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1. Introduction

The need for system identification and reduced order modeling arises from the fact that, presented with sensor data, the
analyst is generally unaware of details of the underlying dynamical system from which they originated. The common ap-
proach to this dilemma is to assume that the dynamical system is linear and that the measured responses are stationary
in time. This facilitates the use of the numerical Fourier transform (FT) followed by experimental modal analysis (EMA)
[4] to extract natural frequencies, mode shapes and modal damping ratios, from which the parameters of the assumed linear
model can be determined once the mass distribution is known. This approach, which is fully nonparametric, has served the
dynamics and controls community well, even in the presence of weakly nonlinear system behavior. Clearly, though, as sys-
tems become more complex, lightweight and flexible, incorporating not only electrical and mechanical components but also
additional elements and requirements such as, for example, bio-inspired features, the likelihood exists that the underlying
behavior will be strongly nonlinear and nonstationary. Such dynamical characteristics can result from, for example, local
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Nomenclature

bAðtÞ amplitude
cðtÞ reminder (EMD analysis)
ciðtÞ intrinsic mode function (EMD analysis)
C coefficient of essential nonlinearity
D damping matrix (FE model of rod)
fi fequency (Hz)
gðtÞ complex function
L length of rod
M mass matrix (FE model of rod)
rðxÞ initial displacement distribution of the rod
RðtÞ;RiðtÞ residual (EMD analysis)
sðxÞ initial velocity distribution of the rod
t time
TðpÞi=j subharmonic tongue in the FEP
uðx; tÞ response of linear rod
uiðtÞ; miðtÞ amplitude of intrinsic modal oscillator
mðtÞ response of nonlinear attachment
m0 initial displacement of the attachment
_m0 initial velocity of the attachment
xðtÞ signal (time series)
xmaskðtÞ masking signal
yðtÞ signal (time series)
a1 proportional damping coefficient (FE model of rod)
e small parameter scaling the mass of the attachment
ĥkðtÞ phase
ki; k

j
i viscous damping coefficients

Kj
iðtÞ;KðtÞ forcing amplitude of intrinsic modal oscillator

wðtÞ; ŵðtÞ complex function
uðtÞ complex slowly varying amplitude
x frequency (rad/sec)
x0 grounding frequency (rad/sec)
xi natural frequencies of the linear rod (rad/sec)
x̂kðtÞ instantaneous frequency
buckling, plastic deformations, clearance and backlash, hysteresis, friction, and so forth, and as we think more in terms of
multi-physics problems, one must also include nonlinearities due to interfacial effects such as shear lag between actuator
and structure, fluid-structure interactions, sensor-tissue interactions, and so forth. In general, a physics – based parametric
model of the system will not be known a priori.

However, given a sufficiently dense set of sensors, measured time series recorded throughout the system will contain all of
the information reflecting both nonlinearity and nonstationarity. The classical FT is not able to properly isolate and extract
this information and, in fact, may lead the less experienced analyst to mistake phenomena such as internal and combination
resonances for natural frequencies, to fail to account for sensitivities of the response to force and voltage magnitudes, initial
conditions, and to miss or misinterpret other unique behaviors. These observations highlight the importance of developing
effective, straightforward, nonparametric system identification and reduced order modeling methods for characterizing
strongly nonlinear, complex, multi-component systems that will be as utilitarian as (the well established) EMA is for linear
systems. The need for developing such a nonlinear system identification technique of broad applicability is dictated by the
limitations of current system identification techniques which are either applicable to only linear systems, or are tailored to
special classes of smooth nonlinear systems [11]. The difficulty in developing nonlinear system identification methodologies
valid for broad classes of dynamical systems is due to the well-recognized highly individualistic nature of nonlinear systems,
a feature that restricts the unifying dynamical features which are amenable to system identification [16].

