
HAL Id: hal-01403915
https://hal.science/hal-01403915v1

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A non-staggered coupling of finite element and lattice
Boltzmann methods via an immersed boundary scheme

for fluid-structure interaction
Zhe Li, Julien Favier

To cite this version:
Zhe Li, Julien Favier. A non-staggered coupling of finite element and lattice Boltzmann methods via
an immersed boundary scheme for fluid-structure interaction. Computers and Fluids, 2017, 143, pp.90
- 102. �10.1016/j.compfluid.2016.11.008�. �hal-01403915�

https://hal.science/hal-01403915v1
https://hal.archives-ouvertes.fr


A non-staggered coupling of finite element and lattice

Boltzmann methods via an immersed boundary scheme

for fluid-structure interaction

Zhe Lia,∗, Julien Favierb
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Abstract

The paper presents a numerical framework for the coupling of finite element

and lattice Boltzmann methods for transient problems involving fluid-structure

interaction. The solid structure is discretized with the finite element method and

integrated in time with the explicit Newmark scheme. The lattice Boltzmann

method is used for the simulation of single-component weakly-compressible fluid

flows. The two numerical methods are coupled via a direct-forcing immersed

boundary method in a non-staggered way. Without subiteration within each

time-step, the proposed method can ensure the synchronization of the time

integrations, and thus the strong coupling of both subdomains by resolving a

linear system of coupling equations at each time-step. Hence the energy transfer

at the fluid-solid interface is correct, i.e. neither energy dissipation nor energy

injection will occur at the interface, which can retain the numerical stability.

A well-known fluid-structure interaction test case is adopted to validate the

proposed coupling method. It is shown that the stability of the used numerical

schemes can be preserved and a good agreement is found with the reference

results.
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1. Introduction

Fluid-Structure Interaction (FSI) refers to interactions between two kinds

of media, namely the fluid flow and the solid structure. Well-known examples

include wind-induced oscillations of tall buildings, collapse of bridges caused

by wind gusts, flow-induced vibrations of airfoils, and dynamics of blood flow

through valves in veins etc. Thus, the robustness and accuracy of the numerical

methods used for their simulations are of primary importance. Due to the

different material and dynamical properties of fluid and solid media, one feature

of FSI simulation is that the fluid and solid subdomains are generally modelled

using different numerical methods, e.g. Eulerian fashion for fluid and Lagrangian

fashion for solid, and different discretizations, both in space and time. In this

paper, we propose a numerical framework to simulate two-way FSI problems

by means of the coupling of Finite Element (FE) method for deformable solid

structure and Lattice Boltzmann (LB) method for weakly-compressible fluid

flow.

To simulate the solid structure, we adopt the FE method [1, 18], which is

widely used in solving solid dynamics. Based on the total Lagrangian formula-

tion [1], the adopted FE solver can be used to handle geometrical nonlinearities,

such as moderate deformation-large rotation cases. For time integration, we

choose to use the Newmark scheme [28] which enjoys great popularity due to

its “single-step, single-solve” feature in linear as well as in nonlinear dynamic

analysis. Besides, the Newmark time integrator also features controllable energy

dissipation with two coefficients of the scheme [20]. More details of the chosen

Newmark scheme will be discussed subsequently.

The fluid subdomain is simulated with the LB method, which is gaining

much attention over the past decade. As an alternative to conventional numer-

ical solvers based on the resolution of Navier-Stokes (NS) equations, the LB

method consists in solving the discrete Boltzmann equation with collision and

streaming processes, which can be proven to fully recover the macroscopic NS

equations through the Chapman-Enskog analysis [3]. Recently, Shan et al. [34]
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have shown that the LB method can be systematically derived from the kinetic

theory for hydrodynamics. In the present work, we apply the single-component

isothermal LB model for the simulation of a weakly compressible laminar fluid

flow interacted with a deformable solid structure via an Immersed Boundary

(IB) method.

Initially proposed by Peskin [29] for simulating blood flows in the hearts, IB

method is particularly useful for introducing moving solid objects in the fluid

domain modelled with a fixed Eulerian mesh, which is the case for LB method.

Since its appearance, IB method has many variants [27]. Recently, several IB-

LB coupled schemes have been presented for simulating FSI problems: Wu

and Shu [38, 39] proposed an implicit velocity correction-based IB-LB method

for one-way (stationary solid boundary) FSI simulations; Favier et al. [12]

proposed an IB-LB coupling scheme based on a prediction-correction substage

within each time-step, which was applied to simulate the fluid interaction with

moving and slender flexible objects; de Rosis [7] proposed an iterative strong

IB-LB coupling method for simulating two-way FSI problems in the presence

of slender deformable solid. In the present paper, we adopt the direct-forcing

IB method proposed in [22], which can enforce the no-slip condition at the

immersed boundaries by using an appropriate local width for each Lagrangian

point.

In the previous publications [4, 19, 21], different FE-LB coupling strategies

have been proposed for the simulation of FSI problems in the presence of de-

formable solid structure. However, all of them can be classified as staggered

coupling procedures [13], in which there always exists a lag between the time

integrations of fluid and solid subdomains. For example, in [4], the force vec-

tor for the FE solver needed to be guessed with a force predictor, because the

fluid-structure coupling determines the effective force. In [21], one takes the

interface force fn at the moment tn to compute the fluid velocity un+1 at the

next moment tn+1, which actually depends on fn+1; in order to reduce the time

lag, structural predictors [31] have been used in [19, 21] to obtain a numerically

stable simulation. This time-lag may sometimes degrade the stability or con-
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vergence order of the numerical schemes. In spite of the staggered feature, the

advantage of these coupling strategies is that one does not need to significantly

modify the existing codes or softwares for the FSI implementation.

The main objective of the present paper is to present a synchronous or non-

staggered FE-LB coupling framework without subiteration within each time-

step via a direct-forcing IB method. The non-staggered and subiteration-free

features make the proposed coupling method robust and efficient, respectively.

Indeed, coupling of heterogeneous numerical methods may be of great impor-

tance in terms of preserving numerical stability for FSI computations, especially

when a partitioned coupling algorithm is adopted. Unlike monolithic coupling

procedure, which treats computationally the fluid and solid subdomains as an

entity, the partitioned procedure allows us to carry out separately the time inte-

gration of each subdomain [13]. This is particularly convenient when one prefers

to solve the fluid and solid equations using different numerical methods or ex-

isting softwares, which are already designed and optimized for each individual

subdomain [11]. However, partitioned coupling algorithm often suffers numer-

ical instabilities, if no special synchronization techniques, such as subiterative

methods [10] or structural predictors [31], are applied. With this kind of cou-

pling procedure, e.g. the Conventional Serial Staggered (CSS) method [13, 31],

the FSI computation may diverge rapidly, even though the individual schemes

used in the fluid and solid subdomains are both numerically stable. This is

usually due to the time lag between the time integrations of the fluid and solid

subdomains [23, 24, 26, 31].

