0
(t)k

◆?
.

Thus, using (29) and (31), we have

✓

0
(t)

✓

�

0
(t)

k� 0
(t)k

◆?
= (t)k� 0

(t)k
✓

�

0
(t)

k� 0
(t)k

◆?
, (32)

which yields to

✓

0
(t) = (t)k� 0

(t)k, 8t 2 [0, 1]. (33)

Using equations (27), (29) and (33), one has

`(� ) =

Z

L

0

�

1 + ↵

2
(s)

�

ds

=

Z 1

0

✓

1 + ↵

|✓0(t)|2
k� 0

(t)k2
◆

k� 0
(t)k dt

=

Z 1

0

✓

k� 0
(t)k+ ↵

|✓0(t)|2
k� 0

(t)k

◆

dt, (34)

where the Euclidean arc-length is defined as

ds = k� 0
(t)kdt.

By the definition of �, for any t 2 [0, 1] we have �0(t) =

(�

0
(t), ✓

0
(t)) and

`(� ) =

Z 1

0
F1�

�(t), �

0
(t)

�

dt, (35)

where we define the Finsler metric F1 on the orientation
lifted domain ¯

⌦ by

F1
(

¯

x,

¯

u) :=

(

kuk+ ↵

|⌫|2
kuk , if u / v

✓

,

+1, otherwise.
(36)

for any orientation lifted point ¯x = (x, ✓) 2 ¯

⌦, any vec-
tor ¯

u = (u, ⌫) 2 R2 ⇥ R in the tangent space, and where
/ denotes positive collinearity. Note that any other lifting
�̃(t) = (� (t),

˜

✓(t)) of � (t) would by construction of (36)
have infinite energy, i.e., `(�̃) = 1.



8 Da Chen et al.

3.2 � Penalized Asymmetric Finsler Elastica Metric F�

The Finsler metric F1 (36) is too singular to compute the
global minimum of ` (27) by directly applying the numeri-
cal algorithm such as the fast marching method (Mirebeau,
2014b). Hence we introduce a family of orientation lifted
Finsler elastica metrics over the orientation lifted domain ¯

⌦,
depending on a penalization parameter � � 1 as follows:

F�

(

¯

x,

¯

u) :=

p

�

2kuk2 + 2↵�|⌫|2 � (�� 1)hv
✓

,ui, (37)

for any orientation lifted point ¯

x = (x, ✓) 2 ¯

⌦ and any
vector ¯u = (u, ⌫) 2 R2 ⇥ R, and where v

✓

= (cos ✓, sin ✓)

is the unit vector associated to ✓ which denotes the position
of ¯x in the orientation space S1 .

As � ! 1, the � penalized Finsler elastica metric F�

can be expressed as:

F�

(

¯

x,

¯

u) =

p

�

2kuk2 + 2↵�|⌫|2 � (�� 1)hv
✓

,ui

=�kuk
s

1 + ↵

2|⌫|2
�kuk2 � (�� 1)hv

✓

,ui

=�kuk(1 + ↵|⌫|2
�kuk2 +O(�

�2
))� (�� 1)hv

✓

,ui

=kuk+ ↵|⌫|2
kuk + (�� 1)(kuk � hv

✓

,ui)

+O(�

�1
) (38)

The term kuk � hv
✓

,ui will vanish if vector u is positively
proportional to v

✓

. Therefore, one has for any ¯

x and any u

F�

(

¯

x,

¯

u) ! F1
(

¯

x,

¯

u), as � ! 1.

The metric F� (37) has precisely the required form formu-
lated in (22), with tensor field M := MF as:

MF(¯x) = diag(�

2
, �

2
, 2↵�), (39)

and vector field ! := !F

!F(¯x) = (�� 1)(v

✓

, 0), (40)

for any ¯

x = (x, ✓) 2 ¯

⌦. Note that the definiteness constraint
(23) is satisfied:

h!F(¯x),M�1
F (

¯

x)!F(¯x)i = (1� �

�1
)

2
< 1, 8 ¯

x 2 ¯

⌦.

The anisotropy ratio characterizes the distortion between
different orientations induced by a metric. Letting ¯

x = (x, ✓),
¯

w = (w, ⌫

w

) 2 R2 ⇥ R and ¯

v = (v, ⌫

v

) 2 R2 ⇥ R, the
anisotropy ratio µ(F�

) of the Finsler elastica metric F� (37)
can be defined by:

µ(F�

) := sup

x̄2⌦̄

⇢

max

kw̄k=kv̄k=1

⇢

F�

x̄

(

¯

w)

F�

x̄

(

¯

v)

��

, (41)

where the norm F�

x̄

(·) = F�

(

¯

x, ·). As an example, for the
Finsler elastica metric F� (37) with � � 2 and ↵ = 1,

we can show that µ(F�

) in (41) is obtained by choosing
¯

w = (�v

✓

, 0) and ¯

v = (v

✓

, 0), so that µ(F�

) = 2�� 1.
Moreover, one can define the physical anisotropy ratio of

the Finsler elastica metric F� by replacing by ¯

w

s

= (w, 0)

and ¯

v

s

= (v, 0) the variables ¯

w and ¯

v in (41), respectively.
In this case, for any ↵, the physical anisotropy ratio is equal
to 2�� 1 and only depends on �.

A crucial object for studying and visualizing the geom-
etry distortion induced by a metric is Tissot’s indicatrix de-
fined as the collection of unit balls in the tangent space. For
point ¯x = (x, ✓) 2 ¯

⌦ and � 2 [1,1), we define the unit
balls for metrics F1 and F� respectively by

B

1
x̄

:= {¯u = (u, ⌫) 2 R2 ⇥ R; F1
(

¯

x,

¯

u)  1}, (42)

and

B

�

x̄

:= {¯u = (u, ⌫) 2 R2 ⇥ R; F�

(

¯

x,

¯

u)  1}. (43)

Then any vector ¯u = (u, ⌫) 2 B

1
x̄

can be characterized by

u? = 0, uk > 0, and uk + ↵

|⌫|2
uk

 1, (44)

where we introduce uk and u? as follows:

uk := hu,v
✓

i, u? := hu,v?
✓

i.

Using (44), one has

✓

uk �
1

2

◆2

+ ↵ |⌫|2  1

4

. (45)

Thus B

1
x̄

is a flat 2D ellipse embedded in the 3D tangent
space, and containing the origin on its boundary. Particu-
larly, when ↵ = 1, B1

x̄

turns to a flat 2D disk of radius 1/2
as shown in Fig. 2a.

On the other hand, when � < 1, a short computation
shows that any vector ¯u = (u, ⌫) 2 B

�

x̄

is characterized by
a quadratic equation

�

2

u

2
? + a

�

✓

uk �
b

�

2

◆2

+ ↵ |⌫|2  c

�

4

, (46)

where a

�

, b

�

, c

�

are all 1 + O(1/�). Hence B

�

x̄

is an ellip-
soid, for instance see Fig. 2b with ↵ = 1, almost flat in the
direction of v?

✓

due to the large factor �/2, which converges
to the flat disk B

1
x̄

in the Haussdorf distance as � ! 1.
Tissot’s indicatrix is also the control set in the optimal

control interpretation of the Eikonal PDE (18). The Hauss-
dorf convergence of the control sets guarantees that the min-
imal action map and minimal paths for the metric F� con-
verge towards those of F1 as � ! 1. Elements of proof
of convergence can be found in Appendix B.
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Fig. 3 Approximating Euler elastica curves by Finsler elastica minimal paths. (a) Finsler elastica minimal paths with ↵ = 500 and different
values of �. (b) and (c) Finsler elastica minimal paths with � = 100 and � = 300 respectively, and different values of ↵.

