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Abstract

Delineation of organs at risk (OARs) is a crucial step in surgical and treatment

planning in brain cancer, where precise OARs volume delineation is required.

However, this task is still often manually performed, which is time-consuming

and prone to observer variability. To tackle these issues a deep learning approach

based on stacking denoising auto-encoders has been proposed to segment the

brainstem on magnetic resonance images in brain cancer context. Addition-

ally to classical features used in machine learning to segment brain structures,

two new features are suggested. Four experts participated in this study by

segmenting the brainstem on 9 patients who underwent radiosurgery. Analysis

of variance on shape and volume similarity metrics indicated that there were

significant differences (p<0.05) between the groups of manual annotations and

automatic segmentations. Experimental evaluation also showed an overlapping

higher than 90% with respect to the ground truth. These results are compara-

ble, and often higher, to those of the state of the art segmentation methods but

with a considerably reduction of the segmentation time.
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1. Introduction

Cancer is a leading cause of death and disability worldwide, accounting for

14.1 million of new cancer cases and 8.2 million deaths in 2012 [1]. Among

available techniques to treat brain tumors, radiotherapy and radio surgery have

become often the selected treatment, especially when others techniques such5

as surgery or chemotherapy might not be applicable. To constrain the risk

of severe toxicity of critical brain structures, i.e. the organs at risk (OARs),

the volume measurements and the localization of these structures are required.

Among available image modalities, magnetic resonance imaging (MRI) images

are extensively used to segment most of the OARs, which is performed mostly10

manually nowadays.

However, manual delineation of large brain structures, such as the brainstem,

could be prohibitively time-consuming, and could never be reproducible during

clinical routines [2, 3], leading to substantial inconsistency in the segmentation.

Particularly, in the case of the brainstem, variability on delineation is especially15

notorious in the area where the brainstem meets with the cerebellum in the

lower pons, and where no significant contrast boundary is present. Thus, image

segmentation has become a central part in the radiation treatment planning

(RTP), being often a limiting step of it. Therefore, automatic or semi-automatic

segmentation algorithms are highly recommended in order to surmount such20

disadvantages.

Segmentation of brain structures have been mainly approached by using

atlas-based methods [4, 5]. Although good performance has been reported,

evaluation of these methods has been made on control and on several mental

disorders patients, such as Schizophrenia or Alzheimer. However, in brain can-25

cer context, the presence of tumors may deform other structures and appear

together with edema that changes intensity properties of the nearby region,

making the segmentation more challenging. To evaluate the performance of

atlas-based approaches to segment the brainstem, among other structures, in

such situations, some work have been recently presented in the context of brain30
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cancer treatment [2, 3, 6]. In [2], a large study that engaged 8 experts and in-

cluded 20 patients reported mean Dice similarity coefficient (DSC) respect to the

ground truth generated of nearly 0.85. Euclidean average maximum distances

ranged from - to + 5.4 mm (inside and outside). Similar to this work, in [3], an

atlas-based segmentation was evaluated on 6 patients and compared to 7 expert35

delineations. Comparison between experts and automatic results showed that

brainstem segmentation volume generated by the automatic approach lay in 5

out of 6 cases between the variations of the experts, with a volume underesti-

mation ranging from -14% to -2% in these patients. In the work of Isambert et

al. [6], brainstem automatic contours were accepted for clinical routine with a40

volume underestimation of -15% with respect to the manual segmentation and

mean DSC of 0.85 ranging from 0.8 to 0.88. Although the brainstem has been

often successfully segmented, with DSC values typically greater than 0.8, seg-

mentation time reported has been always above several minutes. In addition

to time constraints derived from the registration step, atlas-based methods re-45

quire large variation on the atlases to capture anatomical variability in target

patients.

To overcome difficulties of atlas-based approaches, we considered the use of

denosing auto-encoders in the presented work. Deep learning has already been

used to segment some tissue or organs in the medical domain others than the50

brainstem [7, 8]. In these approaches, two or three-dimensional image patches

are commonly fed into the deep network, which unsupervisedly learns the best

features representation of the given patches. Computed neurons’ weights are

then re-fined during a second supervised step. However, valuable information

inherited from classical machine learning approaches to segment brain structures55

is not included in these input vectors. This knowledge may come in the form of

likelihood voxel values or voxel location, for example, which is greatly useful to

segment structures that share similar intensity properties.