From the energy point of view [5, 6, 8, 15], this CSS coupling procedure

algorithmically injects or dissipates energy at the fluid-solid interface. When

too much algorithmic interface energy is injected to the system, the coupling

simulation will be interrupted due to the numerical instability. In the context

of FE-LB coupling method, Kollmannsberger et al. [19] have proposed a nu-

merical framework for FSI simulations, in which they applied and evaluated

the basic and improved CSS [13] coupling algorithms with the interface-energy-

conservation criteria. They showed that with the first order structural predictor
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one can have a numerically stable simulation for the specific test case. However,

as they showed in the comparison, using an elaborate structural predictor in a

staggered coupling procedure can only reduce the increasing artificial interface

energy, i.e. it cannot ensure exactly a zero interface energy. Consequently, the

numerical stability of the FSI simulation will highly depend on the investigated

problem.

In summary, the most important feature of the proposed FE-LB coupling

method is that it can rigorously ensure the zero-interface-energy condition dur-

ing the whole period of numerical simulation, in such a way that the numerical

stability can be preserved for the FSI computations. The key point of this

method is to construct a linear system of coupling equations at each time-step.

By resolving the equations with the dual Schur formulation [14], one can update

the interface velocity and force to the next time-step. Since the interface veloc-

ity and force are resolved simultaneously, the interface status update is implicit.

But it is worth noting that this implicit updating procedure is based on solv-

ing directly a linear system of equations, rather than based on a subiterative

coupling procedure [7, 36].

The rest of the paper is organized as follows: Section 2 gives the mathe-

matical formulations of the used numerical methods (FE, LB and IB methods);

Section 3 starts with a brief presentation of the time lag issue for staggered

methods in the framework of FE-LB coupling with Newmark time integrator,

and then presents the proposed non-staggered coupling method; Section 4 shows

the numerical results of the validation test cases; finally, the conclusions and dis-

cussions are drawn in Section 5.

2. Mathematical formulation and numerical methods

2.1. Finite element method for solid structure

2.1.1. Semi-discrete equations obtained through total Lagrangian formulation

As presented in [1], the weak total Lagrangian formulation for solid can

be obtained by integrating the momentum equation multiplied by a virtual
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displacement field over the initial configuration:

∫

Ω0
s

δus ·

(

ρ0s
∂2us

∂t2
−∇0 ·P− ρ0sb

)

dΩ0
s = 0 (1)

where Ω0
s(X) denotes the solid initial configuration, as shown in Figure 1, with

X being the time-independent Lagrangian or material coordinate. In addition,

δus(X) denotes the virtual displacement field, ρ0s(X) the initial solid density,

us(X, t) the solid displacement field defined as us(X, t) = x−X where x(X , t)

denotes the Eulerian or spatial coordinate of the material point X in the current

solid configuration Ωs(t). P(X, t) is the nominal stress tensor and ∇0· is the

divergence operator with respect to the material coordinate X. Finally, b(X , t)

is the body force vector per unit mass such as the gravity.

Figure 1: Initial and current solid configurations.

Eq. (1) is also referred to as the virtual work principle that can give us the

semi-discrete solid equations in matrix form [1]:

Msas = fext − fint (2)

where as denotes the acceleration field defined as:







as =
dvs

dt

vs =
dus

dt

(3)
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with the displacement field us = [u1
s, . . . ,u

I
s, . . . ,u

N
s ]⊤, the velocity field vs =

[v1
s , . . . ,v

I
s , . . . ,v

N
s ]⊤ and the acceleration field as = [a1s, . . . , a

I
s, . . . , a

N
s ]⊤, in

which uI
s = [uI,x

s (t), uI,y
s (t)], vI

s = [vI,xs (t), vI,ys (t)] and aIs = [aI,xs (t), aI,ys (t)] are

the Ith node’s displacement, velocity and acceleration in x- and y-directions in

2D cases.

Additionally, Ms, fint and fext are the mass matrix, the internal and external

nodal forces, respectively, which are given as:







MIJ
s = I

∫

Ω0
s

ρ0sNINJ dΩ0
s

(
f Iint
)⊤

=

∫

Ω0
s

(
BI

0

)⊤
P dΩ0

s

f Iext =

∫

Ω0
s

NIρ
0
sb0 dΩ0

s +

∫

Γ0
s

NIλ0 dΩ0
s

(4)

where I is the identity matrix, NI(X) and NJ(X) are the shape functions for

the used 4-nodes quadrangle element at the Ith and J th nodes, as shown in

Figure 2.

The constant matrix BI
0 is given as:

(
BI

0

)⊤
=

[
∂NI

∂X
,
∂NI

∂Y

]

(5)

whereX and Y are the Lagrangian coordinates in x- and y-directions. Moreover,

the nominal stress tensor P is calculated by P = S · F⊤ with S being the

second Piola-Kirchhoff (PK2) stress and F = ∂x/∂X denoting the deformation

gradient. In the present work, we consider an elastic solid structure, hence the

PK2 stress S is linearly related to the Green-Lagrange strain E by means of a

constant fourth-order tensor C, i.e. S = C : E where E = 1/2(F⊤ · F − I),

which is referred to as the Saint Venant-Kirchhoff material model.

In the present paper, no external body force is considered for the structure,

hence b0 = 0. In addition, λ0 denotes the external surficial force acted on the

initial configuration Ω0
s.
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Figure 2: Shape function for the 4-nodes quadrangle element at the Ith node in the parent

configuration Ωξ
s.

2.1.2. Time integration with Newmark scheme

To integrate in time this semi-discrete system of equations (2), we choose to

apply the Newmark time integrator [28]:







un+1
s = un

s +∆tvn
s +

∆t2

2

[
(1− 2β)ans + 2βan+1

s

]

vn+1
s = vn

s +∆t
[
(1− γ)ans + γan+1

s

]
(6)

where the superscripts n and n + 1 indicate the time instants tn and tn+1

for the displacement us, velocity vs and the acceleration as. In addition, ∆t

denotes the constant time-step, which is the same for both the solid and fluid

subdomains. Finally, β and γ are the two coefficients of the Newmark scheme.

In the present work, we choose β = 0 and γ = 0.5 for the solid simulations, with

which the Newmark time integrator is essentially an explicit central difference

scheme possessing second-order accuracy in time and conditional stability. The

time-step ∆t should be smaller than the critical time-step ∆tcrit determined by

[1]:

∆t < ∆tcrit = min
e

le
ce

(7)

where le denotes the characteristic length of the eth element and ce is the current

wave speed in the eth element. Because the simulations are carried out with a

constant time-step ∆t, one has to preset a ∆t under the stability condition (7).

It is here noteworthy that although the condition (7) is valid only for linear
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cases, it can provide a useful guide for choosing the time-step in nonlinear cases

[1]. In this work, we estimate ∆tcrit by setting le = ∆X and ce =
√

Es/ρ0s

where ∆X denotes the initial uniform spacing of the solid mesh and Es is the

Young’s modulus of the elastic solid material.

2.1.3. Calculation of external nodal force vector with a geometric operator

In the present work, the FSI happens only at the fluid-solid interface ΓI . For

the FE solver, the velocity boundary condition is tackled with the elimination

method, and the time-varying force boundary condition is imposed by using a

geometric operator Lp that relates the external nodal force fext with the flow-

induced force Λ as fext = −LpΛ:










f1ext

f2ext
...

fNs

ext











︸ ︷︷ ︸

fext

= −











L1,1
p L1,2

p . . . L1,Nk
p

L2,1
p L2,2

p . . . L2,Nk
p

...
...