3.3 Numerical Implementations

Numerically, anisotropy is related to the problem stiffness,
hence to its difficulty. In Table 1, we show the computation
time and the average number of Hopf-Lax updates required
for each grid point by the adaptive stencils based fast march-
ing method (Mirebeau, 2014b) for ↵ = 500 and different
values of � on a 300

2 ⇥ 108 grid. This experiment was per-
formed with a C++ implementation running on a standard
2.7GHz Intel I7 laptop with 16Gb RAM.

We observe on Table 1 a logarithmic dependence of com-
putation time and average number of the Hopf-Lax updates
per grid point with respect to anisotropy. These observa-
tions agree with the complexity analysis of the fast marching
method presented in (Mirebeau, 2014b), yielding the upper
bound O(N(lnµ)

3
+N lnN), depending poly-logarithmically

on the anisotropy ratio µ (41), and quasi-linearly on the
number N of discretization points in the orientation lifted
domain ¯

⌦. In contrast, numerical methods such as (Sethian
and Vladimirsky, 2003) displaying a polynomial complexity
O(µ

2
N lnN) in the anisotropy ratio would be unworkable.

The iterative AGSI method (Bornemann and Rasch, 2006),
on the other hand, requires hundreds of evaluations of the
Hopf-Lax operator (25) per grid point to converge for large
anisotropies, which also leads to prohibitive computation
time, thus impractical. For � = 30 or 100, the average num-
bers of the Hopf-Lax updates per grid required by the AGSI
method are approximately 86 and 182, respectively, while
the numbers of Hopf-Lax from the fast marching method are
only 6.49 and 7.27, respectively, as demonstrated in Table 1.

In Fig. 3a, we show different Finsler elastica minimal
paths, computed by the fast marching method (Mirebeau,
2014b), with ↵ = 500 (see (37)) and different values of �.
The arrows indicate the initial source and end points tan-
gents. The cyan point denotes the initial position and the

Table 1 Computation time (in seconds) and average number of Hopf-
Lax updates required for each grid point by the fast marching method
with ↵ = 500 and different values of � on a 3002 ⇥ 108 grid.

� 1 10 20 30 100 200 1000

time 13.9s 25.3s 27.3s 27.7s 31.7s 33.9s 36.8s

number 3 5.49 6.06 6.49 7.27 7.82 8.12

blue point indicates the end position. In Figs. 3b and 3c, we
show the Finsler elastica minimal paths for different values
of ↵, with � = 100 and � = 300 respectively. In this exper-
iment, the angle resolution is ✓

s

= 2⇡/108 and the image
size is 300 ⇥ 300. When � = 1, the metric F� is constant
over the domain ¯

⌦ and degenerates to the isotropic orienta-
tion lifted metric F I (11), since the coefficient in front of the
term hv

✓

,ui in (37) vanishes. Hence the minimal geodesics
are straight lines, see Fig. 3a, that do not align with the pre-
scribed endpoints tangents. From Fig. 3, one can point out
that as � and ↵ increasing, curvature penalization forces the
extracted paths to gradually align with the prescribed end-
points tangents and take the elastica shape.

3.4 Image Data-Driven Finsler Elastica Metric P

We use �0 ⌘ 1 in Section 3.1 for the sake of simplicity. In
the general case, the metric F1 (36) and its approximation
F� (37) should be respectively replaced by �

�1
0 F1 and

�

�1
0 F�. Furthermore, in order to take into account the ori-

entation information, we use an orientation dependent speed
function � :

¯

⌦ ! R+ to replace �0. In this case, the data-
driven Finsler elastica metric can be defined by

P(

¯

x,

¯

u) :=

1

�(

¯

x)

F�

(

¯

x,

¯

u), 8¯x 2 ¯

⌦, 8¯u 2 R3
, (47)
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and equation (26) becomes

L(� ) =
Z 1

0

1

�(�(t))

F�

(�(t), �

0
(t))dt

=

Z 1

0
P(�(t), �

0
(t))dt,

where � is the orientation lifted curve of � . The data-driven
Finsler elastica metric P is asymmetric in the sense that for
most vectors ¯

u 6= 0, one has

P(

¯

x,

¯

u) 6= P(

¯

x,�¯

u), 8 ¯

x 2 ¯

⌦. (48)

This asymmetric property can help to build a closed contour
passing through a collection of orientation lifted points as
discussed in Section 5.1.

The minimal action map W
s̄

associated to the data-driven
Finsler elastica metric P and an initial source point ¯s is the
unique viscosity solution to the Eikonal PDE (18) (Lions,
1982; Sethian and Vladimirsky, 2003):
(

P⇤
x̄

�

rW
s̄

(

¯

x)

�

= 1, 8¯x 2 ¯

⌦\{¯s},
W

s̄

(

¯

s) = 0,

(49)

where P⇤
x̄

is the dual norm of P
x̄

(·) := P(

¯

x, ·) defined by
(19). The geodesic distance value W

s̄

(

¯

x) between ¯

x and
¯

s depends on both the curvature and the orientation infor-
mation of the minimal paths. When � is sufficiently large,
the spatial and angular resolutions are sufficiently small, the
fixed point system (24) is properly solved, and the minimal
paths are properly extracted by (21).

4 Computation of Data-Driven Speed Functions by
Steerable Filters

In this section, we introduce two types of anisotropic speed
functions for boundary detection and tubular structure ex-
traction, both of which are based on the steerable filters.

4.1 Steerable Edge Detector

Jacob and Unser (2004) proposed a new class of edge detec-
tion filters based on the computational framework and the
steerable property. Letting G

�

be a 2D isotropic Gaussian
kernel with variance � and x = (x, y), the computational
steerable filter FM

✓

with order M (Jacob and Unser, 2004)
can be expressed as:

F

M
✓

(x) =

M

X

⌧=1

⌧

X

⇠=0

K
⌧,⇠

(✓)

@

(⌧�⇠)

@x

(⌧�⇠)

@

⇠

@y

⇠

G

�

(x), (50)

where ✓ 2 [0, 2⇡) and K
⌧,⇠

are the orientation-dependent
coefficients which can be computed in terms of some opti-
mality criteria. Particularly, when M = 1, the steerable fil-
ter F1

✓

becomes the classical Canny detector (Canny, 1986).

For higher order steerable filters, for example, M = 3 or
M = 5, the orientation-dependent responses of the filters
will be more robust to noise. Therefore, we set M = 5 for
the relevant experiments. Regarding the details of the com-
putation of K

⌧,⇠

, we refer to (Jacob and Unser, 2004).
A color image is regarded as a vector valued map I :

⌦ ! R3, I(x) = [I1(x), I2(x), I3(x)] for each x 2 ⌦. A
multi-orientation response function h :

¯

⌦ ! R+ of a color
image I can be computed by the steerable filter FM

✓

(50)

h(x, ✓) =

1

3

3
X

i=1

|I
i

(x) ⇤ FM
✓

(x)|, 8 ✓ 2 [0, 2⇡). (51)

For a gray level image I : ⌦ ! R, we have the simple
computation of h:

h(x, ✓) = |I(x) ⇤ FM
✓

(x)|, 8 ✓ 2 [0, 2⇡). (52)

The multi-orientation response function h is symmetric in
the sense that for any orientation ✓

⇡

2 [0,⇡), one has

h(x, ✓

⇡

) = h(x, ✓

⇡

+ ⇡), 8x 2 ⌦.