Our proposed nonparametric nonlinear system identification (NNSI) technique relies solely on direct time series mea-
surement and post-processing, and leads to nonlinear interaction models (NIMs) of simple form, represented as sets of
uncoupled linear oscillators with time invariant coefficients forced by inhomogeneous terms representing nonlinear modal
interactions. Key to our method is a slow/fast partition of time series measurements that leads to the identification of the
basic (dominant) fast frequencies of the dynamics (which also govern the dimensionality of the resulting reduced order mod-
el), and slow flows governing the important (essential) dynamics of the problem. We then perform direct system identifica-
tion of the slow flow dynamics employing advanced post-processing computational algorithms, namely, the wavelet
2



transform, the Hilbert transform, and empirical mode decomposition (EMD). In particular, EMD is a signal analysis method
which has received much attention lately due to its application in a number of fields [7,8], but up to now was regarded as
lacking a theoretical or formal foundation. As shown, however, in [14,15] a solid theoretical foundation for EMD can be
gained in terms of the slow flow dynamics of the problem. Based on this key finding our NNSI technique successfully inte-
grates the aforementioned analytical and computational algorithms in a powerful and robust synergistic algorithm for con-
structing ROMs in broad classes of nonlinear dynamical systems.
2. Transient resonance captures (TRCs) and nonlinear damped transitions

We consider an unforced viscously damped dispersive finite rod on a distributed elastic support, possessing an essentially
nonlinear attachment at its right end (cf. Fig. 1). The essential nonlinearity of the attachment is due to the lack of a linear
component in the stiffness connecting it to the rod and, as discussed below, leads to strongly nonlinear modal interactions
between the rod and the attachment. The attachment consists of a light mass (scaled by the small parameter 0 < e� 1Þ and
is connected to the rod by the essentially nonlinear stiffness which is in parallel to a viscous damper. Denoting by vðtÞ and
uðx; tÞ the responses of the nonlinear attachment and the rod, respectively, we express the equations of motion of the system
in the form
@2uðx; tÞ
@t2 þx2

0uðx; tÞ þ ek1
@uðx; tÞ
@t

� @
2uðx; tÞ
@x2 ¼ 0; 0 6 x 6 L

uð0; tÞ ¼ 0;
@uðL; tÞ
@x

¼ �e€vðtÞ

e€vðtÞ þ ek2 _vðtÞ � @uðL; tÞ
@t

� �
þ C½vðtÞ � uðL; tÞ�3 ¼ 0

uðx;0Þ ¼ rðxÞ; @uðx;0Þ
@t

¼ sðxÞ;vð0Þ ¼ v0; _vð0Þ ¼ _v0

ð1Þ
where rðxÞ and sðxÞ are the initial displacement and velocity distributions of the rod, and the viscous dissipative terms of the
system are assumed to be small of OðeÞ. The normalized frequency x0 represents the cut-off frequency of the uncoupled dis-
persive rod of infinite extent, i.e., the bounding frequency separating travelling waves from near-field standing wave solu-
tions in the rod.

The strongly nonlinear transient dynamics of this system was computationally studied in previous work [5,20,6,18,21] by
constructing the frequency – energy plot (FEP) of periodic orbits of the undamped Hamiltonian system. Damped transitions
in the dynamics of the system can then be studied by superimposing their wavelet transform spectra on the Hamiltonian
FEP, recognizing that for sufficiently weak damping the effect of damping is purely parasitic, its only function being the
determination of the branches of periodic or quasiperiodic solutions in the FEP that are ‘visited’ by the dynamics. Due to
the essential stiffness nonlinearity of the attachment, system (1) may exhibit very complicated transient dynamics indeed,
including multi-frequency transitions between different response regimes.

In this work we will focus on one such specific damped transition. For this, the transient damped dynamics of system (1)
was computed by the finite element method (employing a 200 element discretization), under the assumption of proportional
viscous damping distribution (with a viscous damping matrix of the form D ¼ a1M – where M is the mass matrix of the dis-
cretized model of the rod), and parameters e ¼ 0:05; C ¼ 1:0; L ¼ 1:0; x0 ¼ 1:0; k2 ¼ 0:2; a1 ¼ 0:005. The leading eigenfre-
quencies and viscous damping ratios of the linear dispersive rod with no attachment are listed in Table 1. The specific
initial conditions for the damped response analyzed in this work are given by
Fig. 1. Dispersive rod on elastic foundation with essentially nonlinear attachment at its end.
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Table 1
Modal properties of the rod without attachment.

