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The security of public key validation protocols for web-based applications has
recently attracted attention because of weaknesses in the certificate authority

model, and consequent attacks.
Recent proposals using public logs have succeeded in making certificate
management more transparent and verifiable. However, those proposals involve a
fixed set of authorities. This means an oligopoly is created. Another problem with
current log-based system is their heavy reliance on trusted parties that monitor

the logs.
We propose a distributed transparent key infrastructure (DTKI), which greatly
reduces the oligopoly of service providers and allows verification of the behaviour
of trusted parties. In addition, this paper formalises the public log data structure

and provides a formal analysis of the security that DTKI guarantees.
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1. INTRODUCTION

The security of web-based applications such as e-
commerce and web-mail depends on the ability of a
user’s browser to obtain authentic copies of the public
keys for the application website. For example, suppose
a user wishes to log in to her bank account through
her web browser. The web session will be secured by
the public key of the bank. If the user’s web browser
accepts an inauthentic public key for the bank, then the
traffic (including log-in credentials) can be intercepted
and manipulated by an attacker.
The authenticity of keys is assured at present by

certificate authorities (CAs). In the given example, the
browser is presented with a public key certificate for
the bank, which is intended to be unforgeable evidence
that the given public key is the correct one for the bank.
The certificate is digitally signed by a CA. The user’s
browser is pre-configured to accept certificates from
certain known CAs. A typical installation of Firefox
has about 100 root certificates in its database.
Unfortunately, numerous problems with the current

CA model have been identified. Firstly, CAs must
be assumed to be trustworthy. If a CA is dishonest
or compromised, it may issue certificates asserting the
authenticity of fake keys; those keys could be created
by an attacker or by the CA itself. Secondly, the
assumption of honesty does not scale up very well. As
already mentioned, a browser typically has hundreds of

CAs registered in it, and the user cannot be expected to
have evaluated the trustworthiness and security of all of
them. This fact has been exploited by attackers [1, 2, 3,
4, 5, 6]. In 2011, two CAs were compromised: Comodo
[7] and DigiNotar [8]. In both cases, certificates for
high-profile sites were illegitimately obtained, and in
the second case, reportedly used in a man in the middle
(MITM) attack [9].

Proposed solutions

Several interesting solutions have been proposed to
address these problems. For a comprehensive survey,
see [10].

Key pinning mitigates the problem of untrustworthy
CAs, by defining in the client browser the parameters
concerning the set of CAs that are considered entitled
to certify the key for a given domain [11, 12]. However,
scalability is a challenge for key pinning.

Crowd-sourcing techniques have been proposed in
order to detect untrustworthy CAs, by enabling a
browser to obtain warnings if the received certificates
are different from those that other people are being
offered [13, 14, 15, 16, 17, 18, 19, 20]. Crowd-sourcing
techniques have solved some CA-based problems.
However, the technique cannot distinguish between
attacks and authentic certificate updates, and may also
suffer from an initial unavailability period.

Solutions for revocation management of certificates
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have also been proposed; they mostly involve period-
ically pushing revocation lists to browsers, in order
to remove the need for on-the-fly revocation checking
[21, 22]. However, these solutions create a window dur-
ing which the browser’s revocation lists are out of date
until the next push.

More recently, solutions involving public append-only
logs have been proposed. We consider the leading
proposals here.

Public log-based systems Sovereign Keys (SK)
[23] aims to get rid of browser certificate warnings,
by allowing domain owners to establish a long term
(“sovereign”) key and by providing a mechanism by
which a browser can hard-fail if it doesn’t succeed in
establishing security via that key. The sovereign key is
used to cross-sign operational TLS [24, 25] keys, and it
is stored in an append-only log on a “time-line server”,
which is abundantly mirrored. However, in SK, internet
users and domain owners have to trust mirrors of time-
line servers, as SK does not enable mirrors to provide
efficient verifiable proofs that the received certificate is
indeed included in the append-only log.

Certificate transparency (CT) [26] is a technique
proposed by Google that aims to efficiently detect fake
public key certificates issued by corrupted certificate
authorities, by making certificate issuance transparent.
They improved the idea of SK by using append-only
Merkle tree to organise the append-only log. This
enables the log maintainer to provide two types of
verifiable cryptographic proofs: (a) a proof that the
log contains a given certificate, and (b) a proof that a
snapshot of the log is an extension of another snapshot
(i.e., only appends have taken place between the two
snapshots). The time and size for proof generation and
verification are logarithmic in the number of certificates
recorded in the log. Domain owners can obtain the
proof that their certificates are recorded in the log,
and provide the proof together with the certificate to
their clients, so the clients can get a guarantee that the
received certificate is recorded in the log.

Accountable key infrastructure (AKI) [27] also uses
public logs to make certificate management more
transparent. By using a data structure that is based
on lexicographic ordering rather than chronological
ordering, they solve the problem of key revocations
in the log. In addition, AKI uses the “checks-and-
balances” idea that allows parties to monitor each
other’s misbehaviour. So AKI limits the requirement
to trust any party. Moreover, AKI prevents attacks
that use fake certificates rather than merely detecting
such attacks (as in CT). However, as a result, AKI
needs a strong assumption — namely, CAs, public log
maintainers, and validators do not collude together —
and heavily relies on third parties called validators to

ensure that the log is maintained without improper
modifications.

Certificate issuance and revocation transparency
(CIRT) [28] is a proposal for managing certificates for
end-to-end encrypted email. It proposes an idea to
address the revocation problem left open by CT, and
the trusted party problem of AKI. It collects ideas
from both CT and AKI to provide transparent key
revocation, and reduces reliance on trusted parties
by designing the monitoring role so that it can be
distributed among user browsers. However, CIRT can
only detect attacks that use fake certificates; it cannot
prevent them. In addition, since CIRT was proposed for
email applications, it does not support the multiplicity
of log maintainers that would be required for web
certificates.

Attack Resilient Public-Key Infrastructure (ARPKI)
[29] is an improvement on AKI. In ARPKI, a client
can designate n service providers (e.g. CAs and
log maintainers), and only needs to contact one CA
to register her certificate. Each of the designated
service providers will monitor the behaviour of other
designated service providers. As a result, ARPKI
prevents attacks even when n− 1 service providers are
colluding together, whereas in AKI, an adversary who
successfully compromises two out of three designated
service providers can successfully launch attacks [29]. In
addition, the security property of ARPKI is proved by
using a protocol verification tool called Tamarin prover
[30]. The weakness of ARPKI is that all n designated
service providers have to be involved in all the processes
(i.e. certificate registration, confirmation, and update),
which would cause considerable extra latencies and the
delay of client connections.

In public log-based systems, efforts have been made
to integrate revocation management with the certificate
auditing. CT introduced revocation transparency (RT)
[31] to deal with certificate revocation management; and
in AKI and ARPKI, the public log only stores currently
valid certificates (revoked certificates are purged from
the log). However, the revocation checking processes
in both RT and A(RP)KI are linear in the number of
issued certificates making it inefficient. CIRT allows
efficient proofs of non-revocation, but it does not scale
to multiple logs which are required for web certificates.

Remaining problems

A foundational issue is the problem of oligopoly. The
present-day certificate authority model requires that the
set of global certificate authorities is fixed and known
to every browser, which implies an oligopoly. Currently,
the majority of CAs in browsers are organisations based
in the USA, and it is hard to become a browser-accepted
CA because of the strong trust assumption that it
implies. This means that a Russian bank operating in
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Russia and serving Russian citizens living in Russia has
to use an American CA for their public key. This cannot
be considered satisfactory in the presence of mutual
distrust between nations regarding cybersecurity and
citizen surveillance, and also trade sanctions which may
prevent the USA offering services (such as CA services)
to certain other countries.
None of the previously discussed public log-based

systems address this issue. In each of those solutions,
the set of log maintainers (and where applicable, time-
line servers, validators, etc.) is assumed to be known
by the browsers, and this puts a high threshold on the
requirements to become a log maintainer (or validator,
etc.). Moreover, none of them solve the problem that a
multiplicity of log maintainers reduces the usefulness of
transparency, since a domain owner has to check each
log maintainer to see if it has mis-issued certificates.
This can’t work if there is a large number of log
maintainers operating in different geographical regions,
each one of which has to be checked by every domain
owner.

A second issue is the requirement of trusted parties.
Currently, all existing proposals have to rely on some
sort of trusted parties or at least assume that not
all parties are colluding together. However, a strong
adversary (e.g. a government agency) might be able to
control all service providers (used by a given client) in
a system.

