
HAL Id: hal-01403864
https://hal.science/hal-01403864

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalization of the Minimum Branch Vertices
Spanning Tree Problem

Massinissa Merabet, Miklós Molnár

To cite this version:
Massinissa Merabet, Miklós Molnár. Generalization of the Minimum Branch Vertices Spanning Tree
Problem. [Research Report] Nanyang Technological University, Singapore. 2016. �hal-01403864�

https://hal.science/hal-01403864
https://hal.archives-ouvertes.fr


Generalization of the Minimum Branch
Vertices Spanning Tree Problem

Massinissa Merabet
1

ERIAN

Nanyang Technological University

Singapore

Miklos Molnar
2

LIRMM

University of Montpellier

Montpellier, France

Abstract

Given a connected graph G, a vertex v of G is said to be a branch vertex if its
degree is strictly greater than 2. The Minimum Branch Vertices Spanning Tree
problem (MBVST) consists in �nding a spanning tree of G with the minimum num-
ber of branch vertices. This problem has been well studied in the literature and has
applications specially for routing in optical networks. In this paper we propose a
generalization of this problem. We introduce the notion of k-branch vertex which is
a vertex with degree strictly greater than k+2. The parameter k can be seen as the
limit of the capacity of optical splitters to divide the light signal. In order to respect
as far as possible this limit, we propose to search a spanning tree of G with the
minimum number of k-branch vertices (k-MBVST problem). We propose a proof of
NP-hardness of this new problem whatever the value of k. We also propose an ILP
formulation of the k-MBVST by generalising the MBVST one. Experimental tests
on random graphs show that the number of k-branch vertices increases with graph
size but decreases with k as well as with the density. They also show that when
k ≥ 4, the number of k-branch vertices is close to zero whatever the size and the
density of the tested graph.

Keywords: Spanning Tree, Minimization of Branch Vertices, ILP, Linear
Programming, MBVST, k-MBVST, Optical Networks.



1 Introduction

Wavelength-Division Multiplexing (WDM) is an e�ective technique to exploit
the large bandwidth of optical �bers to meet the explosive growth of band-
width demand in the Internet [HGCT02].
Multicast consists in simultaneously transmit information from one source to
multiple destinations in a bandwidth e�cient way (it duplicates the informa-
tion only when necessary). From the computational point of view, multicast
routing protocols in WDM networks is mainly based on light-trees [SM99]. It
requires the intermediate nodes to have the ability to split the input signal to
multiple outputs if needed. A light-splitting switch is needed in the optical
device to perform such a task. A node which has the ability to replicating any
input signal on any wavelength to any subset of output �bers is referred to as a
Multicast-Capable (MC) node [MZQ98]. On the other hand, a node which has
the ability to tap into the signal and forward it to only one output is called
a Multicast-Incapable (MI) node. The light-splitters switchs are rather ex-
pensive devices therefore the number of MC nodes should be minimum in the
light-tree. L.Gargano et al. expressed in [GHSV02] this aspect by introducing
The Minimum Branch Vertices Spanning Tree problem (MBVST) which con-
sists in �nding a spanning tree of a graph with the minimum number of branch
vertices (vertices with degree strictly grater than 2). This NP-hard and no-
APX problem [GHSV02] is extensively studied in the literature. In [CGI09],
Cerrulli et al. give the �rst ILP formulation of this problem based on a sin-
gle commodity �ow to guaranty the connectivity. In [CCGG13] F.Carabbs et
al. give two more ILP formulations based respectively on Multi Commodity
Flow and Miller-Tucker-Zemlin formulation. They also provide both lower
and upper bound for the MBVST using Lagrangian relaxation. In [Mar15],
A.Marin presents a branch-and-cut algorithm based on an enforced Integer
Programming formulation for the MBVST problem. In [CCR14], C.Cerrone
et al. present a uni�ed memetic algorithm for the MBVST, the problem of
minimize the degree sum of branch vertices (MDST), and the well known
Minimum Leaves Problem. M.Merabet et al. prove in [MDM13b] that the set
of optimal solutions for MBVST and the set of optimal solutions for MDST
are disjoint. They also propose two variants of them, taking into account the
position of MC nodes in the optical network. In [MDM13a], they consider the
case where the application do not explicitly impose a sub-graph as solution.
A more �exible structure called hierarchy is proposed. Hierarchy, which can
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be seen as a generalization of trees, is de�ned as a homomorphism of a tree in
a graph [Mol08]. Since minimizing the number of branch vertices in a hierar-
chy does not make sense, they propose to search the minimum cost spanning
hierarchy such that the number of branch vertices is less than or equal to an
integer R.