Mode No. Eigenfrequencies of the Rod (Hz) Viscous critical damping ratios

1 0.297 0.1343
2 0.767 0.0519
3 1.261 0.0316
4 1.768 0.0226
5 2.257 0.0176
6 2.757 0.0144
7 3.257 0.0122
8 3.757 0.0106
9 4.259 0.0093
10 4.759 0.0084
vð0Þ � f�0:33386 cosðxtÞ þ 0:00282 cosð3xtÞ þ 0:0092 cosð5xtÞgt¼0 ) vð0Þ � �0:1650

uðx;0Þ � 0:1052 sin x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �x2

0

q� �
cosðxtÞ þ 0:000988 sin x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 �x2

0

q� �
cosð3xtÞ

�
þ0:17536 sin x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25x2 �x2

0

� 	q� �
cosð5xtÞ



t¼0
) uð0;0Þ � �0:0052

ð2Þ
This specific set of initial conditions corresponds to initiation of the transient dynamics at the point of the FEP with dominant
frequency x ¼ 2:214 rad=s � x4=5 (where x4 is the fourth eigenfrequency of the rod with no attachment) on the subhar-
monic tongue T ð4Þ1=5 (cf. Fig. 2c). Following [20,18], a tongue labeled as TðnÞp=q denotes the branch of subharmonic motions of the
system where the dominant harmonic component of the nonlinear attachment is nearly equal to ðp=qÞxn, whereas that of
the rod is xn, where xn is its n-th linearized eigenfrequency; it follows that on the subharmonic tongue TðnÞp=q the periodic
response of the system of Fig. 1 possesses two main harmonics at frequencies xn and ðp=qÞxn.

Following this notation, and referring to Fig. 2c, the damped transient motion considered in this study initially possesses
two dominant harmonic components at frequencies x4 (the dominant harmonic of the rod) and x4=5 (the dominant har-
monic of the nonlinear attachment), but as energy decreases due to damping dissipation, multi-frequency transitions occur,
as evidenced by the irregular amplitude modulations of the corresponding time series (especially the one of the nonlinear
attachment – cf. Fig. 2b). These multi-frequency transitions are studied in Fig. 2c, where the wavelet spectrum of the relative
motion ½vðtÞ � uðL; tÞ� is superimposed on the Hamiltonian FEP of system (1). In this case there exist three distinct stages of
the damped motion. In the initial stage, there is a high – energy transition from the subharmonic tongue Tð4Þ1=5 (where the
motion of the system is initiated) to tongue Tð1Þ1=3. This is followed by prolonged subharmonic transient resonance capture
(TRC) of the dynamics on T ð1Þ1=3 [21] as signified by the presence of strong harmonics in the response at frequencies x1=3
and x1. Finally, there is a low-energy transition to a linearized state, where the response of the nonlinear attachment is neg-
ligible, and the dynamics is dominated by the response of the linear rod.

We wish to perform system identification and reduced order modeling of the described strongly nonlinear modal inter-
actions between the rod and the nonlinear attachment. To address this task we will rely solely on direct analysis of the time
series of the rod end and the nonlinear attachment. In addition to the wavelet transform we will employ additional advanced
post-processing tools; namely, empirical mode decomposition (EMD) and Hilbert transform analysis. In the following sec-
tions we will discuss the basic steps of our analysis in detail.
3. Empirical mode decomposition (EMD), Hilbert spectrum analysis and masking signals

Since the empirical mode decomposition (EMD) method combined with Hilbert spectral analysis was introduced in [7,8],
numerous applications to system identification [23,17], nonlinear dynamics [20,5,18,6] and damage detection [24,10] have
appeared. This decomposition method, based on identifying the characteristic time scales in measured time series, is adap-
tive, highly efficient, and suitable for nonlinear and nonstationary processes. In particular, EMD yields a complete and nearly
(but not completely) orthogonal basis of intrinsic mode functions – IMFs; these are oscillatory modes embedded in the time
series, each with its characteristic time scale.