A third foundational issue of a different nature is that
of analysis and correctness. SK, CT, AKI and CIRT
are large and complex protocols involving sophisticated
data structures, but none of them have been subjected
to rigorous analysis. It is well-known that security
protocols are notoriously difficult to get right, and the
only way to avoid this is with systematic verification.
For example, attacks on AKI and CIRT have been
identified in [29] and in the appendix of our technical
report [32], respectively. The flaws may be easily fixed,
but only once they have been identified. It is therefore
imperative to verify this kind of complex protocol.
ARPKI is the first formally verified log-based PKI
system. However, they used several abstractions during
modelling in the Tamarin prover. For example, they
represent the underlying log structure (a Merkle tree)
as a list. However, in systems like CIRT and this paper
with more complex data structures, it is important to
have a formalised data structure and its properties to
prove the security claim. The formalisation of complex
data structures and their properties in the log-based
PKI systems is a remaining problem.

The last problem is the management of certificate
revocation. As explained previously, existing solutions
for managing certificate revocation (e.g. CRL, OCSP,
RT) are still unsatisfactory.

This paper

We propose a new public log-based architecture
for managing web certificates, called Distributed
Transparent Key Infrastructure (DTKI), with the
following contributions.

• We identify anti-oligopoly as an important prop-
erty for web certificate management which has
hitherto not received attention.

• Compared to its predecessors, DTKI is the first
system to have all desired features — it minimises
the presence of oligopoly, prevents attacks that
use fake certificates, provides a way to manage
certificate revocation, verifies output from trusted
parties, and is secure even if all service providers
(e.g. CAs and log maintainers) collude together
(see Section 5 for our security statement). A
comparison of the properties of different log-based
systems can be found in Section 6.

• We provide formal machine-checked verification of
its core security property using the Tamarin prover.
In addition, we formalise the data structures
needed for transparent public logs, and provide
rigorous proofs of their properties.

2. OVERVIEW OF DTKI

Distributed Transparent Key Infrastructure (DTKI) is
an infrastructure for managing keys and certificates
on the web in a way which is transparent, minimises
oligopoly, and allows verification of the behaviour of
trusted parties. In DTKI, we mainly have the following
agents:

Certificate log maintainers (CLM): A CLM main-
tains a database of all valid and invalid (e.g. expired or
revoked) certificates for a particular set of domains for
which it is responsible. It commits to digests of its log,
and provides efficient proofs of presence and absence of
certificates in the log. CLMs behave transparently and
their actions can be verified.

A mapping log maintainer (MLM): To minimise
oligopoly, DTKI does not fix the set of certificate logs.
The MLM maintains association between certificate
logs and the domains they are responsible for. It also
commits to digests of the log, and provides efficient
proof of current association, and behaves transparently.
Clients of the MLM are not required to blindly trust the
MLM, because they can efficiently verify the obtained
associations.

The MLM has a strategic role of determining
the authorised CLMs, and the mapping log to be
maintained rarely changes; therefore it can be easily
governed by an international panel. In practice, ICANN
is a possible party to be given the responsibility to run
the MLM.

Users and their browsers: They query the MLM, and
obtain and verify the proofs about the mapping of top-
level domains (TLDs) to CLMs. They query CLMs and
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obtain and verify proofs about certificates.
Mirrors: Mirrors are servers that maintain a full

copy of the mapping log and certificate logs respectively
downloaded from the MLM and corresponding CLMs,
and the corresponding digest of the log signed by the
log maintainer. In other words, mirrors are distributed
copies of logs. Anyone (e.g. ISPs, CLMs, CAs, domain
owners) can be a mirror. Unlike in SK, mirrors are
not required to be trusted in DTKI, because they give
a proof for every association that they send to their
clients. The proof is associated to the digest of the
MLM.
Certificate authorities (CA): They check the identity

of domain owners, and create certificates for the domain
owners’ keys. However, in contrast with today’s CAs,
the ability of CAs in DTKI is limited since the issuance
of a certificate from a CA is not enough to convince web
browsers to accept the certificate (proof of presence in
the relevant CLM is also needed).

In DTKI, each domain owner has two types
of certificate, namely TLS certificate and master
certificate. Domain owners can have different TLS
certificates but can only have one master certificate.
A TLS certificate contains the public key of a
domain server for a TLS connection, whereas the
master certificate contains a public key, called “master
verification key”. The corresponding secret key of
the master certificate is called “master signing key”.
Similar to the “sovereign key” in SK [23], the master
signing key is only used to validate a TLS certificate
(of the same subject) by issuing a signature on it. This
limits the ability of certificate authorities since without
having a valid signature (issued by using the master
signing key), the TLS certificate will not be accepted.
Hence, the TLS secret key is the one for daily use; and
the master signing key is rarely used. It will only be
used for validating a new certificate, or revoking an
existing certificate. We assume that domain owners can
take care of their master signing key, as a master signing
key can be kept offline, and is rarely used.
After a domain owner obtains a master certificate

or a TLS certificate from a CA, he needs to make
a registration request to the corresponding CLM to
publish the certificate into the log. To do so, the
domain owner signs the certificate using the master
signing key, and submits the signed certificate to a CLM
determined (typically based on the top-level domain) by
the MLM. The CLM checks the signature, and accepts
the certificate by adding it to the certificate log if the
signature is valid. The process of revoking a certificate
is handled similarly to the process of registering a
certificate in the log.
When establishing a secure connection with a domain

server, the browser receives a corresponding certificate
and proofs from a mirror of the MLM and a CLM, and
verifies the certificate, the proof that the certificate is
valid and recorded in the certificate log, and proof that

this certificate log is authorised to manage certificates
for the domain. Users and their browsers should only
accept a certificate if the certificate is issued by a CA,
and validated by the domain owner, and current in the
certificate log.

Fake master certificates or TLS certificates can be
easily detected by the domain owner, because the
attacker will have had to insert such fake certificates
into the log (in order to be accepted by browsers), and
is thus visible to the domain owner.

Rather than relying solely on trusted monitors to
verify the healthiness of logs and the relations between
logs, DTKI uses a crowdsourcing-like way to ensure the
integrity of the log and the relations between mapping
log and a certificate log, and between certificate logs. In
particular, the monitoring work in DTKI can be broken
into independent little pieces, and thus can be done by
distributing the pieces to users’ browsers. In this way,
users’ browsers can perform randomly-chosen pieces of
the monitoring role in the background (e.g. once a day).
Thus, web users can collectively monitor the integrity of
the logs. We envisage parameters in browsers allowing
users to control how that works.

To avoid the case that attackers create a “bubble”
(i.e. an isolated environment) around a victim, we share
the same assumption as other existing protocols (e.g.
CT and CIRT) – we assume that gossip protocols [33]
are used to disseminate digests of the log. So, users
of logs can detect if a log maintainer shows different
versions of the log to different sets of users. Since log
maintainers sign and time-stamp their digests, a log
maintainer that issues inconsistent digests can be held
accountable.

3. THE PUBLIC LOG

DTKI uses append-only logs to record all requests
processed by the log maintainer, and allows log
maintainers to efficiently generate some proofs that can
be efficiently verified. These proofs mainly include that
some data (e.g. a certificate or a revocation request)
has or has not been added to the log; and that a log is
extended from a previous version.

So, the log maintainer’s behaviour is transparent to
the public, and the public is not required to blindly trust
log maintainers. Public log data structures have been
widely studied [34, 35, 36, 37, 23, 26, 28]. To the best
of our knowledge, no single data structure can provide
all proofs required by DTKI. We adopt and extend the
idea of CIRT log structure [28] which makes use of two
data structures to provide all the kinds of proofs needed
for DTKI.

This section presents the intuition of two abstract
data structures encapsulating the desired properties,
then introduces how to use the data structures to
construct our public logs in a concrete manner by
extending the CIRT data structure. The formalisation
of our abstract data structures, log structures, and
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Function Output

Chronological Data Structure

digest given input a sequence S of data, it outputs
the digest of sequence S of data organised
by using chronological data structure

VerifPoPc given input (digest(S), d, p), it outputs a
boolean value indicating the verification
result of the proof p that some data d is
included in a set S

VerifPoEc given input ((dg′, N ′), (dg,N), p), it
outputs a boolean value indicating the
verification result of the proof p that a
sequence of data represented by its digest
dg and size N is extended from another
sequence of data represented by digest dg′

and size N ′

Ordered Data Structure

digestO given input a sequence S of data, it
outputs the digest of sequence S of data
organised by using ordered data structure

VerifPoPO

(resp.
VerifPoAbsO)

given input (digesto(S), d, p), it outputs a
boolean value indicating the verification
result of the proof p that some data d is
(resp. is not) included in a set S

VerifPoAddO
(resp.
VerifPoDO)

given input (d, dg, dg′, p), it outputs a
boolean value indicating the verification
result of the proof p that dg′ is the digest
obtained after adding data d into (resp.
deleting data d from) the sequence of data
represented by digest dg

VerifPoMO given input (d, d′, dg, dg′, p), it outputs a
boolean value indicating the verification
result of the proof p that dg′ is the digest
obtained after replacing d with d′ in the
sequence of data represented by dg

TABLE 1: Some functions supported by the data
structures, of size N . The full list of operations and
functions supported by the data structures, and the
detailed properties of the data structures, are formalised
in our technical report.

their properties, and our detailed implementation, are
presented in our technical report [32]. We also present
some examples of the data structures there.