4.2 Multi-Orientation Optimally Oriented Flux Filter

Optimally oriented flux filter is used to extract the local ge-
ometry of the image. The oriented flux (Law and Chung,
2008) of an image I : ⌦ ! R+, of dimension 2, is de-
fined by the amount of the image gradient projected along
the orientation v flowing out from a 2D circle at point x =

(x, y) 2 ⌦ with radius r:

f(x; r,v) =

Z

@Cr

(r(G

�

⇤ I)(x+ rn) · v)(v · n) ds, (53)

where G
�

is a Gaussian with variance � and n is the outward
unit normal vector along @C

r

. ds is the infinitesimal length
on the boundary of C

r

. According to the divergence theory,
one has

f(x; r,v) = v

T
Q(x, r)v,

for some symmetric matrix Q(x, r):

Q(x, r) =

✓

@

xx

G

�

@

xy

G

�

@

yx

G

�

@

yy

G

�

◆

⇤
r

⇤ I(x), (54)

where
r

is an indicator function of the circle C
r

.
Let �1(·) � �2(·) be the eigenvalues of symmetric ma-

trix Q(·) and suppose that the intensities inside the tubular
structures are darker than the background regions. If a point
x is inside the tubular structure, one has �1(x, r⇤(x)) � 0

and �2(x, r
⇤
(x)) ⇡ 0, where r

⇤ is the optimal scale map
defined by:

r

⇤
(x) = argmax

r

⇢

1

r

�1(x, r)

�

, 8x 2 ⌦. (55)
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The scale normalized factor 1/r in (55) provides the re-
sponses of the optimally oriented flux filter a scale invariant
property (Law and Chung, 2008).

As shown in (Benmansour and Cohen, 2011), the op-
timally oriented flux filter is steerable, which means that
we can construct the multi-orientation response function g :

¯

⌦ ! R+ for any ✓ 2 [0, 2⇡) by:

g(x, ✓) = max

�

u

T
✓

Q(x, r

⇤
(x))u

✓

, 0

 

, 8x 2 ⌦. (56)

where u

✓

is a unit vector associated to ✓.
In addition, the vesselness map Vn : ⌦ ! R, which

indicates the probability of a pixel x belonging to a vessel,
can be calculated by:

Vn(x) = max

⇢

max

r

⇢

1

r

�1(x, r)

�

, 0

�

. (57)

The vesselness map Vn will be used to compute the isotropic
Riemannian metric in the following section.

4.3 Computation of Data-Driven Speed Functions

A requirement on the speed function � used by the data-
driven Finsler elastica metric defined in P (47) is that it
should depend on the position and the orientation. There-
fore, based on the orientation-dependent response function
h, defined in Section 4.1, the speed function � that is used
for object boundary detection can be computed by

�(x, ✓) = 1 + ⌘

✓

h(x, ✓)

khk1

◆

p

, (58)

for any x 2 ⌦ and any orientation ✓ 2 [0, 2⇡).
Similarly, we define the speed function � for tubular

structure extraction by using the response function g (56)

�(x, ✓) = 1 + ⌘

✓

g(x, ✓)

kgk1

◆

p

, (59)

where ⌘ and p are positive constants. In this paper, we use
p = 2 for all the experiments.

5 Closed Contour Detection and Tubular Structure
Extraction

We use the following convention in the remaining part of
this paper: if ¯

p = (p, ✓) is a point in ¯

⌦, then we use ¯

p

†
=

(p,mod
�

(✓ + ⇡), 2⇡)

�

to denote the orientation lifted point
that has the same physical position p with ¯

p but the opposite
direction, where ✓ 2 [0, 2⇡).

5.1 Closed Contour Detection as a Set of Piecewise Finsler
Elastica Minimal Paths

In this section, we propose an interactive closed contour de-
tection method based on the Finsler elastica minimal paths
constrained by a set H of m user-provided physical points

H := {x
i

2 ⌦, i = 1, 2, ...,m; m � 2},

all of which are on the target object boundary. As discussed
in Section 3, the Finsler elastica metric P is defined on the
orientation lifted space ¯

⌦. Thus, we build an orientation
lifted collection D of H by

D :=

n

¯

x

i

= (x

i

, ✓

i

),

¯

x

†
i

=

�

x

i

,mod(✓

i

+ ⇡, 2⇡)

�

;

i = 1, 2, ...,m, x

i

2 H, and ✓

i

2 [0, 2⇡)

o

,

(60)

where the directions ✓
i

are manually specified in this paper.
Corresponding to each physical point x

i

2 H, there exist
two orientation lifted points: ¯x

i

, ¯x†
i

2 D, which have op-
posite tangents. We show an example of these orientation
lifted points in Fig. 4a, where the physical positions and the
corresponding tangents are denoted by dots and arrows, re-
spectively.

The basic idea of the proposed closed contour detection
method is to identify a set of ordered vertices from the col-
lection D, and to join these detected vertices by a set of
piecewise Finsler elastica minimal paths.

We start the closed contour detection procedure by se-
lecting a physical position from H, say x1. The correspond-
ing orientation lifted points of x1 are denoted by ¯

x1, ¯x
†
1 2

D. Once x1 is specified, we remove both ¯

x1 and ¯

x

†
1 from D.

As shown in Fig. 4a, ¯x1 and ¯

x

†
1 are denoted by a red dot and

two arrows with opposite directions.
Let ¯a⇤ 2 D be the closest orientation lifted point to ¯

x1

in terms of the geodesic distance W
x̄1 (49) with respect to

the data-driven Finsler elastica metric P , i.e.

¯

a

⇤
= argmin

z̄2D
W

x̄1(¯z). (61)

Similarly to ¯

a

⇤, the closest orientation lifted point ¯c⇤ 2 D
of ¯

x

†
1 can be detected. By the detected points ¯

a

⇤ and ¯

c

⇤,
the first pair of successive vertices (

¯

q1, ¯q2) is determined
simultaneously using the following criterion:

(

¯

q1, ¯q2) =

(

(

¯

x1, ¯a
⇤
), if W

x̄1(¯a
⇤
) < W

x̄

†
1
(

¯

c

⇤
),

(

¯

x

†
1, ¯c

⇤
), otherwise.

(62)

In Fig. 4b, we illustrate the vertices ¯

q1 and ¯

q2 by the red
and green dots with arrows, respectively. If the minimal ac-
tion map W

x̄1 (resp. W
x̄

†
1
) is computed via the fast marching

method (Mirebeau, 2014b), ¯a⇤ (resp. ¯c⇤) is the first vertex
reached by the fast marching front, which is monotonically
advancing. Once the first pair of successive vertices (¯q1, ¯q2)
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(a)

q̄ 1

q̄ 2

(b)

q̄ 1

q̄ 2

q̄ 3

(c)

q̄ 1

q̄ 2

q̄ 3

q̄ 4

(d)

q̄ 1

q̄ 2

q̄ 3

q̄ 4

(e) (f)

Fig. 4 Steps for the closed contour detection procedure. (a) Original image and all of the vertices in D denoted by dots and arrows. (b) The first
pair of successive vertices (q̄1, q̄2) is detected. (c) The third vertice q̄3 is detected. (d) The final vertice q̄4 is detected and the closed contour
detection procedure is terminated. (e) The minimal path joining q̄4 and q̄1 is tracked (cyan curve). (f) The final closed contour is obtained.

is found, the geodesic C
q̄1,q̄2 (red curve in Fig. 4b) can be

tracked by (21), and both ¯

q2, ¯q†
2 are removed from D. If the

number of physical points is 2, i.e. m = 2, the closed con-
tour detection procedure can be terminated. The geodesic
C
q̄2,q̄1 is tracked by taking ¯

q2 as the initial source point and
¯

q1 as the end point.
If m > 2, the subsequent vertex ¯

q

i

with i � 3 is iden-
tified from the remaining points of D by searching for the
nearest neighbour of the vertex ¯

q

i�1 in terms of geodesic
distance, i.e.