. . .
...

LNs,1
p LNs,2

p . . . LNs,Nk
p











︸ ︷︷ ︸

Lp











λ1

λ2

...

λNk











︸ ︷︷ ︸

Λ

(8)

where f Iext = [f I,x
ext , f

I,y
ext ]

⊤ is the external nodal force for the node I ∈ [1, Ns]

with Ns being the total number of the solid nodes. λk = [λx
k, λ

y
k]

⊤ denotes

the force per unit length in 2D cases, which is exerted on the kth (k ∈ [1, Nk])

fluid-solid interface element, as shown in Figure 1, and Nk is the total number

of the interface elements.

It is worth noting that this geometric operatorLp is time-varying and entirely

depends on the current solid geometry. As mentioned previously, we choose to

use the explicit Newmark scheme with β = 0 and γ = 0.5, which allows us to

explicitly calculate the new displacement field un+1
s = un

s + ∆tvn + 0.5∆t2ans

so that we can explicitly update the solid geometry with this newly obtained

displacement field un+1
s . By doing so, we avoid the iterative procedure usually

required for the implicit Newmark schemes to handle such geometrical nonlin-

earity.

To construct the geometric operator Lp, we follow the way proposed by the

author in the previous work [24] for the coupling of SPH and FE methods. As
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one can observe in Equation (8), if one imposes a force boundary condition

λx
k = −1 and λy

k = 0, λx
m = 0 and λy

m = 0 with m ∈ [1, Nk] and m 6= k, then

the (2k−1)th column of Lp is just the external nodal force fext under such force

boundary condition. Similarly, the 2kth column of Lp is the external force fext

with the force condition λx
k = 0 and λy

k = −1, λx
m = 0 and λy

m = 0. Moreover,

the formulae for calculating fext is given as follows:

f Iext =

∫

Γ0
I

NIλ0 dΓ0
I =

∫

ΓI

NIλ dΓI (9)

where ΓI(t) is the current interface that is constituted of Nk interface element,

i.e. ΓI =
∑

k Γk. λ(x, t) denotes the external force acted on the current solid

configuration. Here we assume that the force is piece-wise constant at the

interface and is applied on the geometric center of each element Γk. Following

the method presented previously, only one interface element is charged at each

time, hence fext can be calculated as:

f Iext = λk

∫

Γk

NI dΓk = λk

∫

Γ
ξ

k

NIJξ dΓξ
k =




λx
k

λy
k




∆sk

∆sξk
(10)

where Γξ
k represents the element k in the parent domain as shown in Figure

2, and Jξ = ∆sk/∆sξk is the Jacobian of the mapping from the current to the

parent configurations, with ∆sk and ∆sξk being the element length (2D) in the

current and parent configurations, respectively.

2.2. Lattice Boltzmann method for single-component fluid flow

In the lattice Boltzmann method the fluid state is updated by resolving the

discrete Boltzmann equation:

fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ
[fi(x, t)− feq

i (x, t)] + ∆tGi(x, t) (11)

where fi(x, t) denotes the distribution function at the site x and the time t, in

the ith direction of the used D2Q9 [32] lattice for 2D cases, as shown in Figure

3, and ci is the ith discrete velocity vector. The set of discrete velocity vectors
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of D2Q9 lattice can be obtained in the following way:














c0
...

ci
...

c8














=
∆x

∆t




0 +1 0 −1 0 +1 −1 −1 +1

0 0 +1 0 −1 +1 +1 −1 −1





⊤ 


ex

ey



 (12)

where ∆x denotes the uniform spacing of the lattice, ∆t is the constant time-

step, and ex and ey are two unit vectors in x- and y-directions.

1

2

3

4

56

87

0

x

y

Figure 3: The D2Q9 lattice used in the present work for 2D LB simulations.

In Equation (11), the single-relaxation-time Bhatnagar-Gross-Krook (BGK)

collision model is adopted and τ denotes the relaxation time. Here, feq
i (x, t)

is referred to as the discrete equilibrium distribution function, which can be

obtained by Hermite series expansion of the Maxwell-Boltzmann equilibrium

distribution [34]:

feq
i = ρfωi

[

1 +
ci · vf

c2s,f
+

(ci · vf )
2

2c4s,f
−

vf · vf

2c2s,f

]

(13)

where ρf (x, t) and vf (x, t) denote the macroscopic fluid density and velocity,

cs,f =
√

1/3∆x/∆t the speed of sound, and ωi the weight coefficients equaling

ω0 = 4/9, ω1−4 = 1/9 and ω5−8 = 1/36 for D2Q9 lattice. In such isothermal

single-component LB model the fluid pressure is calculate as pf = c2s,fρf and the

kinematic viscosity ν is related to the relaxation time τ by ν = c2s,f (τ − 0.5∆t).

Additionally, we adopt the scheme proposed by Guo et al. [16] in order to

take into account the body-force effects in the fluid domain. In Equation (11),
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the body-force-related term Gi(x, t) is given as [16]:

Gi =

(

1−
∆t

2τ

)

ωi

[

ci − vf

c2s,f
+

(ci · vf )

c4s,f
ci

]

· F (14)

where F (x, t) denotes the body force per unit volume acted on fluid at the site

x and the time t.

Finally, once one calculates all the distribution functions fi(x, t + ∆t) by

means of Equation (11), we can update the macroscopic fluid status by the

definition [16]:






ρf =
∑

i

fi

ρfvf =
∑

i

cifi +
∆t

2
F

(15)

Note that this definition of the macroscopic fluid velocity should be used at

each time instant in order to make the LB scheme fully recover the Navier-Stokes

equations.

In the present work, no gravity effect is considered in the fluid subdomain,

hence the body force F in Equation (15) is just the force related to the immersed

boundary method, which is used to relate the fluid and solid subdomains for

FSI simulations.

2.3. Immersed boundary method

In this paper, we apply the IB method proposed by the authors in the

previous work [22], in which the IB method was used to impose moving solid

boundary conditions in the fluid flow. This IB method is based on the interpo-

lated definition of the macroscopic fluid velocity (15) from the Eulerian (fluid)

nodes to the Lagrangian (solid) points:

I [ρf ]k vf,k = I

[
∑

i

cifi

]

k

+
∆t

2
F k (16)

where vf,k and F k denote the fluid velocity and the IB-related force at the kth

solid element, respectively. I[•]k represents the interpolation operator defined
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as:

φ(xk, t) = I [φ(x, t)]k =

∫

φ(x, t)δ(x− xk) dx

≃
∑

j∈Dk

φ(xj , t)δ̃(xj − xk)∆x∆y
(17)

which provides an interpolated value of a given variable φ(x, t) at the kth solid

point xk = x(Xk, t) with Xk being the time-independent Lagrangian coordi-

nate. This form of the interpolation operator makes use of the sampling property

of the Dirac delta function δ(x). In Equation (17), φ(xj , t) is the value of φ at

the jth Eulerian (fluid) node located inside the support domain Dk of the kth

Lagrangian (solid) point, as shown in Figure 4. Finally, δ̃(xj −xk) is a mollifier

or a smooth approximation to the Dirac delta function. In the present work, we

adopt the mollifier proposed by Roma et al. [33]:

δ̃(xj − xk) =
1

∆x
δ̃x

(
|xj − xk|

∆x

)
1

∆y
δ̃y

(
|yj − yk|

∆y

)

(18)

with:

δ̃x(r) = δ̃y(r) =







1

3

(

1 +
√

−3r2 + 1
)

0 ≤ r < 0.5

1

6

[

5− 3r −
√

−3(1− r)2 + 1
]

0.5 ≤ r < 1.5

0 otherwise

(19)

where r denotes the nondimensional distance between the fluid node and the

solid point in each direction, i.e. r = |xj − xk|/∆x or r = |yj − yk|/∆y.