3.1. Data structures

Our log makes use of two data structures, namely
chronological data structure and ordered data struc-
ture, to provide all the proofs required by DTKI. We
use the notion of digest to represent a unique set of
data, such that the size of a digest is a constant. For
example, a digest could be the hash value of a set of
data.
A chronological data structure is an append-only data

structure, i.e. only the operation of adding some data
is allowed. With a chronological data structure, for a

given sequence S of data of size N and with digest dg,
we have d ∈ S for some data d, if and only if there
exists a proof p of size O(log(N)), called the proof of
presence of d in S, such that p can be efficiently verified
by using VerifPoPc (see Table 1); and for all sequence
S′ with digest dg′ and size N ′ < N , we have that S′ is
a prefix of S, if and only if there exists a proof p′ of size
O(log(N)), called the proof of extension of S from S′,
such that p′ can be efficiently verified by using VerifPoEc

(see Table 1).
In this way, to verify that some data is included

in a sequence of data stored in a chronological data
structure (of sizeN), the verifier only needs to download
the corresponding digest, and the corresponding proof
of presence (with size O(log(N))). The verification
of proof of extension is similarly efficient. Possible
implementations are append-only Merkle tree [34] and
append-only skip list, as proposed in [26] and [36],
respectively.

With the append-only property, the chronological
data structure enables one to prove that a version of
the data structure is an extension of a previous version.
This is useful for our public log since it enables users to
verify the history of a log maintainer’s behaviours.

Unfortunately, the chronological data structure does
not provide all desired features. For example, it is very
inefficient to verify that some data (e.g. a revocation
request) is not in the chronological data structure (the
cost is O(N), where N is the size of the data structure).
To provide missing features, we need to use the ordered
data structure.

An ordered data structure is a data structure allowing
one to insert, delete, and modify stored data. In
addition, with an ordered data structure, for a given
sequence S of data of size N and with digest dg, we
have d ∈ S (resp. d /∈ S) for some data d, if and only
if there exists a proof p of size O(log(N)), called the
proof of presence (resp. absence) of d in (resp. not
in) S, such that p can be efficiently verified by using
VerifPoPO (resp. VerifPoAbsO) (see Table 1).

Possible implementations of ordered data structure
are Merkle tree which is organised as a binary
search tree (as proposed in [28]), and authenticated
dictionaries [35].

With an ordered data structure, however, the size of
proof that the current version of the data is extended
from a previous version is O(N). As the chronological
data structure and the ordered data structure have
complementary properties, we use the combination of
them to organise our log.

3.2. Mapping log

To minimise oligopoly, DTKI uses multiple certificate
logs, and does not fix the set of certificate logs
and the mapping between domains and certificate
logs. A mapping log is used to record associations
between domain names and certificate log maintainers,
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and can provide efficient proofs regarding the current
association. It would be rather inefficient to explicitly
associate each domain name to a certificate log, due to
the large number of domains. To efficiently manage the
association, we use a class of simple regular expressions
to present a group of domain names, and record the
associations between regular expressions and certificate
logs in the mapping log. For example, the mapping
might include (*\.org, Clog1) and ([a-h].*\.com, Clog1)
to mean that certificate log maintainer Clog1 deals with
domains ending .org and domains starting with letters
from a to h ending .com. In our technical report [32], we
have formally defined some constraints on the regular
expressions we use, the relations between them, and
how to use random verification to verify that no overlap
between regular expressions exists.

Intuitively, as presented in Figure 1, the mapping log
is organised by using a chronological data structure, and
stores received requests3 together with the request time,
and four digests of different ordered data structures
representing the status of the log. Each entry is of the
form

h(req, t, dgs, dgbl, dgr, dgi)

In the formula, req is the request received by the
mapping log at time t; dgs4 stores information about
CLMs (e.g. the certificate of the CLM, and the current
digest of the certificate log clog); dgbl stores the identity
of blacklisted certificate log maintainers; dgr stores the
mapping from a regular expression to the identity of
CLMs, and dgi stores the mapping from the identity of
CLMs to a set of regular expressions.
In more detail, each entry of the mapping log contains

digests after processing the request req (received by
the mapping log maintainer at time t) on the digest
stored in the previous record. Each of the notations is
explained as follows:

• req can be add(rgx, id), del(rgx, id), new(cert),
mod(cert, signsk(cert

′), signsk′(n, dg, t)), bl(id),
and end, respectively corresponding to a request
to add a mapping (rgx, id) of regular expression
rgx and identity id of a clog, to delete a mapping
(rgx, id), to add a certificate cert of a new clog,
to change the certificate of a clog from cert to
cert′, to blacklist id of an existing clog, and to
close the update request; where sk and sk′ are
signing keys associated to the certificate cert and
cert′, respectively; cert and cert′ share the same
subject, and n and dg are the size and the digest
of the corresponding clog at time t, respectively;

• dgs is the digest of an ordered data structure
storing the identity information of the form

3The request includes adding, removing, and modifying a
certificate log and/or a mapping.

4We simplified the description here: we should say the ordered
data structure represented by dgs stores the information, rather
than the digest dgs stores it. We will use this simplification
through the paper.

(cert, signsk(n, dg, t)) for the currently active
certificate logs, where cert is the certificate for the
signing key sk of the certificate log, and n and dg
are respectively the size and digest of the certificate
log at time t. Data are ordered by the domain name
in cert.

• dgbl is the digest of an ordered data structure
storing the domain names of blacklisted certificate
logs. Data are ordered by the stored domain
names.

• dgr is the digest of an ordered data structure
storing elements of the form (rgx, id), which
represents the mapping from regular expression
rgx to the identity id of a clog, data are ordered
by rgx;

• dgi is the digest of an ordered data structure
storing elements of the form (id, dgirgx), which
represents the mapping from identity id of a clog
to a digest dgirgx of ordered data structure storing
a set of regular expressions, data are ordered by id.

The requests are used for modifying mappings or
the existing set of certificate log maintainers. When a
request del(rgx, id) has been processed, the maintainer
of certificate log with identity id needs to remove all
certificates whose subject is an instance of regular
expression rgx; when a request add(rgx, id) has been
processed, the maintainer of certificate log with identity
id needs to download all certificates whose subject is
an instance of rgx from the previous authorised log
maintainer, and adds them into his log. These requests
require certificate logs to synchronise with the mapping
log; see Section 3.4.

FIGURE 1: A figure representation of the format of
each record in the mapping log.

3.3. Certificate logs

The mapping log determines which certificate log is used
for a domain. The certificates for the domain are stored
in that certificate log.
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A certificate log mainly stores certificates for domains
according to the mappings presented in the mapping
log. In particular, a certificate log is also organised by
using a chronological data structure, and each entry of
the log is of the form

h(req,N, dgrgx)

where req is the received request and is processed at
the time such that the mapping log is of size N ; dgrgx

represents an ordered data structure storing a set of
mappings from regular expressions to the information
associated to the corresponding domains, such that the
domain name is an instance of the regular expression.
The stored information of a domain includes the
identity and the master certificate of the domain, and
two digests dga and dgrv each presents an ordered data
structure storing a set of active TLS certificates and a
set of expired or revoked TLS certificates, respectively.

Elements in a record (as shown in 2) of a certificate
log are detailed as follows.

• req can be reg(signsk(cert, t, ‘reg’)),
rev(signsk(cert, t, ‘rev’)), upadd(h(id), h), and
updel(h(id), h), corresponding to a request to reg-
ister and revoke a certificate cert at an agreed
time t such that (cert, t, ‘reg’) or is additionally
signed by the master key sk, and update the cer-
tificate log by adding and by deleting certificates
of identity id according to the changes of mlog,
respectively. ‘reg’ and ‘rev’ are constant, and h is
some value and we will explain it later.

• N is the size of mlog at the time req is processed;
• dgrgx is the digest of an ordered data structure

storing a set of elements of the form (rgx, dgid),
represents the status of the certificate log after
processing the request req, and stores all the
regular expressions rgx that the certificate log is
associated to. dgid is the digest of an ordered
data structure storing a set of elements of the form
(h(id), h(cert, dga, dgrv)). It represents all domains
associated to rgx. id is an instance of rgx and
is the subject of master certificate cert. dga and
dgrv are digests of two ordered data structures
each of which respectively stores a set of active
and revoked TLS certificates. In addition, data
in the structure represented by dgrgx and dgid are
ordered by rgx and h(id), respectively; data in the
structure represented by dga and dgrv are ordered
by the subject of TLS certificates.