In the present work, we propose a deep neural network formed by stacking de-

noising auto-encoders (SDAE) as alternative to atlas-based methods to segment60

the brainstem. Additionally, we compare the results with a well-known ma-
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chine learning classifier, support vector machines (SVM). Furthermore, instead

of using patches from single or multi-modality MR images, we use hand-crafted

features as input of the network. Lastly, as extension to features typically em-

ployed in machine learning approaches to segment brain structures [9, 10, 11],65

we propose the inclusion of two new features in the features vector of the classi-

fier when segmenting the brainstem. Our main contribution is, therefore, a new

and practical application of SDAE, which recently produced outstanding results

in solving some medical image problems, such as classification or segmentation.

2. Methods and materials70

2.1. Features used in the classification

The most influencing factor in realizing a classifier with high generalization

ability is the set of features used. A poor selection of the features to be used

in the classifier may lead to unsatisfactory results. Intensity based approaches

have been largely employed to segment objects of interest in the medical field.75

Nevertheless, image intensity information solely is not good enough for distin-

guishing different subcortical structures since most of them share similar inten-

sity patterns in MRI. To address such problem, in learning based segmentation

methods, more discriminative features are often extracted from MRI [9, 10, 11].

In addition to image intensity values (IIV) of the neighboring voxels, spatial80

and probabilistic information is often used in the creation of a classifier. Texture

information, i.e. IIV related information, can be captured in many ways. For

instance, Powell et al. [9] captured texture information by using 8 IIV along the

largest gradient, including the voxel under examination. Additionally, a prob-

abilistic map, IIVs along each of the three orthogonal axes and the probability85

of being part of a particular structure were used as features for each sample.

In [10], a slightly modified input vector was adapted to increase the perfor-

mance of a learning-based scheme. In their work, a modified spatial location of

the spherical coordinates of the voxel v and a neighborhood connection based

on gradient descent were used. While the former aided to reflect symmetry of90
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brain, the latter was used for directional consistency. More recently, in [11], dif-

ferent IIVs configurations were compared to segment the brainstem, in addition

to probability values and spherical coordinates of the voxel under examination.

Configurations proposed in this work included cubic patches of different sizes,

orthogonal crosses and, as in [9], voxels along the direction of the maximum95

gradient.

2.1.1. Geodesic transform map.

To encourage spatial regularization and contrast-sensitivity, geodesic dis-

tance transform map (GDTM) of the input image is used as additional feature.

The addition of GDTM in the features vector used by the classifier exploits the100

ability of seed-expansion to fill contiguous, coherent regions without regard to

boundary length. As explained in the work of Criminisi et al. [12], given an

image I defined on a 2D domain ψ, a binary mask M (with M (x) ∈ {0,1} ∀x)

and an ”object” region Ω with x ∈ Ω ⇐⇒ M (x) = 0, the unsigned geodesic

distance of each pixel x from Ω is defined as:105

D(x;M,∇I) = min
{x′|M(x′)=0}

d(x, x′), with (1)

d(a, b) = min
Γ∈Pa,b

∫ 1

0

√
‖Γ′(s)‖2 + γ2(∇I · u)2 ds (2)

with Pa,b the set of all paths between the points a and b, and Γ(s) : < →

<2 indicating one such path, which is parametrized by s ∈ [0,1]. The term u

represents the unit tangent vector, which is defined as u = Γ′(s) / |Γ(s)‖. Fig. 1

shows an example of how to compute the GTDM of an image given a binary

mask.110

2.1.2. Local binary pattern.

In order to catch neighborhood appearance of the voxel under examination

with the fewest number of features, Local Binary Patterns (LBP) are investi-

gated. The idea of LBP is to give a pattern code to each voxel. Particularly,

an extended version of 3D-LBP presented by [13] is proposed. In their work,115
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Figure 1: Geodesic distance transform map: a) axial MR view of the brainstem, b)

mask obtained from the probability brainstem map (in white) over the MRI axial slice,

c) binary mask used to obtain the GDTM, and d) computed GDTM.