Supposing that at the instant tn all variables are already known, and we will

resolve the LB equation in order to update the fluid state to the instant tn+1.

After calculating the new distribution functions fn+1
i with Equation (11), we

can update the fluid density by ρn+1
f =

∑

i f
n+1
i , but we cannot update the

fluid velocity, since the IB-related body force F is not known yet. To clarify

this point, let us rewrite Equation (16) at the instant tn+1:

I
[

ρn+1
f

]

k
vn+1
f,k = I

[
∑

i

cif
n+1
i

]

k

+
∆t

2
F n+1

k (20)

In one-way FSI problems, such as the ones presented in [22], the fluid velocity

at the solid point vn+1
f,k is equal to the solid velocity under the no-slip condition,
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solid m
esh

uid lattice

Figure 4: The fluid lattice and the support domain Dk of kth interface point for IB method.

which is usually preset or imposed by the applied solid-motion law. As a result,

one can directly calculate the IB-related force F n+1
k at solid points. However,

in two-way FSI simulations, the velocity vn+1
f,k can only be known after resolving

the system of coupling equations, since the solid velocity at the instant tn+1 also

depends on F n+1
k . That is why it is referred to as the two-way coupled problem.

In the proposed FE-LB coupling method, vn+1
f,k and F n+1

k will be obtained

together by resolving a system of coupling equations, then the force F n+1
k will be

spread from the Lagrangian (solid) points onto the neighboring Eulerian (fluid)

nodes by means of the following spreading operation:

F (xj , t+∆t) =
∑

k∈Dj

F n+1
k δ̃n+1

jk ǫn+1
k ∆sn+1

k (21)

where δ̃n+1
jk = δ̃(xn+1

j − xn+1
k ) and ǫn+1

k denotes the numerical width of the kth

solid segment at tn+1, which is obtained by resolving a linear system of equations

in order to enforce the reciprocity of the interpolation-spreading operations [30,

12, 22]. Finally, ∆sn+1
k is the length of the kth segment at tn+1. Note that the

use of the explicit Newmark scheme allows us to explicitly update the structural

geometry so that we can calculate the δ̃n+1
jk , ǫn+1

k and ∆sn+1
k independently of

the coupling procedure within each time-step.

It is here noteworthy that in the present interpolation-based IB method for

the FE-LB coupling, the LB equation is solved on all the lattice nodes, even for
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the ones inside the solid domain. This allows us to apply the same treatment

for all the lattice nodes and no special initialization technique is required for

the freshly appeared real fluid nodes.

3. FE-LB coupling algorithm via an IB method

Physically, at the fluid-solid interface, there exist the continuities for the

velocity and the force, respectively. However, this is not always true in the

numerical simulations, due to the use of a straightforward or simple coupling

algorithm. For example, when using FE method with Newmark time integrator

for solid structure, the discrete system of equations for solid is given as:







Msa
n+1
s = fn+1

ext − fn+1
int

un+1
s = un

s +∆tvn
s +

∆t2

2

[
(1− 2β)ans + 2βan+1

s

]

vn+1
s = vn

s +∆t
[
(1− γ)ans + γan+1

s

]

(22)

where the external nodal force fn+1
ext , see Equation (8), depends on the dis-

placement field un+1
s and the flow-induced force Λn+1 at the interface and next

time-step tn+1. It is obvious that one cannot accomplish the time integration

without knowing Λn+1.

In order to simplify the coupling procedure, one may assume that the flow-

induced force Λ is constant during each time-integration step for the solid sub-

domain and this force has the value at the previous instant tn, i.e. Λ = Λn

for t ∈ (tn, tn+1]. With this assumption, fn+1
ext can be calculated, so that the

solid state can be updated to the next time-step. Then the fluid solver receives

the updated solid geometry and velocity in order to finish the time integration.

This coupling procedure is referred to as the Conventional Serial Staggered

(CSS) coupling algorithm [13].

As presented previously in Section 1, the CSS coupling algorithm might

inject artificial or algorithmic energy into the coupled system, which sometimes

causes numerical instability for the FSI simulation. The incremental interface

energy ∆EI can be used to measure the energy injection or dissipation at the
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fluid-solid interface due to the staggered coupling algorithm. The definition of

∆EI is given as:

∆EI =
∑

k∈ΓI

∫ tn+1

tn
Fs,k · vs,k dt+

∑

k∈ΓI

∫ tn+1

tn
Ff,k · vf,k dt (23)

where Fs,k (or Ff,k) is the interface force exerted on solid (or fluid), which can

be calculated as Fs,k = λk∆sk and Ff,k = F kǫk∆sk. vs,k (or vf,k) is the solid

(or fluid) velocity at the kth interface element, as shown in Figure 4. Using the

trapezoidal rule, one can approximately calculate ∆EI as:

∆EI ≃
∑

k∈ΓI

∆tF s,k · vs,k

︸ ︷︷ ︸

Ws

+
∑

k∈ΓI

∆tFf,k · vf,k

︸ ︷︷ ︸

Wf

(24)

where Fs,k = (Fn+1
s,k +F

n
s,k)/2 and Ff,k = (Fn+1

f,k +F
n
f,k)/2 denote the mean

values of the interface forces at the kth interface element, which act on the

solid and the fluid, respectively. vs,k = (vn+1
s,k + vn

s,k)/2 and vf,k = (vn+1
f,k +

vn
f,k)/2 are the mean velocities of solid and fluid at the interface. Ws and Wf

represent the external work transferred to the solid and fluid subdomains at the

interface. Clearly, when the force and velocity continuity conditions are ensured,

i.e. Fs,k(t) = −Ff,k(t) and vs,k(t) = vf,k(t) ∀t ∈ [. . . , tn−1, tn, tn+1, . . .] , the

quantity of the incremental interface energy ∆EI = Ws + Wf is zero. Since

the CSS algorithm cannot ensure the continuities at the interface, this quantity

∆EI is generally not zero with the CSS algorithm.