Note that requests upadd(h(id), h) and updel(h(id), h)
are made according to the mapping log. Even
though these modifications are not requested by domain
owners, it is important to record them in the certificate
log to ensure the transparency of the log maintainer’s
behaviour. Request upadd(h(id), h) states that the
certificate log maintainer is authorised to manage
certificates for the domain name id from now on, and

the current status of certificates for id is represented by
h, where h = h(cert, dga, dgrv) for some certificate cert
and some digest dga and dgrv representing the active
and revoked certificates of id. h is the value obtained
from the certificate log that is previously authorised to
manage certificates for domain id. Similarly, request
updel(h(id), h) indicates that the certificate log cannot
manage certificates for domain id any more according
to the request in the mapping log.

FIGURE 2: A figure representation of the format of
each record in the certificate log.

3.4. Synchronising the mapping log and certifi-
cate logs

The mapping log periodically (e.g. every day) publishes
a signature signsk(t, dg,N), called signed Mlog time-
stamp, on a time t indicating the publishing time, and
the digest dg and size N of the mapping log. Mirrors
of the mapping log need to download this signed data,
and update their copy of the mapping log when it
is updated. A signed Mlog time-stamp is only valid
during the issue period (e.g. the day of issue). Note
that mirrors can provide the same set of proofs as
the mapping log maintainer, because the mirror has
the copy of the entire mapping log; but mirrors are
not required to be trusted, they do not need to sign
anything, and a mirror which changed the log by itself
will not be able to convince other users to accept it since
the mirror cannot forge the signed Mlog time-stamp.

When a mapping log maintainer needs to update the
mapping log, he requests all certificate log maintainers
to perform the required update, and expects to receive
the digest and size of all certificate logs once they are
updated. After the mapping log maintainer receives
these confirmations from all certificate log maintainers,
he publishes the series of update requests in the
mapping log, and appends an extra constant request
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end after them in the log to indicate that the update is
done.
Log maintainers only answer requests according to

their newly updated log if the mapping log maintainer
has published the update requests in the mapping log. If
in the log update period, some user sends requests to the
mapping log maintainer or certificate log maintainers,
then they give answers to the user according to their
log before the update started.
We say that the mapping log and certificate logs are

synchronised, if certificate logs have completed the log
update according to the request in the mapping log.
Note that a mis-behaving certificate log maintainer (e.g.
one recorded fake certificates in his log, or did not
correctly update his log according to the request of the
mapping log) can be terminated by the mapping log
maintainer by putting the certificate log maintainer’s
identity into the blacklist, which is organised as an
ordered data structure represented by dgbl (as presented
in 3.2).

4. DISTRIBUTED TRANSPARENT KEY
INFRASTRUCTURE

Distributed transparent key infrastructure (DTKI) con-
tains three main phases, namely certificate publication,
certificate verification, and log verification. In the cer-
tificate publication phase, domain owners can upload
new certificates and revoke existing certificates in the
certificate log they are assigned to; in the certificate
verification phase, one can verify the validity of a cer-
tificate; and in the log verification phase, one can verify
whether a log behaves correctly.
We present DTKI using the scenario that a TLS user

Alice wants to securely communicate with a domain
owner Bob who maintains the domain example.com.

4.1. Certificate insertion and revocation

To publish or revoke certificates in the certificate log,
the domain owner Bob needs to know which certificate
log is currently authorised to record certificates for his
domain. This can be done by communicating with a
mirror of the mapping log. We detail the protocol for
requesting the mapping for Bob’s domain.

4.1.1. Request mappings
Upon receiving the request, the mirror locates the
certificate of the authorised CLM, and generates the
proofs that

a) the CLM is authorised for the domain; and

b) the certificate is the current valid certificate for the
CLM.

Loosely speaking, proof a) is the proof that the
mapping from regular expression rgx to identity id is
present in the digest dgr (as presented in the mapping

log structure), such that example.com is an instance
of rgx, and id is the identity of the CLM; proof b) is
the proof that the certificate with subject id is present
in dgs; additionally, a proof that both dgs and dgr are
present in the latest record of the mapping log is needed.
All proofs should be linked to the latest digest signed
by the MLM. If Bob has previously observed a version
of the mlog, then a proof that the current mlog is an
extension of the version that Bob observed will also be
provided.

Bob accepts the response if all proofs are valid. He
then stores the verified data in his cache for future
connection until the signed digest is expired.

In more detail, after a mirror receives a request
from Bob, the mirror obtains the data of the latest
element of its copy of the mapping log, denoted h =
h(req, t, dgs, dgbl, dgr, dgi), and generates the proof of
its presence in the digest (denoted dgmlog) of its log
of size N . Then, it generates the proof of presence
of the element (cert, signsk(n, dg, t)) in the digest dgs

for some signsk(n, dg, t), proving that the certificate
log maintainer whose cert belongs to is still active.
Moreover, it generates the proof of presence of some
element (rgx, id) in the digest dgr where id is the
subject of cert and example.com is an instance of the
regular expression rgx, proving that id is authorised to
store the certificates of example.com. The mirror then
sends to Bob the hash h, the signature signsk(n, dg, t),
the regular expression rgx, the three generated proofs
of presence, and the latest signed Mlog time-stamp
containing the time tmlog, and digest dgmlog and size
Nmlog of the mapping log.

Bob first verifies the received signed Mlog time-stamp
with the public key of the mapping log maintainer
embedded in the browser, and verifies whether tMlog is
valid or not. Then Bob checks that example.com is an
instance of rgx, and verifies the three different proofs of
presence. If all checks hold, then Bob sends the signed
Mlog time-stamp containing (t′Mlog, dg

′
mlog, N

′
mlog) that

he stored during a previous connection, and expects
to receive a proof of extension of (dg′mlog, N

′
mlog) into

(dgmlog, Nmlog). If the received proof of extension is
valid, then Bob stores the current signed Mlog time-
stamp, and believes that the certificate log with identity
id, certificate cert, and size that should be no smaller
than n, is currently authorised for managing certificates
for his domain.

4.1.2. Insert and revoke certificates
The first time Bob wants to publish a certificate for his
domain, he needs to generate a pair of master signing
key, denoted skm, and verification key. The latter
is sent to a certificate authority, which verifies Bob’s
identity and issues a master certificate certm for Bob.
After Bob receives his master certificate, he checks the
correctness of the information in the certificate. The
TLS certificate can be obtained in the same way.
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To publish the master certificate, Bob signs the
certificate together with the current time t by using
the master signing key skm, and sends it together with
the request AddReq to the authorised certificate log
maintainer whose signing key is denoted skclog. The
certificate log maintainer checks whether there exists
a valid master certificate for example.com; if there is
one, then the log maintainer aborts the conversation.
Otherwise, the log maintainer verifies the validity of
time t and the signature.
If they are all valid, the log maintainer updates the

log, generates the proof of presence that the master
certificate for Bob is included in the log, and sends the
signed proof and the updated digest of the log back
to Bob. If the signature and the proof are valid, and
the size of the log is no smaller than what the mirror
says, then Bob accepts and stores the response as an
evidence of successful certificate publication. If Bob has
previously observed a version of the clog, then a proof
that the current clog is an extension of the version that
Bob observed is also required.
Figure 3 presents the detailed process to publish

the master certificate certm. After a log maintainer
receives and verifies the request from Bob, the
log maintainer updates the log, generates the proof
of presence of (h(id), h(certm, dga, dgrv)) in dgid,
(rgx, dgid) in dgrgx, and h(reg(signskm(certm, t, ‘reg’)),
Nmlog, dgrgx) is the last element in the data structure
represented by dgclog, where id is the subject of certm
and an instance of rgx; reg(signskm(certm, t, ‘reg’))
is the register request to adding certm into the
certificate log with digest dgclog at time t. The log
maintainer then issues a signature on (dgclog, N, h),
where N is the size of the certificate log, and h =
h((rgx, dgid), dgrgx, P ), where P is the sequence of the
generated proofs, and sends the signature σ2 together
with (dgclog, N, rgx, dgid, dgrgx, dga, dgrv, P ) to Bob. If
the signature and the proof are valid, and N is no
smaller than the size n contained in the signed Mlog
time-stamp that Bob received from the mirror, then
Bob stores the signed (dgclog, N, h), sends the previous
stored (dg′clog, N

′) to the certificate log maintainer, and
expects to receive a proof of extension of (dg′clog, N

′)
into (dgclog, N). If the received proof of extension
is valid, then Bob believes that he has successfully
published the new certificate.
Note that it is important to send (dg′clog, N

′)
after receiving (dgclog, N), because otherwise the log
maintainer could learn the digest that Bob has, then
give a pair (dg′′clog, N

′′) of digest and size of the log
such that N ′ < N ′′ < N . This may open a window to
attackers who wants to convince Bob to use a certificate
which was valid in dg′′clog but revoked in dgclog.
In addition, if Bob has run the request mapping

protocol more than once, and has obtained a digest
that is different from his local copy of the corresponding
certificate log, then he should ask the CLM to prove
that one of the digests is an extension of the other.