classical LBP were adapted by selecting the 6 nearest voxels and ordering them

to create the encoding patterns. By encoding patterns in that manner, 26 = 64

possible patterns would be created. However, those 64 possible combinations

were merged in 10 different groups according to geometrical similarities (Fig-

ure 2). In accordance with this classification, each group is filled with patterns120

that have the same number of neighbor voxels with a gray level higher than the

central voxel c. Thus, rotation invariance in each group is kept. These groups

are defined with (Figure 2,right):

card(c) =

P−1∑
i=0

s(gi − gc), with s(x) =

1 if x ≥ 0

0 else

(3)

where P = 6 is the number of neighboring voxels and R=1 or R=2 the

distance between central voxel c and its neighbors i. By using R =1,2 micro125

and macrostructure appearance of the texture are captured in the 3D-LBP. In

equation 3, card(c) gives the number of neighbors with a higher gray level than

the central voxel c.

In addition to the encoded value for the 3D patch structure proposed by [13],

an additional texture value is included. Let ghigh the gray values that are higher

than the gray value of the center voxel c in the 3D-LPB (Figure 2). Similarly,

let’s denote glow to the gray values that are lower than the gray value of the

center voxel c in the 3D-LPB. Then, the texture value added to the encoded
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Figure 2: (Left). Merging the 64 possible patterns into 10 groups. Number of different

patterns for each group is indicated in brackets. (Right).Definition of the 10 groups

of patterns[13].

structure value is defined as:

Textureval = mean

m∑
i=0

ghigh(i)−mean

n∑
i=0

glow(i) (4)

where m and n are the number of neighboring voxels with higher and lower

values than the center voxel c, respectively. Thus, the introduction of the 3D-130

LBP in the features vector will lead to 4 new features: 3D-LBP and Textureval

for R = 1 and 2.

2.1.3. Composition of the input features vector.

Different combinations of intensity values of the neighborhood of a given

voxel and its effect on the segmentation was already investigated in [11]. In135

that work, the intensity value of the voxel under investigation and the intensity

values of the 8 voxel along the direction of maximum gradient reported the best

trade-off in terms of segmentation similarity and computational cost. Therefore,

this configuration is used in the present work to capture intensity information

from the MRI image. Additionally, to better understand the pattern of each140

voxel with respect to its neighborhood, while feeding the minimum amount of

information into the features vector, the 3D-LPB introduced in section 2.1.2 is

used. Its use leads to 2 values, one for the pattern and one for the texture, at

each of the two radius used (R=1,2). To complete the features vector, the value

at the voxel location of the probability map, geodesic distance transform map145

and image gradient are used, as well as the spherical coordinates at its location
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(Figure 3). Thus, a vector containing a total of 19 feature values is used to

characterize each sample.

Figure 3: Features fed into the features vector for each sample (voxel). In green is

pointed out the voxel under examination.

2.2. Deep Learning based classification scheme

Classification problem is solved in this work by using deep learning. This150

technique learns hierarchical correlations between feature representations in a

given dataset through a semi-supervised learning approach [14]. Hence, the

proposed approach follows a hybrid architecture which unsupervisedly learns

the features representation of the hand-crafted features followed by a supervised

fine tuning of the parameters of the deep network.155

The deep network used in the proposed classification scheme is formed by

stacking DAEs (Fig. 4). Weights between layers of the network are initially
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learned via the unsupervised pre-training step (Sec. 2.2.1). Once all the weights

of the network are unsupervisedly computed, a supervised refinement is carried

out by using the labeled classes, and final values of the network’ weights are160

updated (Sec. 2.2.2).

Figure 4: Deep network architecture constructred by stacking denoising autoencoders

in the proposed approach.