¯

q

i

= argmin

z̄2D
W

q̄i�1(¯z). (63)

After the detection of the vertex ¯

q

i

, we remove both ¯

q

i

and
¯

q

†
i

from D. Again the geodesic C
q̄i�1,q̄i can be tracked, as

denoted by the green curve in Fig. 4c.
The procedure of detecting the nearest neighbor from the

set of remaining orientation lifted points is recursively car-
ried out according to the criterion (63) until m ordered ver-
tices have been identified. Then the geodesic C

q̄m,q̄1 , which
is denoted by the cyan curve in Fig. 4e, is computed by sim-
ply allowing ¯

q

m

to be the initial source point and ¯

q1 to be
the end point. The final closed contour, denoted by C, is de-
fined as the concatenation of all of the detected Finsler elas-
tica minimal paths as demonstrated in Fig. 4f.

In summary, the proposed closed contour detection pro-
cedure aims to seeking a set � of m pairs of successive ori-

entation lifted points from D:

� =

m�1
[

i=1

�

(

¯

q

i

,

¯

q

i+1)
 

[

�

(

¯

q

m

,

¯

q1)
 

, (64)

and a closed contour C contains a set of Finsler elastica min-
imal paths, joining all the pairs of vertices in �. This method
simply matches orientation lifted points by pairs, joining
a vertex to the remaining nearest neighbor with respect to
the curvature-penalized geodesic distance, so as to form a
closed contour located at the expected object boundaries.
Note importantly, that the obtained piecewise geodesic con-
tour is smooth (C1 differentiable) since the initial source and
end orientation lifted points of the consecutive geodesics
have both matching positions q

i

and orientations ✓
i

. In fact,
we find a closed contour passing through all the orientation
lifted points in a greedy manner. Instead of trying out all
possible combinations of Finsler elastica minimal paths, we
use a greedy searching strategy that is performed with a low
complexity. The problem we solve here is similar to the NP-
hard traveling salesman problem, where the cities are repre-
sented by the orientation lifted points ¯

q

i

2 D.
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5.2 Perceptual Grouping via the Curvature-Penalized
Geodesic Distance

Perceptual grouping is relevant to the task of curve recon-
struction and completion (Cohen, 2001). The geodesic dis-
tance based perceptual grouping model was firstly introduced
by Cohen (2001) using the concept of saddle point. The
basic idea of this model is to identify each pair of points
which has to be linked by a minimal path from a set of key
points. Later on, Bougleux et al (2008) improved this group-
ing model by using path orientations and structure tensors.
However, neither of the mentioned grouping methods con-
sidered the curvature penalization.

In this section, we address the perceptual grouping prob-
lem of finding n closed contours, each of which is formed
by a set of piecewise Finsler elastica minimal paths. Each
closed contour C

i

passes through all the ordered orientation
lifted points involved in D

i

✓ D, where D is defined in (60)
and i = 1, 2, 3, ..., n.

We initialize the proposed perceptual grouping proce-
dure by specifying a physical position x1, where the orien-
tation lifted points of x1, denoted by ¯

x1 and ¯

x

†
1, are involved

in D. Both ¯

x1 and ¯

x

†
1 are removed from D after detecting

the respective nearest vertices that correspond to ¯

x1 and ¯

x

⇤
1

by (61). As a consequence, the first two vertices ¯

q1, ¯q2 are
identified using the criterion of (62), and the geodesic C

q̄1,q̄2

is recovered by solving the ODE in (21). Once the vertices
¯

q1 and ¯

q2 are detected, we add ¯

q1, ¯q2 to D1, remove ¯

q2, ¯q
†
2

from D and compensate ¯

q1 to D.
Similar to the closed contour detection method, the next

vertex ¯

q

i

with i � 3 is found based on the criterion of (63)
and the detected vertex ¯

q

i�1. Following the detection of ver-
tex ¯

q

i

, we add ¯

q

i

to D1, remove ¯

q

i

, ¯q†
i

from D and track the
geodesic C

q̄i�1,q̄i that joins the vertices ¯

q

i�1 and ¯

q

i

. This
perceptual grouping procedure is carried out by recursively
searching for new vertices. Once the vertex ¯

q1 is detected
again according to the criterion (63), we stop the construc-
tion of D1 after removing ¯

q1 from D, and back track the
geodesic from ¯

q1. The desired closed contour C1 can be ob-
tained by concatenating all the detected Finsler elastica min-
imal paths with initial source points and end points in D1.

We start to build the collection D2 by choosing a new
physical point as initialization. This initial physical point is
obtained from the remaining orientation lifted points of D.
Similar to the procedure of constructing D1, we build the
collection D2 from the remaining orientation lifted points
of D. The procedure of building the collections D

i

can be
terminated when n such collections have been identified or
when the collection D is empty. One can note that the con-
structed collections D

i

follow

D
i

\D
j

= ?, 8i 6= j.

In contrast to the closed contour detection method described
in Section 5.1, we do not enforce all of the orientation lifted
points in D to be used in the perceptual grouping procedure.

5.3 Tubular Structure Extraction

In this section, we apply the proposed Finsler elastica min-
imal path model to the tubular structure extraction, where
the centerlines of the tubular structures are represented by
the Finsler elastica minimal paths.

The minimal paths with the proposed data-driven Finsler
elastica metric depend on the tangents of both the initial
source point and the end point. To simplify the initialization
procedure, we firstly compute the optimal orientation map,
denoted by ⇥ : ⌦ ! [0,⇡), which minimizes the multi-
orientation response function g in (56):

⇥(x) = arg min

✓2[0,⇡)
{g(x, ✓)}, 8x 2 ⌦. (65)

Once the optimal orientation map ⇥ is obtained, for the ini-
tial position s 2 ⌦, one can obtain two orientation lifted
points ¯s = (s,⇥(s)) and ¯

s

†. Additionally, for any end posi-
tion p

i

2 ⌦ (i = 1, 2, · · · , n), the corresponding orientation
lifted end points are defined by ¯

p

i

= (p

i

,⇥(p

i

)) and ¯

p

†
i

.
For each set of orientation lifted end points {¯p

i

,

¯

p

†
i

}, we
can extract four possible geodesics, each of which joins an
initial source point in {¯s,¯s†} to an end point in {¯p

i

,

¯

p

†
i

}.
The goal in this section is to search for a geodesic C⇤

i

with
minimal geodesic curve length associated to the metric P ,
among all the four possible geodesics.

Let us denote the initial source point and the end point
of the geodesic C⇤

i

by ¯

a

⇤ and ¯

c

⇤
i

, respectively. If the geodesic
curve length is estimated by the fast marching method (Mire-
beau, 2014b), this procedure can be simplified as follows:
starting the fast marching front propagation from both of
the initial source points ¯s and ¯

s

†, the orientation lifted point
¯

c

⇤
i

2 {¯p
i

,

¯

p

†
i

} is the first point that is reached by the front.
The desired geodesic C⇤

i

can be determined by solving the
ODE (21). As a result, a set {C⇤

i

; 1  i  n} of all the
desired geodesics can be extracted from the same minimal
action map generated by a single fast marching propagation.

In these applications, the geodesic distance maps associ-
ated to the Finsler elastica metric are computed in a manner
of early abort, i.e., once all the specified orientation lifted
endpoints are reached by the fast marching front, the geodesic
distance computation will be terminated. This early abort
trick can greatly reduce the computation time. It is similar
to the partial front propagation described in (Deschamps and
Cohen, 2001) with a simple extension to multiple points.

6 Experimental Results
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We show the advantages of using curvature penalization for
minimal paths extraction in the following experiments in-
volving a study of the proposed metric itself, and compara-
tive results against the isotropic Riemannian (IR) metric, the
anisotropic Riemannian (AR) metric and the isotropic orien-
tation lifted Riemannian (IOLR) metric in the applications
of closed contour detection and tubular structure extraction.
Note that in this section, whenever we mention Finsler elas-
tica metric, we mean the data-driven Finsler elastica metic.