The process of adding a TLS certificate is similar to
the process of adding a master certificate, but the log
maintainer needs to verify that the TLS certificate is
signed by the valid master signing key corresponding to
the master certificate in the log.

To revoke a (master or TLS) certificate, the domain
owner can perform a process similar to the process
of adding a new certificate. For a revocation request
with signskm

(cert, t), the log maintainer needs to check
that signskm

(cert, t′) is already in the log and t > t′.
This ensures that the same master key is used for the
revocation.

4.2. Certificate verification

FIGURE 3: The protocol presenting how domain owner
Bob communicates with certificate log (clog) maintainer
to publish a master certificate certm.

When Alice wants to securely communicate with
example.com, she sends the connection request to Bob,
and expects to receive a master certificate certm and
a signed TLS certificate signskm

(cert, t) from him. To
verify the received certificates, Alice checks whether
the certificates are expired. If both of them are
still in the validity time period, Alice requests (as
described in 4.1.1) the corresponding mapping from
a mirror to find out the authorised certificate log
for example.com, and communicates with the (mirror
of) authorised certificate log maintainer to verify the
received certificate.

Note that this verification requests extra communi-
cation round trips, but it gives a higher security guar-
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antee. An alternative way is that Bob provides both
certificates and proofs, and Alice verifies the received
proofs directly.
Figure 4 presents the detailed process of verifying

a certificate. After Alice learns the identity of the
authorised certificate log, she sends the verification
request V erifReq with her local time tA and the
received certificate to the certificate log maintainer.
The time tA is used to prevent replay attacks, and
will later be used for accountability. The certificate log
maintainer checks whether tA is in an acceptable time
range (e.g. tA is in the same day as his local time).
If it is, then he locates the corresponding (rgx, dgid)
in dgrgx in the latest record of his log such that
example.com is an instance of regular expression rgx,
locates (h(id), h(certm, dga, dgrv)) in dgid and cert in
dga, then generates the proof of presence of cert in dga,
(h(id), h(certm, dga, dgrv)) in dgid, (rgx, dgid) in dgrgx,
and h(req,Nmlog, dgrgx) is the latest record in the digest
dgclog of the log with size N . Then, the certificate log
maintainer signs (dgclog, N, tA, h), where h = h(m) such
that m = (dga, dgrv, rgx, dgid, req,Nmlog, dgrgx, P ),
and P is the set of proofs, and sends (dgclog, N,σ) to
Alice.
Alice should verify that Nmlog is the same as her local

copy of the size of mapping log. If the received Nmlog is
greater than the copy, then it means that the mapping
log is changed (it rarely happens) and Alice should
run the request mapping protocol again. If Nmlog

is smaller, then it means the CLM has misbehaved.
Alice then verifies the signature and proofs, and sends
the previously stored dg′clog with the size N ′ to the
log maintainer, and expects to receive the proof of
extension of (dg′clog, N

′) into (dgclog, N). If they are
all valid, then Alice replaces the corresponding cache
by the signed (dgclog, N, tA, h) and believes that the
certificate is an authentic one.
In order to preserve privacy of Alice’s browsing

history, instead of asking Alice to query all proofs from
the log maintainer, Alice can send the request to Bob
who will redirect the request to the log maintainer, and
redirect the received proofs from the log maintainer to
Alice.
With DTKI, Alice is able to verify whether Bob’s

domain has a certificate by querying the proof
of absence of certificates for example.com in the
corresponding certificate log. This is useful to
prevent TLS stripping attacks, where an attacker can
maliciously convert an HTTPS connection into an
HTTP connection.

4.3. Log verification

Users of the system need to verify that the mapping log
maintainer and certificate log maintainers did update
their log correctly according to the requests they have
received, and certificate log maintainers did follow the
latest mappings specified in the mapping log.

FIGURE 4: The protocol for verifying a certificate with
the corresponding certificate log maintainer.

These checks can be easily done by a trusted monitor.
However, since we aim to provide a TTP-free system,
DTKI uses a crowdsourcing-like method, based on
random checking, to monitor the correctness of the
public log. The basic idea of random checking is that
each user randomly selects a record in the log, and
verifies whether the request and data in this record
have been correctly managed. If all records are verified,
the entire log is verified. Users only need to run the
random checking periodically (e.g. once a day). The full
version (with formalisation) of random checking can be
found in our technical report. We give a flavour here by
providing an example. Example 1 presents the random
checking process to verify the correct behaviour of the
mapping log.

Example 1. Suppose verifier has randomly selected
the kth record of the mapping log, and the record
has the form h(add(rgx, id), tk, dgsk, dg

bl
k , dg

r
k, dg

i
k). The

verifier must check that all digests in this record are
updated from the (k − 1)th record by adding a new
mapping (rgx, id) in the mapping log at time tk.

Let the label of the (k − 1)th record be
h(reqk−1, tk−1, dgsk−1, dg

bl
k−1, dg

r
k−1, dg

i
k−1), then to ver-

ify the correctness of this record, the verifier should run
the following process:

• verify that dgsk = dgsk−1 and dgblk = dgblk−1; and
• verify that dgrk is the result of adding (rgx, id) into
dgrk−1 by using VerifPoAddO, and id is an instance
of rgx; and
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• verify that (id, dgirgxk ) is the result of replacing

(id, dgirgxk−1 ) in dgik−1 by (id, dgirgxk ) by using
VerifPoMO; and
• verify that dgirgxk is the result of adding rgx into

dgirgxk−1 by using VerifPoAddO.

Note that all proofs required in the above are given by
the log maintainer. If the above tests succeed, then the
mapping log maintainer has behaved correctly for this
record.

4.4. Performance Evaluation

In this section, we measure the cost of different
protocols in DTKI.

Assumptions We assume that the size of a certificate
log is 108 (the total number of registered domain names
currently is 2.71 × 108 [38], though only a fraction of
them have certificates). In addition, we assume that
the number of stored regular expressions, the number
of certificate logs, and the size of the mapping log are
1000 each. (In fact, if we assume a different number
or size (e.g. 100 or 10000) for them, it makes almost
no difference to the conclusion). Moreover, in the
certificate log, we assume that the size of the set of
data represented by dgrgx is 10, by dgid is 105, by dga

is 10, and by dgrv is 100. These assumptions are based
on the fact that dgrgx represents the set of regular
expressions maintained by a certificate log; the dgid

represents the set of domains which is an instance of a
regular expression; and dga and dgrv represent the set of
currently valid certificates and the revoked certificates,
respectively. Furthermore, we assume that the size of a
certificate is 1.5 KB, the size of a signature is 256 bytes,
the length of a regular expression and an identity is 20
bytes each, and the size of a digest is 32 bytes.

Space Based on these assumptions, the approximate
size of the transmitted data in the protocol for
publishing a certificate is 4 KB, for requesting a
mapping is 3 KB, and for verifying a certificate is
5 KB. Since the protocols for publishing a certificate
and requesting a mapping are run occasionally, we
mainly focus on the cost of the protocol for verifying
a certificate, which is required to be run between a log
server and a web browser in each secure connection.
By using Wireshark, we5 measure that the size of

data for establishing an HTTPS protocol to log-in to
the internet bank of HSBC, Bank of America, and
Citibank are 647.1 KB, 419.9 KB, and 697.5 KB,
respectively. If we consider the average size (≈588 KB)
of data for these three HTTPS connections, and the
average size (≈6 KB) of data for their corresponding
TLS establishment connections, we have that in each
connection, DTKI incurs 83% overhead on the cost of

5We use a MacBook Air 1.8 GHz Intel Core i5, 8 GB 1600
MHz DDR3.

the TLS protocol. However, since the total overhead
of an HTTPS connection is around 588 KB, so the
cost of DTKI only adds 0.9% overhead to each HTTPS
connection, which we consider acceptable.

Time Our implementation uses a SHA-256 hash value
as the digest of a log and a 2048 bit RSA signature
scheme. The time to compute a hash6 is ≈ 0.01
millisecond (ms) per 1KB of input, and the time to
verify a 2048 bit RSA signature is 0.48 ms. The
approximate verification time on the user side needed
in the protocol for verifying certificates is 0.5 ms.