3.1. The CSS coupling algorithm

In order to show the importance of the interface-energy-conserving feature of

the proposed coupling method, we provide a comparison with the CSS coupling

algorithm in the context of FE-LB coupling simulation. The procedure of this

staggered algorithm is illustrated in Figure 5 and can be briefly summarized as:

1 The interface force field Λn is sent to the solid solver, considered as the

flow-induced force acted on the structure at tn+1
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2 Using this force boundary condition, the solid solver makes use of the

Newmark time integrator (6) to update the solid status to the next instant

tn+1: un+1
s , vn+1

s , an+1
s

3 Meanwhile, the fluid solver calculates the new distribution function fn+1
i

by Equation (11) with the fluid status fn
i , ρ

n
f , v

n
f and F n known from the

previous time-step

4 The newly obtained structural geometry and velocity condition are sent

to the fluid solver as a preset solid boundary condition, with which one

will determine the new IB-related body force F n+1 so as to fully update

the macroscopic fluid status to tn+1 with Equation (15): ρn+1
f and vn+1

f

5 Go to 1 for the next time-step

status solver

Figure 5: The Conventional Serial Staggered (CSS) coupling algorithm.

As one can observe, there is a time lag in this CSS coupling procedure,

because the solid solver takes the interface force Λn as the force boundary

condition at the instant tn+1. Such assumption ruins the force continuity at

the fluid-solid interface, which is the main reason why such staggered coupling

method suffers sometimes from numerical instabilities [23, 24, 26].

Given the definition of the incremental interface energy Equation (23) and

Equation (24), one can evaluate ∆EI for the CSS coupling algorithm over one
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time-step as follows:

∆ECSS
I = ∆t

∑

k∈ΓI

vs,k ·

(

F
n+1
s,k +F

n
s,k

2
+

F
n+1
f,k +F

n
f,k

2

)

(25)

where we applied the velocity continuity condition vs,k(t) = vf,k(t), because

in this CSS algorithm (Figure 5) the fluid and solid solvers share the same

interface velocity. However, the interface force is not the same for the two

solvers, because:






F
n+1
s,k = −F n

kǫ
n+1
k ∆sn+1

k

F
n+1
f,k = F n+1

k ǫn+1
k ∆sn+1

k

(26)

As a result, the value of ∆ECSS
I might have positive or negative value,

corresponding to an algorithmic energy injection or dissipation, respectively,

at the interface for the whole coupled system. As mentioned in the paper

of Combescure and Gravouil [5], this interface energy condition is crucial in

terms of numerical stability for the time integration of the coupled system.

Indeed, even if the individual schemes for solid and fluid subdomains are both

numerically stable, the FSI simulation will still encounter instability issues when

too much algorithmic interface energy is injected into the system.

Farhat and Lesoinne [9] has proposed an Improved Serial Staggered (ISS)

coupling method which does not introduce errors of energy exchange at the

fluid-solid interface. However, this method is not easy to be applied in the FE-

LB coupling context, because neither the Newmark integrator nor the LB solver

relies on the variable’s state at the mid-time-step tn+1/2.

3.2. The proposed non-staggered FE-LB coupling method

We shall provide here the details of the proposed non-staggered FE-LB cou-

pling method via an IB scheme. As an implicit coupling procedure, it consists in

resolving a system of coupling equations involving the solid and fluid equations,

and the continuity conditions at the interface as well.

Starting with the solid coupling equations, let us write Equation (4) at the

instant tn+1:

Msa
n+1
s = fn+1

ext − fn+1
int (27)
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Combining Equation (27) with the Newmark scheme (6) yields the solid

equations that will be used in the coupling system:

Kc
sv

n+1
s + Ln+1

p Λn+1 = gn+1
s (28)

where Ln+1
p is the geometric operator constructed as previously described in

Section 2.1,, which is based on the explicitly updated solid geometry with the

chosen explicit Newmark scheme (β = 0 and γ = 0.5), and Λn+1 is the interface

force field at tn+1. In addition, Kc
s and gn+1

s are calculated as:







Kc
s =

2

∆t
Ms

gn+1
s = Ms

(
2

∆t
vn
s + ans

)

− fn+1
int

(29)

Since the new displacement field un+1
s has been calculated with the explicit

Newmark scheme, one can then update the internal nodal force field with Equa-

tion (4) and the Saint Venant-Kirchhoff material model. As a result, there are

only two unknowns in Equation (28), which are vn+1
s and Λn+1. Now, let us

omit the n + 1 superscript for the already calculated operator or matrix, i.e.

Ln+1
p and gn+1

s , so that we can rewrite Equation (28) as:

Kc
sv

n+1
s + LpΛ

n+1 = gs (30)

As for the fluid coupling equations, by multiplying Equation (20) with the

numerical local width ǫn+1
s of the kth IB-segment, we can obtain:

2ǫn+1
k

∆t
I
[

ρn+1
f

]

k
vn+1
f,k − ǫn+1

k F n+1
k =

2ǫn+1
k

∆t
I

[
∑

i

cif
n+1
i

]

s

(31)

where −ǫn+1
k F n+1

k = λ
n+1
k represents the interface force per unit length exerted

on the solid at the kth interface element or segment. Once again, let us omit

the n+1 superscript for the already known variables and rewrite Equation (31)

in matrix form as:

Kc
fv

n+1
f +Λn+1 = gf (32)
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with:

Kc
f =











Kc
f,1 0 . . . 0

0 Kc
f,2 . . . 0

...
...

. . .
...

0 0 . . . Kc
f,Nk











, vn+1
f =











vn+1
f,1

vn+1
f,2

...

vn+1
f,Nk











and gf =











gf,1

gf,2

...

gf,Nk











(33)

where, for the kth segment, we have:






Kc
f,k =

2ǫn+1
k

∆t
I
[

ρn+1
f

]

k
I

gf,k =
2ǫn+1

k

∆t
I

[
∑

i

cif
n+1
i

]

k

(34)

Now we have the solid and fluid coupling equations (30) and (32) with the

unknown vn+1
s , vn+1

f and Λn+1. Obviously, one more equation is needed to

solve the coupling system, which will come from the velocity continuity condition

under the no-slip condition at the fluid-solid interface:

Lsv
n+1
s + vn+1

f = 0 (35)

where Ls is another geometric operator that gives the solid velocity at the

interface from the velocity field vs.

Regrouping the equations (30), (32) and (35) gives the coupling system of

equations:







Kc
s 0 Lp

0 Kc
f I

Ls I 0















vn+1
s

vn+1
f

Λn+1







=








gs

gf

0








(36)

To solve such system of equations, we follow the procedure presented in

[5, 24]:

(1) Calculate the free velocities by:

vfree
s = [Kc

s]
−1

gs and v
free
f =

[
Kc

f

]−1
gf (37)

(2) Calculate the condensed matrix H, which is essentially the Poincaré-

Steklov operator:

H = Ls [K
c
s]

−1
Lp +

[
Kc

f

]−1
(38)
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(3) Calculate the interface force field Λn+1 at the instant tn+1:

Λn+1 = H−1
{

Ls [K
c
s]
−1

gs +
[
Kc

f

]−1
gf

}

(39)

(4) Calculate the link velocities:

vlink
s = − [Kc

s]
−1

LpΛ
n+1 and vlink

f = −
[
Kc

f

]−1
Λn+1 (40)

(5) Finally, regroup the free and link velocities in order to get the total veloc-

ities:

vn+1
s = vfree

s + vlink
s and vn+1

f = v
free
f + vlink

f (41)

Once Λn+1, vn+1
s and vn+1

f are updated, the solid solver will use vn+1
s to

calculate the new acceleration field through Equation (6) with γ = 0.5. Mean-

while, the fluid solver will spread this newly obtained interface force field F n+1

from the solid points onto the neighboring fluid nodes in order to accomplish

the calculation of the macroscopic fluid velocity by Equation (15).