6.1 Riemannian Metrics Construction

We adopt the color image gradient introduced by Di Zenzo
(1986) to construct the IR and AR metrics for closed bound-
aries detection of objects in color images.

Considering a color image I = (I1, I2, I3) and a Gaus-
sian kernel G

�

with variance �, the respective Gaussian-
smoothed x- and y-derivatives of I are defined by

I

�

x

:= @

x

G

�

⇤ I and I

y

:= @

y

G

�

⇤ I, (66)

where I�
x

(·) and I

�

y

(·) should be understood as 1⇥3 vectors.
Following (Di Zenzo, 1986), a tensor E(x) can be defined by

E(x) =

0

@

kI�
x

(x)k2 hI�
x

(x), I

�

y

(x)i

hI�
x

(x), I

�

y

(x)i kI�
y

(x)k2

1

A

, 8x 2 ⌦.

It is known that the tensor E(x) can be decomposed in terms
of its eigenvalues and eigenvectors for all x 2 ⌦ by

E(x) = '1(x)g1(x)g
T
1 (x) + '2(x)g2(x)g

T
2 (x),

where '1(x), '2(x) are the eigenvalues of E(x) and g1(x),
g2(x) are the associated eigenvectors. Without loss of gen-
erality, we assume that '1(x)  '2(x), 8x 2 ⌦. In this
case, '2 denotes the color gradient magnitude and g2 de-
notes the unit color gradient vector field.

Based on the scalar field '2, the IR metric F I can be
constructed for all x 2 ⌦ by

F I
(x,u) =

⇣

�1 + �2 '
p

2(x)

⌘�1
kuk, (67)

where �1, �2 and p are positive constants. In the following
relevant experiments, we set �1 = 1 and p = 2.

The tensor field MA for the AR metric FA (8) can be
computed by

MA(x) = exp(⌧ '2(x))g1(x)g
T
1 (x)

+ exp(⌧ '1(x))g2(x)g
T
2 (x), 8x 2 ⌦, (68)

where ⌧ is a negative constant.
In the tubular structure extraction experiments, for the

construction of the IR metric F I (67), we simply replace the
scalar field '2 by the vesselness map Vn defined in (57).

Moreover, regarding the construction of the AR metric, we
make use of a radius lifted tensor field as introduced by Ben-
mansour and Cohen (2011), instead of using the tensor field
MA defined in (68). In this case, the AR metric is regarded
as the anisotropic radius lifted Riemannian (ARLR) met-
ric defined over the radius lifted domain. In the following
related experiments, we use the optimally oriented flux fil-
ter (Law and Chung, 2008) to compute the ARLR metric
as suggested in (Benmansour and Cohen, 2011). For further
details on the construction of the ARLR metric, we refer the
reader to (Benmansour and Cohen, 2011).

The speed function �

IL for the IOLR metric F IL (11)
should be dependent of the orientations. Simply, we com-
pute the speed function �IL by

�

IL
(x, ✓) = �(x, ✓), 8 ✓ 2 [0,⇡), 8x 2 ⌦, (69)

where � is the orientation-dependent speed function defined
in (58) and (59). The parameter ⇢ of the IOLR metric F IL

penalizes the variations of the orientation ✓, and is set as
⇢ = ↵, where ↵ is the parameter for the curvature term in
the bending energy L (26).

6.2 Parameters Setting

Curvature penalization in the proposed Finsler elastica met-
ric relies on two parameters, ↵ and � (37). The choice of
� is dictated by algorithmic compromises. Indeed, minimal
paths with respect to the Finsler elastica metric P converge
to the elastica curves in the limit � ! 1, hence a large
value of � is desirable. However, large values of � yield
metrics with strong anisotropy ratio µ(P). As a result, the
numerical algorithm used in this paper, adapted from Mire-
beau (2014b), uses larger discretization stencils, which in-
creases its numerical cost and reduces its locality. For in-
stance, � = 30 (resp. 100 or 300) leads to stencils with a
radius of 4 pixels (resp. 8 or 13). We typically use � = 100.

On the other hand, the parameter ↵ is used to weight
the curvature penalty in the Finsler elastica metric P . In
the course of the fast marching method, a large value of ↵
makes the front to propagate slowly along the orientation
dimension, implying that the obtained geodesics tend to be
smooth, i.e., with low curvature. When ↵ is very small, the
extracted geodesics mainly depend on the image data-driven
speed functions defined in Section 4.3. Therefore, the choice
of ↵ should depend on the desired image features. Basically,
we make use of the following heuristics. There is a natural
candidate ↵⇤ for the parameter ↵, dictated by the physical
units of the parameters, namely ↵⇤ = (R⇤/�⇤)

2, where R⇤
is the smallest radius of curvature of the image features to
be extracted, measured in pixels, and �⇤ is the typical value
of the speed function � around these features.

The angular resolution is set as ✓
s

= ⇡/36 for both the
IOLR metric and the proposed Finsler elastica metric. The
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Fig. 5 Flexible Finsler elastica minimal paths extraction on ellipse-like curves. The red and green dots denote the source and end positions,
respectively. Arrows indicate the tangents.

Fig. 6 Minimal paths extraction results on Spirals. Columns 1-4 Minimal paths extracted by the IR metric, the ARLR metric, the IOLR metric and
the Finsler elastica metric, respectively. The red and green dots denote the source and end positions, respectively. The arrows indicate the tangents.

parameter ⌘ for image data-driven speed function � is set
for each tested image individually. The parameter �2 that is
used in the IR metric F I (67) is set as �2 = 2⌘ for all the
comparative experiments. Unless otherwise specified, we set
the anisotropy ratio values for the AR metric and the ARLR
metric to be 20.

6.3 Smoothness and Asymmetry of the Finsler Elastica
Minimal Paths

The Finsler elastica metric invoking orientation lifting and
curvature penalty benefits from the smooth and asymmet-
ric properties of the minimal paths. We demonstrate these
properties in a synthetic image as shown in Fig. 5, where
two ellipse-like shapes cross each other. The red dots and
green dots are the initial source and end positions respec-
tively. The arrows indicate the tangents at the correspond-
ing positions. One can see that for the fixed initial source
and end positions, changing the corresponding tangents will
give different minimal paths. Moreover, the minimal paths

with the same initial source and end positions could form a
complete ellipse.

In Fig. 6, we design a spiral that has high anisotropy.
The initial source position and end position are placed at the
ends of the spiral. In the top row we add high noise to the
spiral while in the bottom row we blur the spiral. In columns
1-4, we show the minimal paths obtained from the IR met-
ric, the ARLR metric, the IOLR metric and the Finsler elas-
tica metric, respectively. One can see that by using the men-
tioned Riemannian metrics, the shortcuts occur as shown in
columns 1 to 3. In the top row, the minimal path (shown in
column 3) obtained by using the IOLR metric is improved
compared to the respective paths from the IR metric and the
AR metric. However, a segment of the spiral is also missed
due to the shortcuts problem. In contrast, the minimal paths
shown in column 4 extracted by the Finsler elastica met-
ric can completely avoid the problem of shortcuts thanks to
the curvature penalization embedded in the proposed metric.
In this experiment, we use an anisotropy ratio value of 100
for the ARLR metric. For the Finsler elastica metric, we set
↵ = 500 to ensure the geodesics to be smooth enough.
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s̄

q̄ 1

q̄ 2

q̄ 3

q̄ 4

q̄ 5

q̄ 6

(a)

s̄ q̄ 6

(b)

Fig. 7 Finding the closest orientation lifted candidate to the source
point s̄ in terms of the geodesic distance associated to the Finsler elas-
tica metric. (a) The orientation lifted candidates q̄i, i = 1, 2, · · · , 6,
and source point s̄ are demonstrated. (b) The closest candidate q̄6 is
detected. Red curve indicates the geodesic linking s̄ to q̄6.