2.2.1. Unsupervised pre-training of DAEs

Classical auto-encoders (AE) have been recently developed in the deep learn-

ing literature in different forms [15]. In its simplest representation, an AE is

formed by two components: an encoder h(·) that maps the input x ∈ Rd to165

some hidden representation h(x) ∈ Rdh , and a decoder g(·), which maps the

hidden representation back to a reconstructed version of the input x, so that

g(h(x)) ≈ x. Therefore, an AE is trained to minimize the discrepancy between

the data and its reconstruction. This discrepancy represents the difference be-

tween the actual output vector and the expected output vector that is the same170

as the input vector. As a result, AEs offer a method to automatically learn

features from unlabeled data, allowing for unsupervised learning.

One serious potential issue when working with AE is that if there is no

other constraint besides minimizing the reconstruction error, then an AE with
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n inputs and an encoding of dimension at least n could potentially just learn the175

identity function, for which many encodings would be useless, leading to just

copy the input. That means that an AE would not differentiate test examples

from other input configurations. There are different ways that an AE with more

hidden units than inputs could be prevented from learning the identity, and still

capture some valuable information about the input in its hidden representation.180

Adding randomness in the transformation from input to reconstruction is one

option, which is exploited in Denoising Auto-Encoders (DAEs) [15, 16].

The Denoising Auto-Encoder (DAE) is typically implemented as a one-

hidden-layer neural network which is trained to reconstruct a data point x ∈ < D

from its corrupted version x̃ [16]. This leads to a partially destroyed version x̃185

by means of a stochastic mapping x̃ ∼ qD(x̃|x). Therefore, to convert an AE

class into a DAE class, only adding a stochastic corruption step that modifies

the input is required, which can be done in many ways. For example, in [16],

the stochastic corruption process consists in randomly setting some of the in-

puts to zero. Several DAEs can be stacked to form a deep network by feeding190

the hidden representation of the DAE found on the layer below as input to the

current layer [15]. The unsupervised pre-training of such architecture is done

greedily, i.e. one layer at a time. Each layer is trained as a DAE by minimizing

the reconstruction of its input. Once the first k layers are trained, the (k+1)th

layer can be trained because the latent representation from the layer below can195

be then computed.

In our network, DAEs are stacked to form the intermediate layers of the

deep network (See Figure 4). More specifically, 2 hidden layers composed by

100 and 19 units, respectively, are used. During the unsupervised pre-training,

the weights vectors {W1,W2} are initially learned. Denoising corruption level200

for the DAEs is set to 0.5, since a value of 50% of noise level has already been

proved to perform well in other problems [15].
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2.2.2. Supervised fine-tuning of the deep network

Afterwards, when all layers have been pre-trained, the network goes through

a second stage of training called fine-tuning, where prediction error is minimized205

on a supervised task. Weights vectors {W1,W2} are already known from the

previous step. The weights {W3} are now randomly initialized and convergence

of the deep network is achieved via supervised learning, using the target class.

During this process, weights {W1,W2} are updated to tune the entire network.

The hope is that the unsupervised initialization in a greedy layer-wise fashion210

has put the parameters of all the layers in a region of parameter space from

which a good local optimum can be reached by local descent.

Following the same architecture than in the unsupervised pre-training, two

hidden layers of DAEs are used, with the same number of units than before. At

the end of the last layer of DAEs a softmax regression layer is used as output215

with the sigmoid function as activation function. Mini-batch learning is followed

during both unsupervised pre-training of DAEs and supervised fine-tuning of

the entire network.

2.3. Study design and experiment set-up

2.3.1. Dataset220

Image segmentation in the medical domain lacks from a universal known

ground truth. Therefore, to validate segmentation approaches in clinical con-

text, a number of observers and target patients that provide a good statistical

analysis is required. Accordingly, this study has been designed to quantify vari-

ation among clinicians in delineating the brainstem and to assess our proposed225

classification scheme in this context. MRI data from 9 patients who underwent

Leksell Gamma Knife Radiosurgery were used for training and leave one out

cross validation. For each patient, the brainstem was manually delineated by

four observers: two neurosurgeons, one physician and one medical physicist.