The light power in optical networks should be controlled because of the power
loss. Indeed, if a light signal is splitted into k copies, the signal power of one
copy will be reduced with, at least, a factor of 1/k of the original signal power
[MJ00]. The more k is high, the more informations are lost. If k is too high
then the information can not be read by the destinations. Therefore k can be
seen as a tolerance parameter. Let a k-branch vertex be a vertex with degree
strictly grater than k + 2, it is useful to look for a light-tree in the WDM
network with the minimum number of k-branch vertices, where k is �xed as
the tolerance parameter. Notice that the MBVST is a special case with k = 0.
If the light-tree contains k-branch vertices, an optical ampli�er should be in-
stalled near each one to guaranty the e�ciency of the broadcast/multicast.

In this paper we introduce the k-MBVST problem which, given a positive
integer k and a graph G = (V,E), aims to �nd a minimum spanning tree of
G with minimum number of k-branch vertices. I proof of the NP-hardness of
the k-MBVST whatever k is given in Section 2. An ILP formulation based
on single commodity �ow is given in Section 3, and the experimentations on
random graphs are done in Section 4.

2 Problem formulation and NP-hardness

The MBVST problem is de�ned in [GHSV02] as follows :

De�nition 2.1 Let G = (V,E) be a graph. The MBVST problem consists
in �nding a spanning tree T of G such that the number of branch vertices in
T is minimum.

Let us de�ne the k-branch vertex :

De�nition 2.2 A k-branch vertex is a vertex with degree strictly grater than
k + 2.

The k-MBVST problem which can be seen as the generalization of the MBVST
problem is de�ned as follows :



De�nition 2.3 Let G = (V,E) be a graph and k be a positive integer. The
k-MBVST problem consists in �nding a spanning tree T of G such that the
number of k-branch vertices in T is minimum. We denote by sk(G) the smallest
number of k-branch vertices in any spanning tree of G.

In a Hamiltonian graph, �nding a 0-MBVST is equivalent to �nding a Hamil-
tonian path in G. Thus, The k-MBVST is NP-complete in this case. Fur-
thermore, the classical MBVST problem is NP-complete [GHSV02] and it is a
particular case of the k-MBVST problem. Therefore k-MBVST is at least as
di�cult as the MBVST. We proof in the following that the k-MBVST problem
still hard even when k is distant from zero.

Theorem 2.4 Let r be a �xed non-negative integer. It is NP-complete to

decide whether a given graph G satis�es sk(G) ≤ r whatever the value of k.

Proof

• For r = 0 : Let G = (V,E) be a given graph. Construct a new graph G′ by
linking k leafs to each vertex v ∈ V . Decide whatever G′ contains a spanning
tree with no k-branch vertex is equivalent to decide if G is Hamiltonian.

(a) Graph G

k leafs

(b) Graph G′

Figure 1. Reduction from Hamiltonien problem to 0-MBVST (k = 5)

• For r ≥ 1 : Let G = (V,E) be a given graph. We construct a graph G′

by duplicating r · kk times the graph G and adding a complete graph Kr.
We choose an arbitrary vertex v ∈ V and we link every vertex of the graph
K to r distinct duplications of G from their vertex v. We link k leafs to
each vertex of each duplication of G. In any spanning tree of G′, the k
vertices of the complete graph are necessary a k-branch vertices. Thus, the
graph G′ contains a spanning tree with sk(G

′) = r if and only if G admits
a Hamiltonian path starting from v.
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(b) Graph G′

Figure 2. Construction of the graph G′ for k = 1 and r = 6.
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3 ILP formulation of the k-MBVST problem

In this section, we propose an ILP formulation of the k-MBVST problem
based on the single �ow formulation proposed in [CGI09]. In order to de�ne a
spanning tree T of G, we can send from a source vertex s ∈ V one �ow unit to
every other vertices v ∈ V \ {s}. The �ow is directed. Thus, the initial graph
has to be transformed in a symmetric oriented graph Gd = (V,Ed) where for
each edge {u, v} in E corresponds two arcs (u, v) and (v, u) in Ed. For each
arc e = (u, v) ∈ Ed, we de�ne a variable f(u,v) representing the �ow going
from u to v. We have a binary decision variable xe. It is equal to 1 if f(u,v) or
f(v,u) carry out a non-zero �ow, and zero otherwise. Finally, for each v ∈ V ,
we have a decision variable yv that is equal to 1 if v is a k-branch vertex, and
0 otherwise. In the following the linear program is presented.