Hence, on the user side, the computational cost on
the protocol for verifying certificates incurs 83% on the
size of data for establishing a TLS protocol, and 0.9%
on the size of data for establishing an HTTPS protocol;
the verification time on the protocol for verifying
certificates is 1.25 % of the time for establishing a TLS
session (which is approximately 40 ms measured with
Wireshark on the TLS connection to HSBC bank).

5. SECURITY ANALYSIS

We consider an adversary who can compromise the
private key of all infrastructure servers in DTKI. In
other words, the adversary can collude with all log
servers and certificate authorities to launch attacks.

Main result Our security analysis shows that

• if the distributed random checking has verified
all required tests, and domain owners have
successfully verified their initial master certificates,
then DTKI can prevent attacks from the adversary;
and

• if the distributed random checking has not
completed all required tests, or domain owners
have not successfully verified their initial master
certificates, then an adversary can launch attacks,
but the attacks will be detected afterwards.

We provide all source codes and files required to
understand and reproduce our security analysis at [39].
In particular, these include the complete DTKI models
and the verified proofs.

5.1. Formal analysis

We analyse the main security properties of the
DTKI protocol using the Tamarin prover [30]. The
Tamarin prover is a symbolic analysis tool that can
prove properties of security protocols for an unbounded
number of instances and supports reasoning about
protocols with mutable global state, which makes it
suitable for our log-based protocol. Protocols are
specified using multiset rewriting rules, and properties
are expressed in a guarded fragment of first order logic
that allows quantification over timepoints.

6SHA-256 on 64 byte size block.
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Tamarin is capable of automatic verification in many
cases, and it also supports interactive verification by
manual traversal of the proof tree. If the tool terminates
without finding a proof, it returns a counter-example.
Counter-examples are given as so-called dependency
graphs, which are partially ordered sets of rule instances
that represent a set of executions that violate the
property. Counter-examples can be used to refine
the model, and give feedback to the implementer and
designer.

Modeling aspects We used several abstractions
during modeling. We model our log as lists, similar to
the abstraction used in [29, 40]. We also assume that
the random checking is verified.
We model the protocol roles D (domain server),

M (mapping log maintainer), C (certificate log
maintainer), and CA (certificate authority) by a set
of rewrite rules. Each rewrite rule typically models
receiving a message, taking an appropriate action, and
sending a response message. Our modeling approach
is similar to the one used in most Tamarin models.
Our modeling of the roles directly corresponds to
the protocol descriptions in the previous sections.
Tamarin provides built-in support for a Dolev-Yao
style network attacker, i.e., one who is in full control of
the network. We additionally specify rules that enable
the attacker to compromise service providers, namely
the mapping log maintainer, certificate log maintainers
and CAs, learn their secrets, and modify public logs.
Our final DTKI model (available from [39]) consists

of 959 lines for the base model and five main property
specifications, examples of which we will give below.

Proof goals We state several proof goals for our
model, exactly as specified in Tamarin’s syntax.
Since Tamarin’s property specification language is
a fragment of first-order logic, it contains logical
connectives (|, &, ==>, not, ...) and quantifiers (All,
Ex). In Tamarin, proof goals are marked as lemma.
The #-prefix is used to denote timepoints, and “E @
#i” expresses that the event E occurs at timepoint i.
The first goal is a check for executability that ensures

that our model allows for the successful transmission of
a message. It is encoded in the following way.

lemma protocol_correctness:
exists-trace
" /* It is possible that */

Ex D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain
server D whose identity is Did and TLS key is stpk, and the user
received from D a confirmation h(m) of receipt. */

Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* without the adversary compromising any party. */
& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.
Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.
Compromise_MLM(M,ltkM) @ #i4)

"

The property holds if the Tamarin model exhibits
a behaviour in which a domain server received a
message without the attacker compromising any service
providers. This property mainly serves as a sanity
check on the model. If it did not hold, it would
mean our model does not model the normal (honest)
message flow, which could indicate a flaw in the model.
Tamarin automatically proves this property in several
minutes and generates the expected trace in the form
of a graphical representation of the rule instantiations
and the message flow.

We additionally proved several other sanity-checking
properties to minimize the risk of modeling errors.

The second example goal is a secrecy property with
respect to a classical attacker, and expresses that when
no service provider is compromised, the attacker cannot
learn the message exchanged between a user and a
domain server. Note that K(m) is a special event that
denotes that the attacker knows m at this time.

lemma message_secrecy_no_compromised_party:
"
All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain
server D whose identity is Did and TLS key is stpk, and the user
received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and no party has been compromised */
& not (Ex #i2 CA ltkCA.

Compromise_CA(CA,ltkCA) @ #i2)

& not (Ex #i3 C ltkC.
Compromise_CLM(C,ltkC) @ #i3)

& not (Ex #i4 M ltkM.
Compromise_MLM(M,ltkM) @ #i4)

)
==>
( /* then the adversary cannot know m */
not (Ex #i5. K(m) @ #i5)

)
"

Tamarin proves this property automatically (in 575
steps).

The above result implies that if a domain server D,
whose domain name is Did such that Did is an instance
of regular expression rgx, receives a message that was
sent by a user, and the attacker did not compromise
server providers, then the attacker will not learn the
message.

The next two properties encode the unique security
guarantees provided by our protocol, in the case that
even all service providers are compromised.

The first main property we prove is that when all
service providers (i.e. CAs, the MLM, and CLMs) are
compromised, and the domain owner has successfully
verified his master certificate in the log, then the
attacker cannot learn the message exchanged between
a user and a domain owner. It is proven automatically
by Tamarin in 5369 steps.
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lemma message_secrecy_compromise_all_domain_verified_master_cert:
"
All D Did m rgx ltpkD stpkD #i1.

/* The user has sent an encrypted message aenc{m}stpkD to domain
server D whose identity is Did and TLS key is stpk, and the user
received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and at an earlier time, the domain server has verified his
master certificate */

& Ex #i2.
VerifiedMasterCert(D, Did, rgx, ltpkD) @ #i2
& #i2 < #i1

)
==>
( /* then the adversary cannot know m */
not (Ex #i3. K(m) @ #i3)
)

"

The property states that if a domain server D
receives a message that was sent by a user, and at an
earlier time, the domain server has verified his master
certificate, then even if the attacker can compromise all
server providers, the attacker cannot learn the message.
The final property states that when all service

providers can be compromised, and a domain owner has
not verified his/her master certificate, and the attacker
learns the message exchanged between a user and the
domain owner, then afterwards the domain owner can
detect this attack by checking the log. It is also verified
by Tamarin within a few minutes.

lemma detect_bad_records_in_the_log_when_master_cert_not_verified:

"
All D Did m rgx ltpkD flag stpkD #i1 #i2 #i3.

/* The user has sent an encrypted message aenc{m}stpkD to domain
server D whose identity is Did and TLS key is stpk, and the user
received from D a confirmation h(m) of receipt. */

(Com_Done(D, Did, m, rgx, ltpkD, stpkD) @ #i1

/* and the adversary knows m */

& K(m) @ #i2

/* and we afterwards check the log */
& CheckedLog(D, Did, rgx, ltpkD, flag, stpkD) @ #i3
& #i1 < #i3)
==>

( /* then we can detect a fake record in the log */
(flag = ’bad’)

)
"

6. COMPARISON

As mentioned previously, DTKI builds upon a wealth
of ideas from SK [23], CT [26], CIRT [28], and AKI [27].
Figure 5 shows the dimensions along which DTKI aims
to improve on those systems.
Compared with CT, DTKI supports revocation by

enabling log providers to offer proofs of absence and
currency of certificates. In CT, there is no mechanism
for revocation. CT has proposed additional data
structures to hold revoked certificates, and those
data structures support proofs of their contents [41].
However, there is no mechanism to ensure that the data
structures are maintained correctly in time.

Compared to CIRT, DTKI extends the log structure
of CIRT to make it suitable for multiple log maintainers,
and provides a stronger security guarantee as it prevents
attacks rather than merely detecting them. In addition,
the presence of the mapping log maintainer and multiple
certificate log maintainers create some extra monitoring
work. DTKI solves it by using a detailed crowd-sourcing
verification system to distribute the monitoring work to
all users’ browsers.

Compared to AKI and ARPKI, in DTKI the log
providers can give proof that the log is maintained
append-only from one step to the next. The data
structure in A(RP)KI does not allow this, and therefore
they cannot give a verifiable guarantee to the clients
that no data is removed from the log.

DTKI improves the support that CT and A(RP)KI
have for multiple log providers. In CT and AKI, domain
owners wishing to check if there exists a log provider
that has registered a certificate for him has to check
all the log providers, and therefore the full set of log
providers has to be fixed and well-known. This prevents
new log providers being flexibly created, creating an
oligopoly. In contrast, DTKI requires the browsers only
to have the MLM public key built-in, minimising the
oligopoly element.