Fig. 8 Finsler elastica minimal paths extraction results. The red and
green dots indicate the source and end positions, respectively. The ar-
rows indicate the corresponding tangents.

In Fig. 7a, we specify six orientation lifted candidates
¯

q

i

, i = 1, 2..., 6, which are denoted by green dots with
arrows, and an initial source point ¯s (red dot with arrow).
Among all of these candidates, we aim to find the closest
orientation lifted candidate to the initial source point ¯s, in
terms of the geodesic distance associated to the metric P
defined in (47). In Fig. 7b, it is shown that the closest ori-
entation lifted point to ¯

s is the candidate ¯

q6, even though
the geodesic (red curve), joining the orientation lifted points
¯

s and ¯

q6, passes through the vicinity of the physical posi-
tion of ¯q1. Moreover, one can claim that the Euclidean dis-
tance value between the physical positions of ¯¯s and ¯

q6 is
the largest among all of the values between the physical po-
sitions of ¯

s and each orientation lifted candidate ¯

q

i

. This
experiment demonstrates the asymmetric and smooth prop-
erties of the proposed Finsler elastica minimal path model.

In Fig. 8, we show the minimal path extraction results
on three natural images, where each pair of the prescribed
initial source positions and end positions is very close to
each other in terms of the Euclidean distance. For each im-
age, we expect to detect a long boundary between the two
given orientation lifted points. It can be observed that the
extracted geodesics associated to the Finsler elastica metric
are able to catch the desired boundaries. In Fig. 8, the images
shown in columns 1 and 2 are from the Berkeley Segmenta-

tion Dataset (Arbelaez et al, 2011) and the image in column
3 is from the Weizmann dataset (Alpert et al, 2012).

6.4 Closed Contour Detection and Image Segmentation

Fig. 9 shows the closed contour detection results with three
prescribed physical positions using different metrics, where
each position are assigned two opposite orientations1. In this
experiment, we firstly build the collection � (64) by the pro-
posed contour detection procedure using the Finsler elastica
metric as described in Section 5.1, where the detection re-
sults are shown in column 5. Columns 2-4 show the closed
contour detection results using the IR metric, the AR met-
ric, and the IOLR metric, respectively. The minimal paths
shown in columns 2 to 4 are obtained by simply linking
each pair of vertices by the respective metrics involved in
�. The red, yellow, and green dots are the physical positions
of the vertices ¯q1, ¯q2, ¯q3, respectively. The arrows shown in
column 5 indicate the tangents of the geodesics at the corre-
sponding positions. We assign each geodesic the same color
as its initial source position. In these images, most parts of
the desired boundaries appear to be weak edges which can
be observed from the edge saliency maps from column 1.
The detected contours associated to the Finsler elastica met-
ric succeed at catching the desired boundaries due to the
curvature penalization and asymmetric property. In contrast,
the three Riemannian metrics without curvature penalization
fail to extract the expected boundaries. The images used in
this experiment are from the Weizmann dataset.

In Fig. 10, we show the closed contour detection results
obtained by the proposed method with only two given phys-
ical positions and the corresponding orientations. One can
see that the proposed method can indeed reduce the user in-
tervention at least for objects with smooth boundaries.

For the Finsler elastica metric P defined in (47), the cur-
vature penalization depends on the parameter ↵ (� is fixed
to 100). In Fig. 11, we show the closed contour detection re-
sults by varying ↵ to demonstrate the influence of the curva-
ture term in our approach. In column 1, we show the closed
contour detection results with suitable values of ↵, say ↵0.
In columns 2 and 3, the closed contour detection results us-
ing ↵0/10 and 5↵0 are demonstrated. One can see that it
could lead to shortcuts by using small values of ↵ in rows
1-3 of column 2. In contrast, with a larger ↵, the detected
closed contour can catch the optimal boundaries of the ob-
jects, which supports the effect of using curvature penaliza-
tion. The edge saliency maps for each image in this experi-
ments can be found from the first column of Fig. 9.

1 For the IR metric and the AR metric, only the physical positions
of these orientation lifted vertices are used.
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Fig. 9 Comparative closed contour detection results obtained by using different metrics. Column 1 Edge saliency map. Columns 2-5 The closed
contour detection results from the IR metric, the AR metric, the IOLR metric and the Finsler elastica metric, respectively.
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Fig. 10 Closed contour detection results by using only two given phys-
ical positions and the corresponding orientations.

Fig. 11 Closed contour detection results with different values of ↵.
Column 1 Results by the suitable values of ↵ and �. Columns 2 Re-
sults by small values of ↵. Column 3 Results by large values of ↵.

6.5 Perceptual Grouping

The perceptual grouping result on a synthetic noisy image
is shown in Fig. 12. In Fig. 12a, we demonstrate the orig-
inal image, which consists of a set of edges. The red and
blue dots with arrows are the orientation lifted points pro-
vided by the user as initializations, where the red dot is the
selected initial physical position. Fig. 12b shows the percep-
tual grouping results of the proposed method. The identified
orientation lifted points in the set D1 are denoted by red dots
with arrows. The red curves that links the ordered orienta-
tion lifted vertices in D1 indicate the expected closed curves.

(a) (b)

Fig. 12 (a) Initialization. The red and blue dots indicate the physical
positions, where the red dot is the initial position. (b) Perceptual group-
ing result. The arrows denote the tangents for each physical position.

Fig. 13 illustrates the capacity of the proposed method to
handle the grouping problem with spurious points. Different
initializations are shown in Figs. 13a and 13c, where the red
dots are the selected initial physical positions. Figs. 13b and
13d are the grouping results. The red curves indicate the de-
tected closed curves.

The proposed perceptual grouping method can detect
multiple closed curves by specifying the number of expected
curves. In Fig. 14, three curves are detected by the proposed
method. Column 1 shows different initializations, where the
red dots are the selected initial positions. Columns 2 to 4
demonstrate the intermediate grouping results that correspond
to different initializations shown in column 1. The final per-
ceptual grouping results are shown in column 5. One can
claim that our algorithm indeed has the ability to detect curves
intersecting with one another. The vertices shown in columns
2 to 4, denoted by red dots with arrows, make up the corre-
sponding collections D1 to D4, respectively.

6.6 Tubular Structure Extraction

In this section, we show the tubular structure extraction re-
sults, where the initial source and end positions are indi-
cated by red and green dots, respectively. In Figs. 15 to 19,
only the physical positions are provided manually. The cor-
responding orientations of these physical positions are com-
puted automatically by (65). In Fig. 20, the corresponding
tangents for the physical positions are provided manually
because high noise could lead to failure of the optimal ori-
entation detection using (65). We use the extraction strategy
described in Section 5.3 for the Finsler elastica metric.

In Fig. 15, the retinal vessels are extracted by the IR
metric, the ARLR metric, the IOLR metric and the Finsler
elastica metric as shown in columns 1 to 4, respectively.
In columns 1 to 3, the minimal paths suffer from the short
branches combination problem. In other words, these paths
pass through some unexpected vessel segments. In contrast,
the minimal paths obtained by the proposed metric can de-
termine correct combinations of vessel branches.
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(a) (b) (c) (d)

Fig. 13 Perceptual grouping results. (a) Initialization 1. Red dot is the selected initial position. (b) Perceptual grouping result for initialization 1.
(c) Initialization 2. (d) Perceptual grouping result for initialization 2.

Fig. 14 Perceptual grouping results by the proposed method where three groups are identified. Column 1 Initializations. The red dots denote the
selected initial positions. Columns 2-4 Intermediate grouping results for the corresponding initializations. Column 5 Final grouping results.

Fig. 15 Comparative blood vessel extraction results on retinal images. Columns 1-4 The extracted minimal paths using the IR metric, the ARLR
metric, the IOLR metric, and the proposed Finsler elastica metric, respectively.