The objective of our problem is to minimize the number of k-branch vertices
belonging to the spanning tree of G. Hence the general objective function can
be expressed as follows:

Minimize :
∑
v∈V

yv (1)

This objective function is subject to a set of constraints.



Spanning tree constraints:∑
(u,v)∈Ed

x(u,v) = 1 ∀v ∈ V \ {s} (2)

∑
(u,v)∈Ed

x(u,v) = n− 1 (3)

Since a vertex with more than one parent creates a cycle, the constraint (2)
ensure that each vertex except the source have one and only one predecessor.
The number of edges of any tree must be equal to the number of its vertices
minus one. The constraints (3) makes sure that exactly n−1 arcs are selected
in the solution. These two constraints are necessary but not su�cient to have
a tree since the connectivity must be ensured. In this purpose, �ow based
constraints are added.

Connectivity constraints:

∑
(s,v)∈Ed

f(s,v) −
∑

(v,s)∈Ed

f(v,s) = |V | − 1 (4)

∑
(v,u)∈Ed

f(v,u) −
∑

(u,v)∈Ed

f(u,v) = −1 ∀v ∈ V \ {s} (5)

x(u,v) ≤ f(u,v) ≤ (|V | − 1) · x(u,v) ∀(u, v) ∈ Ed (6)

Constraints (5) ensures that each vertex except the source "consumes" one
and only one unit of �ow. This constraint also guarantees that each vertex
is reachable from the source s. Constraint (4) ensure that the �ow emitted
by the source is equal to |V | − 1. Constraints (6) allows each arc to carry
non-zero �ow if and only if it is used in the output graph. The value of this
�ow should not exceed the total �ow emitted by the source.

Degree constraints:

∑
(v,u)∈Ed

x(v,u) +
∑

(u,v)∈Ed

x(u,v) − k − 2 ≤ d(v) · yv ∀v ∈ V (7)

Constraints (7) impose vertex v to be a k-branch vertex if its degree is strictly
greater than k + 2 in the tree. Note that the value of yv is unconstrained
if d(v) ≤ k + 2, however in this case it will be set to zero by the objective
function.



4 Experimentation

In this section, we describe the computational results that we obtained by ap-
plying the proposed single commodity �ow formulation (SC) for the k-MBVST
to a set of instances generated according to parameters originally proposed in
[CCGG13]. In order to obtain a signi�cant number of branch vertices, these in-
stances are considered as spars. We consider 9 di�erent values for the number
of vertices of random graph: |V | = {50, 100, 200, 300, 400, 500, 600, 700, 800}.
The number of edges is generated according to the following formula:
b(|V |−1)+ i×1.5×d

√
|V |ec with i ∈ {1, 2, 3}. For each value of the parame-

ter k ∈ {0, 1, 2, 3, 4, 5}, we randomly generated 30 instances for each choice of
|V | and i. The SC formulation has been coded in C. The IBM ILOG CPLEX
12 solver was used to solve the mathematical formulations, considering a time
limit of 1 hour for each instance. All tests have been executed on an Intel i7
6820HQ 2.7Ghz (with 8 Cores) workstation with 16 gigabytes of RAM.

The numerical results are presented in Table 1. Trivially, the computational
time increases both with the size of the graph and with de density. Indeed,
greater and denser is the instance, higher is the number of decision variables
in the ILP. Furthermore, greater is the instance, less the constraint 6 is tight
in average. The number of branch vertices decrease in a more dense instances
(i = 2 and i = 3) because more an instance is dense and more farther it is
from the Hamiltonicity form. Obviously, the number of branch vertices me-
chanically increase with the instance size. This is ampli�ed by the fact that
our density formula makes the density decrease with the instance size.