In DTKI, trusted monitors are optional, as it uses
crowd-sourced verification. More precisely, a trusted
monitor’s verification work can be done probabilistically
in small pieces by users’ browsers.

Unlike the mentioned previous work, DTKI allows
the possibility that all service providers (i.e. the
MLM, CLMs, and mirrors) to collude together, and
can still prevent attacks. In contrast, SK and CT can
only detect attacks, and to prevent attacks, A(RP)KI
requires that not all service providers collude together.
Similar to A(RP)KI, DTKI also assumes that the
domain is initially registered by an honest party to
prevent attacks, otherwise A(RP)KI and DTKI can
only detect attacks.

7. DISCUSSION

Responding to incorrect proofs How should the
browser (and the user) respond if a received proof (e.g.,
a proof of presence in the log) is incorrect? Such
situations should be handled in the background by the
software in the browser that verifies proofs, and be
sent to domain owners for further investigation. The
browser can also present errors to the user in the same
way as the current state of the art. So, the user
interface will remain the same. For example, a user
might be shown two options, i.e. either to continue
anyway, or not to trust the certificate and abort this
connection. Another possible way is to hard fail if the
verification has not been successful, as suggested by
Google certificate transparency. However, this might
be an obstacle for deploying DTKI in early stages.
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SK [23] CT [26] AKI [27] ARPKI [29] DTKI
Terminology

Log provider Time-line
server

Log Integrity log
server (ILS)

Integrity log
server (ILS)

Certificate/Mapping
log maintainer
(CLM, MLM)

Log extension - Log
consistency

- - Log extension

Trusted party Mirror Auditor &
monitor

Validator Validator
(optional)

-

Whether answers to queries rely
on trusted parties or are accom-
panied by a proof

Certificate-in-log query: Rely Proof Proof Proof Proof
Certificate-current-in-log query: Rely Rely Proof Proof Proof
Subject-absent-from-log query: Rely Rely Proof Proof Proof
Log extension query: Rely Proof Rely Rely Proof

Non-necessity of trusted monitors

The role of trusted monitors can be
distributed to browsers

No No No+ No+ Yes

Trust assumptions

Not all service providers collude
together

Yes Yes Yes Yes No

Domain is initially registered by an
honest party

No No Yes* Yes* Yes*

Security guarantee

Attacks detection or prevention Detection Detection Prevention Prevention Prevention

Oligopoly issues

Log providers required to be built
into browser (oligopoly)

Yes Yes Yes Yes Only MLM

Monitors required to be built into
browser (oligopoly and trust
non-agility)

Yes No Yes Yes† No

+ The system limits the trust in each server by letting them to monitor each other’s behaviour.

* Without the assumption, the security guarantee is detection rather than prevention.

† The trusted party is optional, if there is a trusted party, then the trusted party is required to be built into browser.

FIGURE 5: Comparison of log-based approaches to certificate management. Terminology helps compare the
terminology used in the papers. How queries rely on trusted parties shows whether responses to browser
queries come with proof of correctness or rely on the honesty of trusted parties. Necessity of trusted parties
shows whether the TP role can be performed by browsers. Trust assumptions shows the assumption for the
claimed security guarantee. Oligopoly issues shows the entities that browsers need to know about.

Coverage of random checking As mentioned
previously, several aspects of the logs are verified by
user’s browsers performing randomly-chosen checks.
The number of things to be checked depends on the
size of the mapping log and certificate logs. The size
of the mapping log mainly depends on the number
of certificate logs and the mapping from regular
expressions to certificate logs; and the size of certificate
logs mainly depends on the number of domain servers
that have a TLS certificate. Currently, there are
2.71 × 108 domains [38] (though not every domain has
a certificate), and 3 × 109 internet users [42]. The
probability of a given domain not being checked on a
given day (or week) is (1− 1

2.71×108 )
3×109 ≈ 1.56×10−5

(resp. ((1− 1
2.71×108 )

3×109)7 ≈ 2.25×10−34). Thus, the

expected number of unchecked domains per day (resp.
per week) is 4.23× 103 (resp. 6.10× 10−26).

Accountability of mis-behaving parties The
main goal of new certificate management schemes such
as CT, CIRT, AKI, ARPKI and DTKI is to address
the problem of mis-issued certificates, and to make the
mis-behaving (trusted) parties accountable.

In DTKI, a domain owner can readily check for rogue
certificates for his domain. First, he queries a mirror
of the mapping log maintainer to find which certificate
log maintainers (CLM) are allowed to log certificates
for the domain (section 4). Then he examines the
certificates for his domain that have been recorded
by those CLMs. The responses he obtains from the

The Computer Journal, Vol. ??, No. ??, ????



DTKI: a new formalized PKI with verifiable trusted parties 15

mirror and the CLMs are accompanied by proofs. If he
detects a mis-issued certificate, he requests revocation
in the CLM. If that is refused, he can complain
to the top-level domain, who in turn can request
the MLM to change the CLM for his domain (after
that, the offending CLM will no longer be consulted
by browsers). This request should not be refused
because the MLM is governed by an international panel.
The intervening step, of complaining to the top-level
domain, reflects the way domain names are actually
managed in practice. Different top-level domains have
different terms and conditions, and domain owners take
them into account when purchasing domain names. In
DTKI, log maintainers are held accountable because
they sign and time-stamp their outputs. If a certificate
log maintainer issues an inconsistent digest, this fact
will be detected and the log maintainer can be blamed
and blacklisted. If the mapping log misbehaved, then
its governing panel must meet and resolve the situation.
In certificate transparency, this process is not as

smooth. Firstly, the domain owner doesn’t get proof
that the list of issued certificates is complete; he needs
to rely on monitors and auditors. Next, the process
for raising complaints with log maintainers who refuse
revocation requests is less clear (indeed, the RFC [26]
says that the question of what domain owners should
do if they see an incorrect log entry is beyond scope of
their document). In CT, a domain owner has no ability
to dissociate himself from a log maintainer and use a
different one.
AKI addresses this problem by saying that a log

maintainer that refuses to unregister an entry will
eventually lose credibility through a process managed
by validators, and will be subsequently ignored. The
details of this credibility management are not very clear,
but it does not seem to offer an easy way for domain
owners to control which log maintainers are relied on
for their domain.

Master certificate concerns One concern is that a
CA might publish fake master certificates for domains
that the CA doesn’t own and are not yet registered.
However, this problem is not likely to occur: CAs
are businesses, they cannot afford the bad press from
negative public opinion and they cannot afford the loss
of reputation. Hence, they will only want to launch
attacks that would not be caught. (Such an adversary
model has been described by Franklin and Yung [43],
Canetti and Ostrovsky [44], Hazay and Lindell [45], and
Ryan [28]). In DTKI, if a CA attempts to publish a
fake master certificate for some domain, it will have to
leave evidence of its misbehaviour in the log, and the
misbehaviour will eventually be detected by the genuine
domain owner.
Another concern is the assumption that the domain

owners can securely handle their master keys. In
practice, the domain owners might have problems
looking after their master keys due to lack of awareness

of good practices. This problem arises in any web PKI:
it is assumed that domain owners can securely handle
their TLS keys. Our system adds one more key (the
master key) to that requirement. A possible practical
solution for domain owners is to use a trustworthy
service to handle TLS keys (and the master key); the
details are beyond the scope of the paper.

Avoidance of oligopoly As we mentioned in the
introduction, the predecessors (SK, CT, CIRT, AKI,
ARPKI) of DTKI do not solve a foundational issue,
namely oligopoly. These proposals require that all
browser vendors agree on a fixed list of log maintainers
and/or validators, and build it into their browsers. This
means there will be a large barrier to create a new log
maintainer.

CT has some support for multiple logs, but it doesn’t
have any method to allocate different domains to
different logs. In CT, when a domain owner wants
to check whether mis-issued certificates are recorded in
logs, he needs to contact all existing logs, and download
all certificates in each of the logs, because there is no
way to prove to the domain owner that no certificates
for his domain is in the log, or to prove that the log
maintainer has showed all certificates in the log for
his domain to him. Thus, to be able to detect fake
certificates, CT has to keep a very small number of
log maintainers. This prevents new log providers being
flexibly created, creating an oligopoly.

In contrast to its predecessors, DTKI does not have
a fixed set of certificate log maintainers (CLMs) to
manage certificates for domain owners, and it allows
operations of adding or removing a certificate log
maintainer by updating the mapping log. In DTKI, the
public log of the MLM is the only thing that browsers
need to know.

The MLM may be thought to represent a monopoly;
to the extent that it does, it is likely to be a much weaker
monopoly than the oligopoly of CAs or log maintainers.
CAs and log maintainers offer commercial services and
compete with each other, by offering different levels of
service at different price points in different markets.
The MLM should not offer any commercial services;
it should perform a purely administrative role, and
is not required to be trusted because it behaves fully
transparently and does not manage any certificates for
web domains. In addition, the MLM is expected to
be operated by an international panel with a lot of
members.