It is worth noting that in Equation (36) the matrix Kc
s, K

c
f , Lp and Ls are

all independent of the unknowns vn+1
s , vn+1

f andΛn+1, due to the use of explicit

Newmark time integrator. It can then be easily demonstrated that the present

resolution procedure is mathematically equivalent with a direct one. This lin-

earity allows us to split the final velocity solution field into two parts: the free

velocity and the link velocity, so that the fluid and solid solvers can calculate

first their free velocities individually and simultaneously. In addition, instead of

directly solving the system of equations (36), we solve the condensed equation

(38) which has a much smaller dimension than Equation (36). All these make

the present resolution procedure very efficient.

Now, the proposed coupling algorithm is illustrated in Figure 6, and can be

briefly reviewed as follows:

1 The solid and fluid solvers carry out independently and simultaneously

the first-stage calculation: the solid solver calculates the new displace-

ment field un+1
s using the explicit Newmark scheme and then update the
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structural geometry; the fluid solver carries out the collision and streaming

steps of LB method so that one can update the fluid density ρn+1
f

2 The coupler interpolates the fluid information shown in Equation (20)

from the fluid nodes to the newly updated solid points so as to prepare

Kc
f and gf , and then receives Kc

s and gs from the solid solver in order

to obtain the Λn+1, vn+1
s and vn+1

f by resolving the coupling system of

equations (36)

3 The solid solver receives vn+1
s and the fluid solver receives Λn+1 from

the coupler and then accomplish the individual integrations of one entire

time-step

status solver

Figure 6: The proposed implicit strong coupling algorithm (F, S, I and C correspond to ‘Fluid’,

‘Solid’, ‘Interface’ and ‘Coupler’, respectively).

4. Numerical validations and discussions

In this part, we have adopted a widely used numerical test case [2, 19, 35,

36, 37] to validate the present FE-LB coupling method. Before showing the FSI

results, we provide two numerical validations for the solid and fluid solvers alone.

Finally, the FSI results are shown and the stability of the proposed algorithm

is discussed.
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4.1. Configuration of the numerical test case

This well-known test case was firstly proposed by Turek and Hron [37] for

the numerical benchmarking of laminar flow-elastic structure FSI simulations.

As shown in Figure 7, we consider an elastic solid bar immersed in a rectangular

fluid flow channel. The deformable solid bar is attached to a fixed rigid cylinder,

of which the geometric center is located near the inlet and slightly deviated from

the horizontal center line of the channel. The geometric and material parameters

are provided in Table 1 and Table 2, respectively.

in
le

t

solid wall

solid wall

o
u

tle
t

Figure 7: Configuration of the validation test case.

Table 1: Geometric parameters of the FSI test case.

Parameters Values

Length of the flow channel L 2.5 m

Height of the flow channel H 0.41 m

Radius of the cylinder r 0.05 m

Length of the solid bar l 0.35 m

Height of the solid bar h 0.02 m

Coordinate of the point O (0.0m, 0.0 m)

Coordinate of the cylinder center C (0.2m, 0.2 m)

Coordinate of the point A (0.6m, 0.2 m)
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At the inlet of the flow channel, a parabolic velocity profile is imposed by:






vxf (0, y) = 1.5U
y(H − y)

(0.5H)2

vyf (0, y) = 0

(42)

where U = 1 m/s denotes the spatially mean inlet velocity, which will be used

to determine the Reynolds number Re = UD/νf = 100 with D and νf being

the diameter of the fixed cylinder and the kinematic fluid viscosity, respectively.

Additionally, no-slip boundary conditions are applied at the upper and lower

solid wall. All these three velocity boundary conditions are ensured by means

of the scheme of Zou and He [40] for the LB simulation.

As for the outflow boundary condition, we apply a linear extrapolation

scheme [25] for the distribution functions fi for i ∈ [1, 8], while tuning the

f0 in order to impose a prescribed exit density or pressure value. As a conse-

quence, we can linearly extrapolate the fluid velocity and fix the fluid density

to a certain value at the outlet.

Initially, the whole field is at rest and a smooth increase of the inlet velocity

is imposed as:






vxf (0, y, t) = 1.5U
y(H − y)

(0.5H)2
1− cos(0.5πt)

2
if t < 2.0 s

vxf (0, y, t) = 1.5U
y(H − y)

(0.5H)2
otherwise

(43)

Table 2: Material parameters of the FSI test case.

Parameters Values

Initial fluid density ρ0f 103 kg/m3

Fluid viscosity νf 10−3 m2/s

Initial solid density ρ0s 10× 103 kg/m3

Solid Poisson ratio νs 0.4

Young’s modulus Es 1.4× 106 Pa

The fluid subdomain is discretized with a uniform lattice of size 1250∆x×

205∆y with ∆x = ∆y. As the LB equations are usually resolved with dimension-

24



less variables, we choose the length rescaling factor Cx = ∆xp/∆xl = 0.002 m

and the time recaling factor Ct = ∆tp/∆tl = 10−4 s so that the lattice spacing

∆xl = 1 and the lattice time-step ∆tl = 1, where the superscripts p and l are

devoted to physical and lattice, respectively. Hence, the velocity rescaling factor

is determined as Cv = ∆xp/∆tp = 20 m/s. As a result, the lattice mean inlet

velocity, the speed of sound in fluid, the viscosity and the relaxation time can

be calculated by U
l
= U

p
/Cv = 0.05, cls,f =

√

1/3, νlf = U
l
Dl/Re = 0.025

and τ l = 3νlf + 0.5 = 0.575, respectively. Note that in such case we have a

small Mach number Ma = U
l
/cls,f ≃ 0.0288 ≪ 1, which is consistent with the

incompressible limit for the adopted LB model.

Here it is worth noticing that in the present work the solid mesh and the

IB frontier have the same spacing as the fluid lattice, i.e. ∆X = ∆s = ∆x.

Additionally, the fluid and solid solvers use the same time-step. Hence, given

the material parameters in Table 2, one can estimate the critical time-step for

the solid solver with Equation (7) as ∆tcrit = ∆xp/
√

Es/ρ0s ≃ 1.69 × 10−4 s,

which is larger than the used time-step ∆tp = 10−4 s.

One may observe that the time-step is quite restricted. This is mainly due

to two reasons. First, we use here the explicit Newmark time integrator for

the solid structure. While this choice allows us to explicitly calculate the solid

displacement at tn+1 without subiterations, it does limit the time-step because

of its explicit feature as time integrator. Second, in the present work, we use

the identical time-step for the solid and fluid solvers. In addition to this, the

time-step ∆t and the space-step ∆x are tied up for LB solver. Consequently,

one needs to choose the same time-step which should be appropriate for the

solid as well as for the fluid solvers.

4.2. Validations of the solid and fluid solvers

Before coupling the fluid and solid subdomains, it is necessary to validate

individually the solid and fluid solvers using some pure solid and pure fluid test

cases.