All of them were trained and qualified for radiosurgery delineation. Protocol230

for delineation was described before contouring session. The brainstem was de-

lineated from cerebellar peduncle to occipital hole including the aqueduct of
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Sylvius.From manual segmentations of each patient a ground truth was gen-

erated by using majority voting rule with a threshold fixed at 75% of experts

agreement. This ground truth was used to analyze deviations between the235

observers delineations, as well as the performance of the presented automatic

approach. Artiview R©3.0 (Aquilab) was used after a training session to achieve

Dicom RT contouring structures. Average time of manual contouring was 20.2

min (SD: 10.8 min). Two different MRI facilities were used to acquire images

according to the radiosurgery planning protocol (Table 1).240

MRI System TE(ms) TR(ms)
Echo

number
Matrix size Seq. Name

Voxel Size

(mm3)

Philips Achieva

1.5T
4.602 25 1 256x256 T1 3D FFE 1x1x1

GEHC Optima

MR450w 1.5T
2.412 5.9 1 256x256 FSPGR 1x1x1.2

Table 1: Acquisition parameters on the 2 MRI devices.

In the proposed approach, and as in [9], before any process, MRI T1 images

were spatially aligned such that the anterior commissure and posterior commis-

sure (AC−PC) line was horizontally oriented in the sagittal plane, and the inter

hemispheric fissure was aligned on the two other axes.

2.3.2. Evaluation245

Evaluation methods have lacked consensus as to comparison metrics. Since

each metric yields different information, their choice is important and must be

considered in the appropriate context. Although volume-based metrics, such

as DSC [17], have been broadly used to compare volume similarities, they are

fairly insensitive to edge differences when those differences have a small impact250

on the overall volume. Therefore, two segmentations with high degree of spa-

tial overlapping may exhibit clinically relevant differences at the edges. As a

consequence, volume-based −i.e. DSC and percentage volume difference− and

distance-based −i.e. Hausdorff distance− metrics are used to evaluate the seg-

mentation results. Within-subjects analysis of variance (ANOVA), also referred255
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to as repeated measures, on shape and volume similarity metrics followed by

post-hoc comparisons (Bonferroni, p<0.05) were used to determine statistical

differences between the groups.

Our method was compared with Support vector machines (SVM) [18] using

the features vector detailed in Figure 3 for each sample. This SVM configuration260

is referred as SVM2. To investigate the effect of the proposed features, the best

IIV configuration suggested by [11] to segment the brainstem by using SVM was

used as second set of features, referred to as SVM1. This second set includes

the features shown in Figure 3, with exception of the GDTM, image gradient

and 3D-LBP related values. The reason to use SVM is because it represents one265

of the state-of-the-art machine learning methods for classification. Lastly, the

deep learning-based classifier based on SDAE will be known simply as SDAE

and it will use the same features vector than SVM2. Once all the features to

be used are extracted, and before training or testing, they are normalized to

[−1, 1].270

All the implementation was done in MATLAB. To perform the SVM clas-

sification the library libsvm [19] was used. Additionally, the implementation

provided by Palm [20] was used for the deep learning classification scheme. A

workstation with 8GB RAM and Intel Xeon processor at 3.06 was employed.

3. Results275

3.1. Shape similarity

The Dice similarity coefficient (DSC) was calculated for the four manual

annotations and the three automatic methods. Mean DSC values for the four

observers ranged from 0.84 to 0.90, with minimum and maximum values of 0.78

and 0.93 respectively. Reference SVM (SVM1) provided a mean DSC of 0.88.280

On the other hand, whereas mean DSC for SVM with the proposed features was

0.91, the proposed deep learning based scheme reported a mean DSC of 0.92

(Fig. 5). The within-subjects ANOVA test conducted on the DSC of all the
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groups (p<0.05) indicated that there were significative differences among them.

These differences were especially notorious on the observer 1 and 4.285

Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Dice Similarity Coefficients

p−value  < 0.0001
F−stat    =   10.47

Figure 5: Segmentation DSC results for the observers and the automatic approaches.