In practice, we expect ICANN to be the MLM, as
it is responsible for coordinating name-spaces of the
Internet, and is governed by a Governmental Advisory
Committee containing representatives from 111 states.
However, there might be concerns here, including the
concern that ICANN might not be interested in being
the MLM, due to the fact that the service won’t
generate any revenue. Our solution does not address
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political issues around making decisions of whether to
add or remove some CLMs or not.

8. CONCLUSIONS AND FUTURE WORK

Sovereign keys (SK), certificate transparency (CT), ac-
countable key infrastructure (AKI), certificate issuance
and revocation transparency (CIRT), and attack re-
silient PKI (ARPKI) are recent proposals to make pub-
lic key certificate authorities more transparent and ver-
ifiable, by using public logs. CT is currently being im-
plemented in servers and browsers. Google is build-
ing a certificate transparency log containing all the cur-
rent known certificates, and is integrating verification
of proofs from the log into the Chrome web browser.
Unfortunately, as it currently stands, CT risks

creating an oligopoly of log maintainers (as discussed
in section 7), of which Google itself will be a principal
one. Therefore, adoption of CT risks investing more
power about the way the internet is run in a company
that arguably already has too much power.
In this paper we proposed DTKI – a transparent

public key validation system using an improved
construction of public logs. DTKI can prevent
attacks based on mis-issued certificates, and minimises
undesirable oligopoly situations by using the mapping
log. In addition, we formalised the public log structure
and its implementation; such formalisation work was
missing in the previous systems (i.e. SK, CT, A(RP)KI,
and CIRT). Since devising new security protocols is
notoriously error-prone, we provide a formalisation of
DTKI, and formally proved its security properties by
using Tamarin prover.
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IMPLEMENTATION OF DATA STRUC-
TURES

This section shows the implementation of the chrono-
logical data structure and ordered data structure. We
give some examples to show how the proofs could be
done. Full details can be found in our technical report.
We consider a secure hash function (e.g. SHA256), de-
noted h.

Chronological data structure

The chronological data structure is implemented based
on Merkle tree structure that we call ChronTree.

A ChronTree T is a binary tree whose nodes are
labelled by bitstrings such that:

• every non-leaf node in T has two children, and is
labelled with h(tℓ, tr) where tℓ (resp. tr) is the label
of its left child (resp. right child); and

• the subtree rooted by the left child of a node is
perfect, and its height is greater than or equal to
the height of the subtree rooted by the right child.

Here, a subtree is “perfect” if its every non-leaf node
has two children and all its leaves have the same depth.

Note that a ChronTree is a not necessarily a balanced
tree. The two trees in Figure .1 are examples of
ChronTrees where the data stored are the bitstrings
denoted d1, . . . , d6.

FIGURE .1: Example of two ChronTrees, Ta and Tb.

Given a ChronTree T with k leaves, we denote by
S(T ) = [d1, . . . , dk] the sequence of bitstrings stored in
T . Note that a ChronTree is completely defined by the
sequence of data stored in the leaves. Moreover, we say
that the size of a ChronTree is the number its leaves.

Given a bitstring d and a ChronTree T , the proof of
presence of d in T exists if there is a leaf n1 in T labelled
by d; and is defined as (w, [b1, . . . , bk]) such that:

• w is the position in {ℓ, r}∗ of n1 (that is, the
sequence of left or right choices which lead from
the root to n1), and |w| = k; and
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FIGURE .2: An example of a LexTree Tc, where hi =
h(di, null, null) for all i = {1, 3, 5, 7, 9, 11}

• if n1, . . . , nk+1 is the path from n1 to the root, then
for all i ∈ {1, . . . , k}, bi is the label of the sibling
node of ni.

Intuitively, a proof of presence of d in T contains
the minimum amount of information necessary to
recompute the label of the root of T from the leaf
containing d.

Example 2. Consider the ChronTree Tb of Figure .1.
The proof of presence of d3 in Tb is the tuple (w, seq)
where:

• w = ℓ · r · ℓ
• seq = [d4, h(d1, d2), h(d5, d6)]

Note that the size of the proof of presence is
logarithmic in the size of the tree; even if the tree grows
considerably, the size of the proof does not increase
much.

Let T and T ′ be ChronTrees of size N and
N ′, respectively, such that N ′ ≤ N , S(T ) =
[d1, . . . , dN ′ , . . . , dN ], and S(T ′) = [d1, . . . , dN ′ ] for
some bitstrings d1, . . ., dN ′ , . . ., dN . Let m be
the smallest position of the bit 1 in the binary
representation of N ′; and let (d,w) be the (m + 1)th

node in the path of the node labelled by dN ′ to the root
in T , where d is a bitstring and w ∈ {ℓ, r}∗ indicates the
position. At last, let (w, seq′) be the proof of presence
of d in T . The proof of extension of T ′ into T is defined
as the sequence seq of bitstrings such that

• if N ′ = 2k for some k, then seq = seq′; otherwise
• seq = d :: seq′, where :: is the concatenation

operation.

Example 3. The proof of extensions of Ta

into Tb (Figure .1) is the sequence seq =
[d3, d4, h(d1, d2), h(d5, d6)].

While a proof of presence is the minimal amount of
information necessary to recompute the hash value of
a ChronTree from the leaf containing some particular
data, the proof of extension is the minimal amount of
information necessary to recompute the hash value of
ChronTree T from the hash value of a ChronTree T ′

where T is an extension of T ′. Intuitively, the proof of
extension of a ChronTree T ′ into a ChronTree T is the
proof of presence in T of the last inserted data of T ′,

i.e. dN ′ when S(T ′) = [d1, . . . , dN ′ ]. With this proof
and the sizes of both trees, we can reconstruct the label
of the root T but also the label of the root of T ′ as
means to verify the proof of extension. Note that when
N ′ = 2k for some k, it implies that the tree T ′ is perfect
and so the label of the root of T ′ is also a label of a node
in T . Therefore, to reconstruct the label of the root of
T , we only need a fragment of the proof of presence of
dN ′ in T .

Example 4. Coming back to Example 3, consider
the bitstrings hb = h(h(h(d1, d2), h(d3, d4)), h(d5, d6))
and ha = h(h(d1, d2), d3). seq proves the extension of
ha of size 3 into hb of size 6. Figure .1 is the graphical
representation of the verification of seq given ha and
hb. In particular, (ℓ ·r ·ℓ, [d4, h(d1, d2), h(d5, d6)]) proves
the presence of d3 in hb and (r, [h(d1, d2)]) proves the
presence of d3 in ha.

Ordered data structure

The ordered data structure is implemented as the
combination of a binary search tree and a Merkle tree.
The idea is that we can regroup all the information
about a subject into a single node of the binary search
tree, and while being able to efficiently generate and
verify the proof of presence. We consider a total order
on bitstrings denoted ≤. This order could be the
lexicographic order in the ASCII representations but
it could be any other total order on bitstrings. The
implementation is called LexTree.

A LexTree T is a binary search tree over pairs of
bitstrings

• for all two pairs (d, h) and (d′, h′) of bitstrings in
T , (d, h) occurs in a node left of the occurrence of
(d′, h′) if and only if d ≤ d′ lexicographically;

• for all nodes n ∈ T , n is labelled with the
pair (d, h(d, hℓ, hr)) where d is some bistring and
(dℓ, hℓ) (resp. (dr, hr)) is the label of its left child
(resp. right child) if it exists; or the constant null
otherwise.

Note that contrary to a ChronTree, the same set
of data can be represented by different LexTrees
depending on how the tree is balanced. To avoid this
situation, we assume that there is a pre-agreed way for
balancing trees.

Example 5. The tree in Figure .2 is an example of
LexTree where d1 ≤ d2 ≤ . . . ≤ d12.

Example 6. Consider the LexTree T of Figure .2.
The proof of presence of d8 in T is the tuple
(hℓ, hr, seqd, seqh) where:

• hℓ = h7 and hr = h9; and
• seqd = [d10, d6]
• seqh = [h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]

Like in ChronTrees, verifying the proof of presence of

The Computer Journal, Vol. ??, No. ??, ????



DTKI: a new formalized PKI with verifiable trusted parties 19

some data d in a LexTree T consists of reconstructing
the hash value of the root of T .

Example 7. Consider the Tc of Figure .2. Consider
some data d such that d7 ≤ d ≤ d8. The proof of
absence of d in Tc is the tuple (null, null, seqd, seqh)
where:

• seqd = [d7, d8, d10, d6]
• seqh = [h9, h(d12, h11, null), h(d4, h(d2, h1, h3), h5)]
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