Similar extraction results are observed in Fig. 16. Again,
the short branches combination occurs in columns 1 to 3,

where the minimal paths in these columns are extracted by
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Fig. 16 Comparative blood vessel extraction results on fluoroscopy images. Columns 1-4 The extracted minimal paths using the IR metric, the
ARLR metric, the IOLR metric, and the proposed Finsler elastica metric, respectively.

the IR metric, the ARLR metric and the IOLR metric, re-
spectively. Instead, the Finsler elastica minimal paths can
follow the correct vessel segments as shown in column 4.

In Fig. 17, we present the extraction results of the retinal
artery centerlines in three patches of retinal images2. The
centerline of a retinal artery usually appears as a smooth
curve. In column 1, we show the retinal artery-vein ground
truth maps, where the red and blue regions indicate the arter-
ies and veins, respectively. Note that the small vessels have
been removed from the ground truth maps. Columns 2 to 5
show the centerlines extraction results by using the IR met-
ric, the ARLR metric, the IOLR metric and the Finsler elas-
tica metric, respectively. One can see that the minimal paths
demonstrated in columns 2 to 4 pass through the wrong ves-
sels due to the low gray-level contrast of the retinal arteries.
The proposed model can obtain the correct artery centerlines
as shown in column 5, thanks to the curvature penalization.

In Fig. 18, we demonstrate the retinal vein extraction
results (blue curves) in the same patches which are used
in rows 1-2 of Fig. 17. The extracted minimal paths (blue
curves) are shown in columns 2 to 5 by using the IR metric,
the ARLR metric, the IOLR metric and the Finsler elastica
metric, respectively. From this figure, we can see that all
of the extracted minimal paths can successfully follow the
retinal veins as indicated by red regions in the artery-vein
ground truth maps shown in column 1.

2 Many thanks to Dr. Jiong Zhang to provide us these images.

In Fig. 19, the vessel extraction results on a patch of a
retinal image are demonstrated, where the vessels are blurred
by other tissues. The minimal paths using the three Rie-
mannian metrics fail to extract the desired vessel as shown
in columns 1 to 3. In contrast, the Finsler elastica minimal
paths can successfully delineate the targeted vessel as shown
in column 4, thanks to the curvature penalization.

In Fig. 20, we show the road segmentation results on
an aerial image by the proposed Finsler elastica metric. The
road images are blurred by Gaussian noise with different
variances. One can claim that our method is able to obtain
smooth and accurate minimal paths on noisy images.

7 Conclusion

The core contribution of this paper lies at the introduction of
the curvature penalization to the Eikonal PDE-based mini-
mal path framework, which is accomplished by establishing
the connection between the Euler elastica bending energy
and the geodesic energy via a family of orientation lifted
Finsler elastica metrics. Solving the Eikonal PDE with re-
spect to the Finsler elastica metric, the minimal path model
thus can determine globally minimizing curves that blend
the benefits of the orientation lifting and the curvature pe-
nalization. Given a set of the user-provided orientation lifted
points, we have demonstrated the ability of the proposed
model for interactive image segmentation, perceptual group-
ing and tubular structure extraction. The experimental re-
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Fig. 17 Comparative blood vessels extraction results on retinal images. Column 1 The retinal artery-vein vessels ground truth maps. Columns
2-5 The extracted minimal paths by the IR metric, the ARLR metric, the IOLR metric, and the Finsler elastica metric, respectively.

Fig. 18 Retinal veins extraction results from different metrics. Column 1 The retinal artery-vein vessels ground truth maps. Columns 2-5 The
extracted minimal paths (blue curves) by the IR metric, the ARLR metric, the IOLR metric, and the Finsler elastica metric, respectively.

Fig. 19 Comparative blood vessel extraction results on a blurred retinal image. Columns 1-4 The extracted minimal paths by the IR metric, the
ARLR metric, the IOLR metric, and the Finsler elastica metric, respectively.

sults on both synthetic and real images demonstrate the ad-
vantages of the Finsler elastica minimal paths approach.
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Fig. 20 Roads extraction results by the proposed Finsler elastica metric in an aerial image blurred by Gaussian noise.

Appendix A: Fast Marching Method

Basically, the fast marching method introduces a boolean map b : Z !
{Trial,Accepted} and tags each grid point x̄ 2 Z either Trial or Ac-
cepted. The Trial points are defined as grid points which have been up-
dated at least once by Hopf-Lax operator (25) but not frozen. The Ac-
cepted points are these points that have been updated and frozen. This
method can solve the fixed point system (24) in a single pass manner.

Algorithm 1 Fast Marching Method
Input: Metric F , stencil map S, initial source points collection W .
Output: Minimal action map U .
Initialization:

For each point x 2 Z, set U(x) +1 and b(x) Trial.
For each point y 2W , set U(y) 0.

While: at least one grid point is tagged as Trial
1: Find xmin, the Trial point which minimizes U .
2: b(xmin) Accepted.
3: for All y such that xmin 2 S(y) and b(y) 6= Accepted do
4: Compute Unew(y) using (25).
5: Set U(y) min{Unew(y), U(y)}.
6: end for

Appendix B: Elements of Proof of Finsler Elastica Mini-
mal Paths Convergence

Let X ⇢ Rd be a compact domain and = be the collection of compact
convex sets of Rd. We will later specialize to d = 3 for the application
to the Euler elastica curves. The set = is metric space, equipped with
the Haussdorff distance which is defined as follows.

Definition 1 The Euclidean distance map from a set A ✓ Rd is

d(A,x) := inf
y2A

kx� yk. (70)

The Haussdorff distance between sets A1, A2 j Rd is

H(A1, A2) := sup
x2Rd

|d(A1,x)� d(A2,x)|. (71)

Definition 2 Let � 2 C0([0, 1], X) be a path and B 2 C0(X,=) be
a collection of controls on X . The path � is said B-admissible iff it is
locally Lipschitz and �0(t) 2 B(�(t)) for a.e. t 2 [0, 1].

Definition 3 A collection of controls on X is a map B 2 C0(X,=).
Its diameter diam(B) and modulus3 of continuity ⌅(B, ✏), are defined

3 We actually use a slight variant of the classical modulus of con-
tinuity because the latter one, obtained with the hard cutoff function
C(t) = 1 if t  1, 0 otherwise, lacks continuity in general.

by ⌅(B, 0) = 0 and for ✏ > 0

diam(B) := sup{kuk;u 2 B(x), 8x 2 X}, (72)
⌅(B, ✏) := sup

x,y2X
H(B(x),B(y))C(kx� yk/✏), (73)

where C is the continuous cutoff function defined by

C(t) =

8
><

>:

1 if t  1

2� t if 1  t  2

0 if t � 2.

Clearly B 7! diam(B) and (B, ✏) 7! ⌅(B, ✏) are continuous func-
tions of B 2 C0(X,=) and ✏ 2 R+. In addition ⌅(B, ✏) is increasing
w.r.t. ✏. Here and below, if A1, A2 are metric spaces, and A1 is com-
pact, then C0(A1, A2) is equipped with the topology of uniform con-
vergence. This applies in particular to the space of paths C0([0, 1], X)
and of controls C0(X,=).