To do so, we have carried out firstly a pure solid test case, in which the solid
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bar is only charged by the gravity body force. It corresponds to the “CSM3”

test case proposed by Turek and Hron [37], where g = −gez with g = 2 m/s2

and ρ0s = 103 kg/m3. The other material parameters are the same as in Table

2. Figure 8 shows the time evolution of the displacement of the point A (see

Figure 7) in x- and y-directions. A good agreement with the results of Turek

and Hron [37] can be found in Figure 8, which allows us to validate the present

FE solver in such kind of configuration for the solid simulation.

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 8  8.5  9  9.5  10

u x
 o

f 
po

in
t A

 (
m

)

Time (s)

present FE solver

Turek and Hron

(a)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 8  8.5  9  9.5  10

u y
 o

f 
po

in
t A

 (
m

)

Time (s)

present FE solver

Turek and Hron

(b)

Figure 8: Time history of the point A’s displacement in x- and y-directions.

Secondly, we also validate the present LB solver with a steady test case
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(“CFD2” in [37]) by measuring the drag and lift on the fixed and rigid cylinder-

bar entity in the flow channel under the previously presented fluid boundary

conditions. In Table 3, one can observe that the steady drag and lift obtained

by the present LB solver are in good agreement with the ones in [37]. A difference

less than 3% is found between the two results, which validates the present LB

solver for fluid simulation. More validations for the LB solver can also be found

in the previous work [22] of the authors.
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Figure 9: Drag and lift in the steady pure fluid test case.

Table 3: Drag and lift in the steady fluid solver validation test case.

Drag (N) Lift (N)

Present method 140.6 10.8

Turek and Hron [37] 136.7 10.5

Difference 2.85% 2.86%

4.3. Numerical results of the FSI simulations

4.3.1. Results with the proposed synchronous FE-LB coupling method

Now, we shall present the FSI results obtained with the proposed syn-

chronous FE-LB coupling method. Figure 10 shows the vorticity field ωf in the

fluid flow and the stress component σxx
s in the solid bar at different instants.
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Figure 11 gives the time history of the vertical (y-direction) displacement of the

point A. From Figure 11-(a) one can observe that such flow-induced vibration

begins to get stablized after 10 seconds, and it can be considered as periodic

after 12 seconds. Figure 11-(b) shows good agreement with the results of Turek

and Hron [37], Kollmannsberger et al. [19] and Bhardwaj and Mittal [2].

Figure 10: The vorticity field ωf in the fluid flow and the stress component σxx
s in the solid

bar at four different instants with ∆T = 0.1 s.

A quantitative comparison is shown in Table 4. The vertical displacement

of the point ‘A’ is expressed as: uA
y = umean ± uamplitude where umean and

uamplitude denote the mean value and the amplitude of uy(A) during one period,

respectively. To calculate the values of umean and uamplitude, we adopt the

same method presented in [37]: umean = (umax + umin)/2 and uamplitude =

(umax − umin)/2 with umax and umin being the maximal and minimal values

of the vertical displacement of the point ‘A’, respectively. As shown in Table

4, the present method gives a mean displacement similar to those in [37, 19].

But there is a relatively obvious difference for the amplitude. The reason could
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Figure 11: Time evolution of the displacement in y-direction of the point A: (a) the results

obtained with the present method (∆x = 0.002 m); (b) the comparison with the reference

results.
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be the low accuracy of the used IB method which is only 1st-order accurate in

space. Nevertheless, from Table 4 and Figure 11-(b), one can observe that the

amplitude obtained by the present method is similar to the one in [2] which is

also based on the use of an IB method. The frequency f of the flow-induced

vibration in Table 4 is calculated as: f = 1/T where T is the period time of the

stabilized vibration. Here, one can find a good agreement with reference values.

Table 4: The vertical displacement of the point A and the frequency of the flow-induced

vibration.

uA
y (×10−3m) frequency (Hz)

Present method 1.32± 88.6 1.888

Turek and Hron [37] 1.23± 80.6 2.0

Kollmannsberger et al. [19] 1.20± 83.4 1.9

Bhardwaj and Mittal [2] 2.32± 91.2 1.9

The approximate delta function δ̃(r) plays an important role in the proposed

framework, since it relates the Eulerian lattice nodes and the Lagrangian points

via the adopted IB method. Figure 12 shows the result obtained with another

approximate delta function of radius of 2 [29]:

δ̃(r) =







1

8

(

3− 2r +
√

1 + 4r − 4r2
)

0 ≤ r < 1

1

8

(

5− 2r −
√

−7 + 12r − 4r2
)

1 ≤ r < 2

0 otherwise

(44)

In Figure 12, the FSI result is compared with the previous one obtained

using Equation (19). In this comparison, there is only one difference between

the two FSI simulations: the approximate delta function. One can observe that

there is little influence of the radius of the delta function.

In the present simulation, there are 257706 lattice nodes for LB method,

1936 mesh nodes for FE method, and 507 Lagrangian points for IB method.

Two Xeon E5520 (2.27 GHz) cores were used: one for the LB solver, one for the

FE solver. 16 seconds of physical time (160 000 time-steps) took 52 hours of
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Figure 12: Influence of the approximate delta function.

CPU time. The time needed to compute each time-step of the FSI simulation

is approximately 1.2 seconds.
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Figure 13: Numerical simulations with three different levels of mesh resolution: the coarse

mesh (∆x1 = 0.002 m), the intermediate mesh (∆x2 = 2/3∆x1) and the fine mesh (∆x3 =

1/2∆x1).

A mesh convergence study has been carried out using three levels of mesh

resolution: the coarse (initial) mesh of ∆x1 = 0.002 m, the intermediate of

∆x2 = 2/3∆x1 and the fine mesh of ∆x3 = 1/2∆x1. As shown in Figure 13,

one can observe that the numerical simulations have satisfactorily converged,
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while decreasing the spacing size. Although a slight phase shift can be observed

for the result using the coarse mesh with respect to the intermediate and fine

meshes, little difference has been found among these three mesh resolutions for

the amplitude and frequency of the flow-induced vibration.

Table 5: The vertical displacement of the point A and the frequency of the flow-induced

vibration for three different levels of mesh resolution.

Mesh spacing ∆x uA
y (×10−3m) frequency (Hz)

∆x1 = 0.002 m 1.32± 88.6 1.888

∆x2 = 2/3∆x1 1.43± 88.3 1.886

∆x3 = 1/2∆x1 1.28± 88.8 1.886

Since the incremental interface energy is an important indicator for evalu-

ating the applied coupling algorithm, we provide in Figure 14 the time history

of the accumulated or total interface energy EI = 1/Eref

∑

n ∆En→n+1
I where

Eref = 0.5ρ0fVfU
2
is the reference kinetic energy in the fluid subdomain and

∆En→n+1
I is calculated by Equation (24) over each time interval:

∆En→n+1
I ≃ ∆t

∑

k∈ΓI

Fs,k · vs,k +Ff,k · vf,k

= ∆t
∑

k∈ΓI

F
n+1
s,k +F

n
s,k

2
·
vn+1
s,k + vn

s,k

2
+

F
n+1
f,k +F

n
f,k

2
·
vn+1
f,k + vn

f,k

2

(45)

where Fs,k and Ff,k depend on the interface force field Λ, and vs,k and vf,k are

the solid and fluid velocity at the kth interface element. Because of the implicit

treatment of interface status in the proposed coupling method, the solid and

fluid share the same Λ at each time-step. Hence Fs,k and Ff,k are always

equal and opposite. In addition, the velocity continuity condition is assured by

Equation (35). Consequently, the incremental interface energy is ensured to be

zero by construction with the proposed coupling method. As one can observe

that the absolute value of the accumulated interface energy is rigorously zero

(∼ 10−17).
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Figure 14: The time history of the absolute accumulated or total algorithmic interface energy

introduced with the present strong coupling method.