Particularly for the machine and deep learning based approaches, a second

set of ANOVAs was conducted to evaluate statistical differences between auto-

matic methods. First, a within-subjects ANOVA (Figure 6, left) including the

three methods indicated that there were significant differences between them.

Therefore, at least one method significantly differed from the others (p<0.05).290

The post-hoc analysis (Bonferroni) confirmed the statistical differences between

these three approaches (see Figure 6, right). Paired repeated measures ANOVAs

(Table 2) pointed out that, while approaches including the proposed features

(SVM2 and SDAE) performed significantly better (p<0.05) than SVM1, no sig-

nificant differences were found between them (p = 0.0811).295

SVM1 vs. SVM2 SVM1 vs. SDAE SVM2 vs. SDAE

p-value 0.0002 0.0001 0.0811

Table 2: Within-subjects ANOVA on DSC values between automatic segmentation

approaches.

Results also showed that Hausdorff distances decreased in the classification

schemes using both machine and deep learning techniques, in comparison with

manual segmentations (Fig. 7). Additionally, the addition of the proposed
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SVM1 SVM2 SDAE

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Dice Similarity Coefficients for the machine learning methods

p−value   =   2.41e−007
F−stat     =   45.75   

0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93

SDAE

SVM2

SVM1

DSC ANOVA multi−groups comparison

Dice Similarity Coefficient

1 group (in red) has mean significantly
different from groups SVM2 and SDAE

Figure 6: Within-subjects ANOVA analysis of the Dice score coefficients provided by

the three automatic methods.

features (SVM2 and SDAE) decreased more the Hausdorff distances than the

machine learning scheme used as reference, which did not include the suggested300

features (SVM1). The within-subjects ANOVA test conducted on the Hausdorff

distances values indicated that, although less significative than in the case of

DSC, statistical differences between the groups existed. Again, these differences

came overall from observer 1 and 4. Taking into account the Hausdorff distances

measured only on the machine and deep learning based schemes, a p-value of305

0.0353 was obtained. As in the case of DSC values, at least one method signif-

icantly differed from the others (p<0.05). Paired repeated measures ANOVAs

(Table 3) indicated that method SVM1 was statistically different from methods

SVM2 and SDAE (<0.05). Nevertheless, it failed to demonstrate a statistically

significant difference between these two approaches (p = 0.7874).310

SVM1 vs. SVM2 SVM1 vs. SDAE SVM2 vs. SDAE

p-value 0.0067 0.0202 0.7874

Table 3: Paired within-subjects ANOVA on Hausdorff distances between automatic

segmentation approaches.

3.2. Volume similarity

Manual contours differed from the ground truth between 18.9% (Observer 2)

and 39.4% (Observer 4) as average (Table 4). In contrast, the three automatic
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Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE

4

6

8

10

12

14

Hausdorff Distances (mm)

p−value = 0.0128
F−stat     =   3.06

Figure 7: Hausdorff distances meassured for the volume segmented by the observers

and the automatic approaches.

approaches presented here largely decreased these volume differences, with a

mean difference of 7.2%, 4.0% and 3.1% for SVM1, SVM2 and SDAE, respec-315

tively. Individual values for volume differences (%) are shown in Table 4 for all

the patients contoured by the four observers and the three analyzed methods.

As it can be observed, classification schemes including the proposed features

decreased the volume difference of automatic segmented volumes with respect

to the reference ones.320

A within-subjects ANOVA was performed over the volume differences values

for the four observers and the three automatic contours (Figure 8). Visual differ-

ence between the groups of manual segmentations and automatic segmentations

is confirmed by the p-value (<0.05) obtained in the ANOVA test. Because the

p-value was less than the significance level of 0.05, the null hypothesis can be325

rejected and we can conclude that some of the groups have statistically signif-

icant differences on their mean values. The post-hoc analysis (Bonferroni) is

shown Figure 8 on the right. It confirms that significant differences came from

the groups formed by the 4 observers in one side, and by the automatic contours

in the other side.330

Repeated measures ANOVA tests between volume differences and the ground

truth was conducted to individually compare the volumes. Computed p-values
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Patient Volume difference (%)