Lemma 1 If � is B-admissible, then its Lipschitz constant is at most
diam(B). A necessary and sufficient condition for � to be B-admissible
is: for all 0  p  q  1,

d

✓
B(�(p)),

�(q)� �(p)

q � p

◆
 ⌅(B, (q � p) diam(B)), (74)

Proof Assume that � is B-admissible. Then for any 0  p  q  1
one has

k�(p)� �(q)k 
Z q

p

k�0(%)kd%  |p� q| diam(B), (75)

hence � is diam(B)-Lipschitz as announced. Denoting w% = p +
(q � p)%, for all % 2 [0, 1], one obtains

�(q)� �(p)

q � p
=

Z 1

0

�0(w%)d%. (76)

Hence by Jensen’s inequality and the convexity of d(B(�(p)), ·), which
follows the convexity of B(�(p)), we obtain

d

✓
B(�(p)),

�(q)� �(p)

q � p

◆

Z 1

0

d(B(�(p)), �0(w%))d% (77)


Z 1

0

H(B(�(p)),B(�(w%)))d%

(78)

 ⌅(B, (q � p)diam(B)). (79)

which establishes half of the announced characterization. The inequal-
ity (78) follows from the admissibility property �0(w%) 2 B(�(w%))
and the definition of the Haussdorff distance (71). The inequality (79)
follows from the above established Lipschitz regularity of � and the
definition of the modulus of continuity (73).

Conversely, assume that � and B obey (74). Then
����
�(q)� �(p)

q � p

����  diam(B) + ⌅(B, diam(B)),
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for any 0  p  q  1. Thus � is a Lipschitz path as announced, and
therefore it is almost everywhere differentiable. If p 2 [0, 1] is a point
of differentiability, then letting q ! p we obtain

d(B(�(p)), �0(p))  ⌅(B, 0) = 0,

which is the announced admissibility property �0(p) 2 B(�(p)). ut

The characterization (74) is written in terms of continuous functions
of the path � and control set B, hence it is a closed condition, which
implies the following two corollaries. We denote

TB(x) := {Tu;u 2 B(x), 8x 2 X}.

Corollary 1 The set

{(�,B) 2 C0([0, 1], X)⇥ C0(X,=); � is B-admissible}

is closed.

Corollary 2 Let xn, yn, Bn and Tn be converging sequences in
X , X , C0(X,=) and R+, with limits x1, y1, B1, and T1 re-
spectively. Let �n 2 C0([0, 1], X) be a (Tn + 1/n)Bn-admissible
path with endpoints xn and yn. Then the sequence of paths (�n) is
equip-continuous, and the limit �1 of any converging subsequence is
a T1B1-admissible path � 2 C0([0, 1], X) with endpoints x1 and
y1.

Proof Note that the map (T,B) 7! TB is continuous on R+ ⇥
C0(X,=), hence the controls B̃n := (Tn + 1/n)Bn converge to
B̃1 := T1B1. Defining E := sup{diam(B̃n);n > 0} which
is finite by continuity of diam(·) (72) and convergence of B̃n, we
find that the paths (�n)n>0 are simultaneously E-Lipschitz, hence
that a subsequence uniformly converges to some path �1. The B̃1-
admissibility of �1 then follows from Corollary 1. ut

We next introduce the minimum-time optimal control problems. The
minimum of (80) is attained by Corollary 2, which also immediately
implies the Corollary 3.

Definition 4 For all x, y 2 X , and B 2 C0(X,=), we let

TB(x,y) := min{T > 0; 9� 2 C0([0, 1], X),

�(0) = x, �(1) = y, � is TB-admissible}. (80)

Corollary 3 The map (x,y,B) 7! TB(x,y) is lower semi-continuous
on X ⇥X ⇥ C0(X,=). In other words, whenever (xn,yn,Bn) !
(x1,y1,B1) as n!1 one has

lim inf TBn
(xn,yn) � TB1(x1,y1). (81)

Proof For each n > 0 let Tn = TBn
(xn,yn) and let T1 =

lim inf Tn as n!1. Up to extracting a subsequence, we can assume
that T1 = limTn as n ! 1. Denoting by �n a path as in Corol-
lary 2 for all n � 0, we find that there is a converging subsequence
which limit �1 is T1B1 admissible and obeys �1(0) = x1 and
�1(1) = y1. Thus T1 � TB1(x1,y1) as announced. ut

Definition 5 Let B1, B2 2 C0(X,=). These collections of controls
are said included B1 ✓ B2 iff B1(x) ✓ B2(x) for all x 2 X .

The property B1 ✓ B2 clearly implies, for all x, y 2 X

TB1
(x,y) � TB2

(x,y). (82)

Corollary 4 Assume that one has a converging sequence of controls
Bn ! B1 obeying the inclusions Bn ◆ B1 for all n � 0. Then

lim TBn
(x,y) = TB1(x,y) (83)

for all x,y 2 X . Let Tn := TBn
(x,y) for all n 2 N [ {1}, and

let �n be an arbitrary (Tn + 1/n)Bn-admissible path from x to y.
If there exists a unique T1B1-admissible path �1 from x to y, then
�n ! �1 as n!1.

Proof The identity (83) follows from inequalities (81) and (82). By
Corollary 2 the sequence of paths �n is equi-continuous, and any con-
verging subsequence tends to a T⇤B1 admissible path �⇤ from x to
y, with T⇤ := limTn. Since T⇤ = T1 and by uniqueness we have
�⇤ = �1, hence �n ! �1 as announced.

Application to Finsler elastica geodesics convergence problem.
Consider an orientation lifted Finsler metric F : X⇥R3 ! R+ where
X := ⌦̄ ⇢ R3. For any x̄ 2 X , let B(x̄) := {ū 2 R3;F(x̄, ū) 
1} be the unit ball of F . B(x̄) is compact and convex, due to the posi-
tivity, continuity and convexity of the metric F and the map B : X !
= is continuous. Furthermore, using the homogeneity of the metric,
one obtains for all x̄, ȳ 2 X:

L⇤
F (x̄, ȳ) = TB(x̄, ȳ),

where L⇤(x̄, ȳ) is the minimal curve length between x̄ and ȳ with
respect to metric F .

In the case of Finsler elastica problem, one has B1(x̄) := B1
x̄

and B�(x̄) := B�
x̄

, 8x̄ 2 X , where B1
x̄

and B�
x̄

are defined in
equations (42) and (43) respectively. The Finsler elastica metrics F�

on X pointwisely tend to the metric F1 as � !1. Fortunately, the
associated control sets B�(x̄)! B1(x̄) uniformly in C0(⌦,=), as
can be seen from (46). Hence one has

lim inf L⇤
F�(x̄, ȳ) = lim inf TB�

(x̄, ȳ)

� TB1(x̄, ȳ) = L⇤
F1(x̄, ȳ),

as � ! 1 for all x̄, ȳ 2 X . To show that equality holds, it suffices
to prove that sequence B� obeys B� ◆ B1, equivalently to prove
that F�(x̄, ū)  F1(x̄, ū) for all x̄ 2 X and any vector ū 2 R3.
Indeed, let x̄ = (x, ✓) 2 X , and ū = (u, ⌫) 2 R2 ⇥ R:

F�(x̄, ū) =
p

�2kuk2 + 2�|⌫|2 � (�� 1)hu,v✓i

= �kuk
 
�1 +

s

1 +
2|⌫|2

�kuk2

!

+ �kuk � (�� 1)hu,v✓i.

= kuk+
|⌫|2

kuk

0

@ 2

1 +
q

1 + 2|⌫|2
�kuk2

1

A

+ (�� 1)(kuk � hu,v✓i). (84)
 F1(x̄, ū).

The last inequality holds because the denominator 1 +
q

1 + 2|⌫|2
�kuk2

in (84) is greater than 2, and kuk � hu,v✓i for any vector u and any
orientation ✓.

By Corollary 2, minimal paths C� with endpoints x̄ and ȳ for
geodesic distance L⇤

F�(x̄, ȳ) converge as � ! 1 to a minimal path
C1 for L⇤

F1(x̄, ȳ). We finally point out that L⇤
F1(x̄, ȳ) < 1 for

all x̄, ȳ in the interior of X , provided this interior is connected, due a
classical controllability result for the Euler elastica problem.
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