Figure 3 shows the number of k-branch vertices regarding the variation of
the parameter k and |V | for each value of i. The number of k-branch vertices
mechanically increases with |V | but decreases with k as well as with i. When
k ≥ 4, the number of k-branch vertices is close to zero whatever the value of
|V | and the value of i. This a�rmation can not be con�rmed for the unsolved
instances but even when the percentage of solved instances is equal to 100%
this a�rmation still true.



k=0

Instances i = 1 i = 2 i = 3
|V | Sol Time # Inst Sol Time # Inst Sol Time # Inst

50 8.00 0.22 30 3.80 0.60 30 2.50 0.62 30

100 18.00 0.39 30 12.30 1.11 30 7.60 5.44 30

200 38.40 1.14 30 28.90 5.21 30 20.70 18.31 30

300 59.90 1.91 30 49.40 9.73 30 37.90 42.76 30

400 80.60 4.06 30 67.40 15.15 30 53.80 50.98 30

500 102.60 4.32 30 86.60 19.69 30 74.10 446.47 30

600 130.50 5.93 30 107.70 21.81 30 91.22 289.46 29

700 149.80 6.68 30 131.70 40.04 30 113.44 275.39 29

800 175.20 8.73 30 149.80 43.79 30 131.00 188.82 30

k=1

50 1.50 0.10 30 0.00 0.21 30 0.00 0.25 30

100 4.60 0.31 30 1.00 0.46 30 0.50 0.82 30

200 12.60 0.58 30 5.30 1.80 30 2.67 3.73 27

300 20.20 1.72 30 10.70 8.32 30 4.88 9.35 24

400 28.10 3.21 30 17.70 12.19 30 9.50 21.20 25

500 41.00 4.78 30 24.67 16.92 27 14.00 42.85 27

600 49.00 6.16 30 31.89 22.37 27 20.43 108.02 21

700 61.20 8.11 30 38.90 23.84 30 31.00 77.04 6

800 68.70 8.99 30 46.60 40.74 30 34.60 150.90 12

k=2

50 0.30 0.07 30 0.00 0.12 30 0.00 0.17 30

100 0.70 0.16 30 0.10 0.31 30 0.00 0.49 30

200 3.00 0.49 30 0.50 1.45 30 0.33 1.68 27

300 4.90 0.94 30 1.80 3.56 30 0.71 6.19 21

400 9.80 2.09 30 2.67 7.36 27 1.22 15.07 27

500 12.00 2.29 30 4.63 12.04 24 2.50 25.04 30

600 16.20 4.23 30 6.33 24.68 18 3.25 32.69 12

700 20.00 5.56 30 9.75 19.19 12 5.00 118.11 6

800 24.70 5.62 30 12.00 23.90 9 4.33 57.01 9

k=3

50 0.10 0.07 30 0.00 0.10 30 0.00 0.13 30

100 0.10 0.15 30 0.10 0.17 30 0.00 0.27 30

200 0.60 0.32 30 0.10 0.93 30 0.00 1.56 30

300 1.10 0.79 30 0.50 1.63 30 0.10 3.98 30

400 1.40 1.32 30 1.00 4.42 24 0.40 10.80 30

500 3.50 1.62 30 1.38 9.50 24 0.13 22.14 24

600 4.56 3.00 27 2.00 5.59 7 1.00 30.55 21

700 6.20 4.18 30 1.40 53.08 15 0.33 69.49 9

800 7.30 3.04 30 2.14 21.57 20 2.50 57.01 6

k=4

50 0.00 0.05 30 0.00 0.09 30 0.00 0.12 30

100 0.00 0.08 30 0.00 0.13 30 0.00 0.23 30

200 0.00 0.18 30 0.00 0.54 30 0.00 0.35 30

300 0.50 0.32 30 0.14 0.98 21 0.00 1.88 27

400 0.60 0.54 30 0.00 09.12 21 0.00 2.41 24

500 0.40 0.51 30 0.13 5.00 24 0.00 24.68 18

600 1.60 1.15 30 0.20 8.65 15 0.25 50.22 12

700 1.30 2.63 30 0.67 15.77 9 0.00 86.80 9

800 1.80 3.59 30 0.33 16.36 18 0.40 14.20 15

k=5

50 0.00 0.05 30 0.00 0.08 30 0.00 0.10 30

100 0.00 0.09 30 0.00 0.15 30 0.00 0.14 30

200 0.00 0.11 30 0.00 0.42 30 0.00 0.50 30

300 0.00 0.20 30 0.00 1.12 24 0.00 1.08 30

400 0.30 0.34 30 0.00 21.68 24 0.00 4.76 24

500 0.10 0.29 30 0.00 80.04 21 0.00 45.24 18

600 0.30 0.64 30 0.00 6.34 15 0.00 40.58 15

700 0.00 1.83 21 0.00 16.95 8 0.00 42.75 8

800 0.11 2.39 27 0.00 10.39 21 0.00 49.27 6

Table 1
Solution value, running time and number of solved instances regarding |V |, k and i.
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Figure 3. Variation of sk(G) regarding |V |, k and i.

5 Conclusion