Obs.1 Obs.2 Obs.3 Obs.4 SVM1 SVM2 SDAE

#1 40.7% 19.3% 20.6% 28.1% 5.5% 2.2% 4.8%

#2 28.8% 34.9% 39.6% 32.4% 3.6% -1.9% 1.8%

#3 24.1% 13.7% 29.3% 49.4% 3.8% 2.0% 0.8%

#4 34.4% 19.8% 17.3% 41.6% -4.4% 5.2% 3.1%

#5 18.7% 13.9% 15.5% 51.7% -8.2% -6.6% -3.4%

#6 22.9% 19.6% 13.7% 32.6% -7.6% -3.5% -3.7%

#7 33.3% 15.8% 25.3% 33.5% -2.5% -3.6% -3.1%

#8 21.2% 15.9% 25.5% 47.6% -12.6% -5.5% 4.0%

#9 40.6% 17.3% 25.9% 38.1% -16.2% -5.0% -3.2%

Average 29.4% 18.9% 23.6% 39.4% 7.2% 4.0% 3.1%

Std. Dev 8.3% 6.4% 8.0% 8.5% 4.6% 1.7% 1.2%

Table 4: Evaluation results (Volume difference (%)) of the manual contouring for the

four observers, SVM and proposed approach with respect to the generated ground

truth. The average represents the average of the absolute of volume difference values.

Obs.1 Obs.2 Obs.3 Obs.4 SVM 1 SVM 2 SDAE
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Obs.4
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Obs.1

Volume Differences(%)

Volume Differences ANOVA multi−groups comparison

4 groups (in red) have means 
significantly different from Group SDAE

Figure 8: Results of the within-subjects ANOVA test conducted on the volume differ-

ence values for the four manual contours and the three automatic methods. On the

left, mean volume differences and deviations are shown. On the right, the ANOVA

multi-group comparison is displayed, where the automatic method SDAE is selected

as reference of the comparison.

for the automatic segmentation methods were greater than 0.05, particularly in

the proposed deep learning scheme (Table 5). Thus, statistical results showed a

17



significant similarity between automatically segmented volumes and generated335

ground truth volumes, notably for the SDAE based scheme.

SVM1 vs. GroundTruth SVM2 vs. GroundTruth SDAE vs. GroundTruth

p-value 0.1175 0.1841 0.4584

Table 5: Repeated measures ANOVA on volume differences values between automatic

segmentation approaches and the ground truth.

3.3. Classification time

Regarding the segmentation time of the automatic approaches, while the

features extraction time was the same for all the approaches, classification time

differed between the SVM and SDAE based schemes. Features extraction pro-340

cess was done in around 15 seconds as average for each volume. Concerning the

segmentation, layouts based on SVM reported a mean classification time close

to 25 seconds for the whole volume. Contrary, the deep learning-based scheme

performed the task in 0.36 seconds as average.

4. Discussion345

A deep learning-based classification scheme formed by stacking denoising

auto-encoders has been proposed in this work to segment the brainstem. It has

been compared with a machine learning approach widely and successfully used

for classification, i.e. SVM. Additionally to traditional spatial and intensity

based features used in machine learning approaches, the inclusion of geodesic350

distance transform map, and a modified version of a 3D local binary pattern

has been proposed and evaluated.

Statistical analysis indicated that there were significant differences between

the automatic (machine and deep learning based) schemes and the manual de-

lineations made by the four experts. In addition, the ANOVA tests performed355

between the machine and deep learning based approaches, suggested that dif-

ferences between them were statistically significatives on the DSC evaluation.

These differences were particularly important in the classification schemes that
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included the proposed features. Although differences were less significative in

the rest of the similarity metrics, results showed that our deep learning clas-360

sification scheme performed better than the other machine learning based ap-

proaches. In terms of segmentation time, while features extraction was equal

in all the approaches, classification time reported by the deep learning scheme

was approximately 70 times faster than SVM based scheme. Consequently, the

proposed deep learning architecture demonstrated a significant gain in the per-365

formance of the brainstem segmentation on MRI, outperforming the widely used

SVM approach.