4.3.2. Results with the CSS coupling algorithm

The CSS coupling algorithm is very straightforward and simple to be im-

plemented for FSI simulations, especially when using two existing computation

softwares. The drawback of CSS algorithm is that it cannot ensure the zero-

interface-energy condition, and then sometimes encounters numerical instability.

In order to show the importance of the interface-energy-conserving feature of the

proposed method, we carried out a numerical simulation using the same configu-

ration parameters as previously, except that the CSS coupling method (Section

3.1) is adopted for the coupling of FE and LB methods. We find that this

CSS coupling algorithm cannot provide a numerically stable simulation for the

chosen test case. The calculation diverged quickly after several hundred time-

steps, as shown in Figure 15 by the curve entitled by “staggered: γ = 0.50”. The

quickly increasing interface energy EI shows that this CSS coupling algorithm

cannot ensure a zero interface energy, i.e. too much algorithmic energy has been

injected into the coupled system at the interface, which finally interrupted the

simulation.

In this circumstance, one of the usual solutions is to choose a larger New-

mark coefficient γ > 0.50, which introduces numerical dissipation in the solid
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simulation, and might probably stabilize the FSI simulation. However, such

solution does not work all the time and it decreases the order of accuracy of the

Newmark time integrator, and more inconveniently one can never know before-

hand how big γ needs to be in order to get a stable simulation. As shown in

Figure 15, choosing a larger γ cannot stabilize the FSI simulation, even though

it can slightly defer the divergence moment. In fact, the coefficient γ cannot be

too much big either, for the sake of stability for the Newmark scheme [20]. We

have here verified the superiority of the proposed non-staggered or synchronous

algorithm in terms of numerical stability for FE-LB coupling.
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Figure 15: Comparison of the interface energy between the CSS and the proposed non-

staggered coupling algorithms.

Another solution is to adopt subiterations within each time-step of the FSI

simulation. From tn to tn+1, the subiteration procedure is given as follows:

1 The solid solver sends an interface state ΓI(u
n+1
s , ṽs) to the fluid solver,

where ṽs denotes an estimated solid velocity field. For the first subiterac-

tion step, we set ṽs = vn
s in the present work

2 With this interface state, the fluid solver updates the fluid state to the

next instant tn+1 and then sends back to the solid solver the interface

force field Λn+1
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3 Using this interface force field Λn+1, the solid solver calculates a new solid

velocity field vn+1
s and the relative difference between vn+1

s and ṽs by:

R =

√

(vn+1
s − ṽs)⊤(v

n+1
s − ṽs)/Ns

U
(46)

where U is the characteristic fluid velocity in Equation (42) and Ns is the

total number of solid nodes

4 Compare R with the prescribed critical value Rc:

(4.1) If R < Rc: break the subiteration loop and proceed the next physical

time-step of the FSI simulation

(4.2) Else: set ṽs = vn+1
s and goto the step 1

Subiteration-based coupling algorithms are widely applied because of the

simplicity of implementation. In addition, the subiteration steps help to reduce

the interface energy so as to stabilize the FSI simulation and improve the accu-

racy. However, the subiterations are often costly and sometimes might diverge

in the presence of strong fluid-structure coupling [17].

Figure 16 shows the numerical results obtained with the subiteration-based

coupling algorithms using three different critical relative differences R1
c = 10−3,

R2
c = 10−4 and R3

c = 10−5. In this comparison, one can observe that the stag-

gered FSI simulations have been stabilized with the help of the subiterations

at every time-step. In addition, as shown in Figure 16-(a), when the conver-

gence criteria of subiteration is less strict, numerical oscillation occurs around

the result obtained with the proposed non-staggered coupling method. This

numerical oscillation can also be observed in the velocity magnitude field of the

deformable solid bar, as shown in Figure 16-(b). Too much energy has been

injected to the solid subdomain. Finally, the accumulated interface energy is

given in Figure 17, where one can observe that the level of interface energy

is higher with a less strict convergence criteria for the subiterations, and the

interface energy is strictly zero with the proposed non-staggered algorithm.
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Figure 16: The simulation results of the subiteration-based coupling algorithms: (a) the time

evolution of the vertical displacement of the point A; (b) the velocity field of the deformable

solid bar at the time t = 0.4 s.
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subiteration-based coupling method.

In the present comparison, although the subiteration can stabilize the fluid-

structure coupling and can give a similar result compared with the one obtained

by the proposed non-staggered coupling method, the subiteration-based CSS

method is theoretically much more costly, since it requires several subiterations

at every physical time-step. Figure 18 shows the relative time consumption for

the three difference convergence criteria Rc: T is the mean CPU time used by

the subiteration-based CSS method for one physical time-step and Tref = 1.2 s

is the CPU time with the proposed subiteration-free non-staggered coupling

method.

5. Conclusions

In the present article, a subiteration-free numerical framework is proposed

for simulating fluid-structure interaction problems, which is based on the cou-

pling of finite element method for solid and lattice Boltzmann method for fluid

via an immersed boundary scheme. The most important feature of the pro-

posed coupling method is that the fluid and solid subdomains are coupled in

a synchronous way, which means that there is no time lag between the two

time integrations, so that the proposed coupling method can rigorously ensure
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Figure 18: The mean relative CPU time for the subiteration-based CSS coupling method.

a zero algorithmic energy at the fluid-solid interface. In the adopted validation

test case, the present result is found to be in good agreement with the refer-

ence ones. Additionally, a comparison with the conventional serial staggered

coupling procedure has also been carried out. The result shows that, in this

specific numerical framework, the staggered methods cannot give a stable sim-

ulation, even if one uses a relatively large numerical dissipation coefficient of

Newmark time integrator. On the contrary, the proposed subiteration-free non-

staggered coupling method can retain the numerical stability during the whole

period of numerical simulation.

The advantage of proposed method is that it provides a stable subiteration-

free numerical framework that couples two very different numerical methods for

simulating fluid-structure interaction problems. The continuity conditions at

fluid-solid interface are satisfied so that the incremental interface energy can be

ensured to be zero by means of an implicit treatment of interface status. Nev-

ertheless, some possible improvements could be (1) use of incompatible time-

steps: in the present framework, the time-step must be the same for the fluid

and solid solver, which might limit the efficiency of the coupling method; (2)

use of implicit Newmark time integrator for solid: the present coupling is based

on the use of explicit Newmark scheme that allows us to handle the geometri-
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cal nonlinearity without subiteration within each time-step; (3) coupling via a

higher-order immersed boundary method: the 1st-order accuracy of the adopted

immersed boundary method might limit the accuracy of the FSI simulations. In

the future, the next step of the present work is to use incompatible time-steps

for fluid and solid, while still preserving the interface energy.
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