In this paper, we propose a generalization of the well known MBVST problem
by introducing the notion of k-branch vertex, which is a vertex with degree
strictly greater than k + 2. Our new parametrized problem (k-MBVST) aims
to �nd a spanning tree of G with the minimum number of k-branch vertices.
Let r be a non-negative integer, we proved that it is NP -complete to decide
whatever a graph can be spans by a tree with at most r k-branch vertices,
whatever the value of k. We also proposed an ILP based on a single �ow
formulation. Tests on spars random graphs allowed us to evaluate the number
of k-branch vertices in the optimal solution and the running time regarding
the value of the parameters k, the graph size, and the graph density. The
results show that the number of k-branch vertices increases with graph size
but decreases with k as well as with the density. They also show that when
k ≥ 4, the number of k-branch vertices is close to zero whatever the size and
the density of the tested graph.



References

[CCGG13] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili. Lower and
upper bounds for the spanning tree with minimum branch vertices.
Computational Optimization and Applications, 56(2):405�438, 2013.

[CCR14] C. Cerrone, R. Cerulli, and A. Raiconi. Relations, models and a memetic
approach for three degree-dependent spanning tree problems. European
Journal of Operational Research, 232(3):442 � 453, 2014.

[CGI09] R. Cerulli, M. Gentili, and A. Iossa. Bounded-degree spanning tree
problems: models and new algorithms. Comput. Optim. Appl, 42:353�
370, April 2009.

[GHSV02] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro. Spanning Trees with
Bounded Number of Branch Vertices. ICALP '02, pages 355�365,
London, UK, 2002. Springer-Verlag.

[HGCT02] J. He, S. H. Gary Chan, and D. H. K. Tsang. Multicasting in wdm
networks. IEEE Communications Surveys Tutorials, 4(1):2�20, 2002.

[Mar15] A. Marín. Exact and heuristic solutions for the minimum number of
branch vertices spanning tree problem. European Journal of Operational

Research, 245(3):680 � 689, 2015.

[MDM13a] M. Merabet, S. Durand, and M. Molnár. Exact solution for branch
vertices constrained spanning problems. Electronic Notes in Discrete

Mathematics, 41(0):527 � 534, 2013.

[MDM13b] M. Merabet, S. Durand, and M. Molnár. Minimization of branching in
the optical trees with constraints on the degree of nodes. In The Eleventh
International Conference on Networks - ICN, pages 235�240, 2013.

[MJ00] A. Maher and S. D. Jitender. Power-E�cient Design of Multicast
Wavelength-Routed Networks. In IEEE Journal of Selected areas in

communication, pages 1852�1862, 2000.

[Mol08] M. Molnár. Hierarchies for Constrained Partial Spanning Problems in
Graphs. Technical report PI-1900, 2008.

[MZQ98] R. Malli, X. Zhang, and C. Qiao. Bene�ts of multicasting in all-optical
networks. In Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, volume 3531, pages 209�220, October 1998.

[SM99] L. H. Sahasrabuddhe and B. Mukherjee. Light trees: optical multicasting
for improved performance in wavelength routed networks. IEEE

Communications Magazine, 37(2):67�73, Feb 1999.


	Introduction
	Problem formulation and NP-hardness
	ILP formulation of the k-MBVST problem
	Experimentation
	Conclusion
	References