Even though the presented work is not pioneering on the evaluation of auto-

matic segmentation of the brainstem, among others, in the context of radiation

therapy, it presents important improvements respect to the others (See Table370

6). All these previous methods are atlas-based and thus registration dependent.

This makes segmentation times to be over several minutes, which might be

clinically impractical in some situations. Our method, however, performs the

segmentation in few seconds. A noteworthy point is that features extraction

represented nearly 97.5% of the whole segmentation process. Since this stage is375

composed by simple and independent image processing steps, this can be eas-

ily parallelized. By doing this, the total segmentation time may be drastically

reduced.

Reference Method DSC pVD (%) Segmentation Time

Bondiau et al.,2005 Atlas-Based - -13.11 20 min. (7 OARs and 7 normal structures)

Isambert et al.,2008 Atlas-Based 0.85 -14.8 7-8 min. (6 OARs)

Babalola et al.,2009

Atlas-Based

Statistical-Based (PAM)

Statistical-Based (BAM)

Expectation-Minilization

0.94

0.88

0.89

0.83

3.98

6.80

7.80

21.10

120-180 min. (Set of brain structures)

1 min. + 20 min.1

5 min. + 3 min.1

30 min. (Set of brain structures)

Deeley et al.,2011 Atlas-Based 0.85 - -

Dolz et al.,2015 Support Vector Machines 0.88 7.2 (15 + 25) seconds

Proposed scheme Stacked Denoising Auto-encoders 0.91 3.08 (15 + 0.36) seconds

Table 6: Table that summarizes results of previous works which attempted to segment

the brainstem on MRI images. DSC and pVD are given as mean values.
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Results provided in this work demonstrated that the proposed deep learning-

based classification scheme outperformed all previous works when segmenting380

the brainstem. Furthermore, the addition of the novel features, i.e. geodesic

distance transform map and LBP-3D, in the classifier increased the volume

similarity at the same time that reduced Hausdorff distances. Nevertheless, it

is important to note that differences in data acquisition, as well as metrics used

to evaluate the segmentation, often compromise comparison to other works.385

More important than the improvements with respect to other methods, is the

clinical validation in regards of variability between clinically adopted contours.

When comparing the results with the manual contours, it can be observed that

they lie inside the variability of the observers. This fact, together with the

remarkably low segmentation time reported, makes this technique suitable for390

being used in clinical routine. Therefore, the introduction of such technique

may help radiation oncologists to save time during the RTP, as well as reducing

variability in OAR delineation.

One of the strengths of machine and deep learning methods relies on their

ability to transfer knowledge from human to machine. Hence, for example, when395

no visible boundaries are present, the classifier uses its transferred intelligence

from doctors to perform the segmentation as they would do. As example, we

can cite the area where the brainstem meets the cerebellum in the lower pons

(See Fig. 1 the image on the left). No contrasted and visible boundary is present

in this region, so experts use their knowledge and experience to delineate the400

brainstem contours. Clinically speaking, the contour starts anteriorly at the

basilar sulcus of the ponds and it is extended laterally to include the middle

cerebellar peduncles. The contour continues then posteriorly and medially to-

wards the median sulcus of the fourth ventricle. This would not be possible

without the experts’ knowledge. Therefore, transferring their acquired knowl-405

edge to the deep architecture to be learned helps in assisting to the delineation

1These two approaches required registration steps which took 20 minutes in the first case,

and around 3 minutes for the second method.
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task in areas where other methods would fail.

Extension of the proposed deep architecture approach to other organs at risk

involved in the RTP, such as the optic chiasm or the cochlea, is envisaged. In

addition to the information coming from MR-T1, intensity properties of MR-410

T2 may help in the segmentation process. Therefore, the impact of including

intensity values of MR-T2 images into the features vector will be investigated.

Future work will also aim at validating our deep learning based scheme on a

larger dataset with the ultimate goal of gradually bringing automated segmen-

tation tools into clinical practice.415
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