Until now EMD was applied for time series analysis in an ad hoc fashion. The main loop of the EMD algorithm for extract-
ing the IMFs from a signal xðtÞ consists of the following steps [7,8]: (i) identify all extrema of xðtÞ; (ii) perform (spline) inter-
polations of the minima and maxima of xðtÞ, ending up with two envelopes e minðtÞ and e maxðtÞ, respectively; (iii) compute
the average curve RðtÞ ¼ e minðtÞ þ e maxðtÞ½ �=2 (as a residual); (iv) extract the remainder cðtÞ ¼ xðtÞ � RðtÞ; (v) apply the pre-
vious algorithm on the reminder cðtÞ until the residual RðtÞ can be considered as zero-mean under some tolerance (i.e., a
stopping criterion). Once this criterion (through the sifting process) is met, the remainder cðtÞ is regarded as the effective
IMF. By subtracting this IMF from the original time series and applying the algorithm iteratively we extract additional IMFs,
so that the original signal xðtÞ is decomposed sequentially from high- to low-frequency components as:
4
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Fig. 2. Damped dynamics initiated on tongue T ð4Þ1=5 of the FEP: (a) uðL; tÞ, (b) vðtÞ, (c) wavelet spectrum of the relative response ½vðtÞ � uðL; tÞ� superimposed
on the Hamiltonian FEP (the high harmonic at the fourth eigenfrequency of the rod is out of scale of the plot).
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xðtÞ ¼
XK

k¼1

ckðtÞ þ RKþ1ðtÞ; kRKþ1ðtÞk � tolerance ð3Þ
By this construction process the superposition of the K leading IMFs reconstruct approximately the measured time series;
however, due to the ad hoc nature of the sifting algorithm only a subset of these IMFs are physically meaningful with the
rest being of spurious nature. As discussed in [20,5,6], the dominant (and physically meaningful) IMFs can be identified
by comparing their instantaneous frequencies to the wavelet spectra of the original time series: the instantaneous frequen-
cies of the dominant IMFs coincide with the dominant harmonics of the wavelet spectra. This process also identifies the
dominant time scales (or frequencies) of the dynamics in the time series. The instantaneous frequency of an IMF is computed
by complexification and application of the Hilbert transform.

The Hilbert transform (HT) hðtÞ of a (mono-component) signal yðtÞ is computed as
hðtÞ �H½yðtÞ� ¼ PV
p

Z þ1

�1

yðsÞ
t � s

ds ð4Þ
where PV stands for Cauchy principal value. Moreover, a complex function whose imaginary part is the Hilbert transform of
the real part is analytic. Motivated by this result we may complexify the k-th IMF ckðtÞ of the time series xðtÞ by defining the
analytic complex function
ŵkðtÞ � ckðtÞ þ jH½ckðtÞ� ð5Þ
where j ¼ ð�1Þ1=2. This enables the computation of the instantaneous amplitude and phase of the k-th IMF as
bAkðtÞ ¼ c2
kðtÞ þH ckðtÞ½ �2

n o1=2
; tan ĥkðtÞ ¼H ckðtÞ½ �=ckðtÞ ð6Þ
from which the instantaneous frequency of the IMF is computed as x̂kðtÞ ¼ _̂hkðtÞ. Although these relations define the instan-
taneous frequency of the IMF regardless of the bandwidth, it has been observed that the notion of instantaneous frequency
has physical meaning only for narrowband signals; e.g., for high-frequency modulated signals. However, it is possible to
implement frequency demodulation for wideband signals as well, so that the instantaneous frequency can be considered
as an average of all frequencies that exist in the IMF at a given instant, while the instantaneous bandwidth can be considered
as the deviation from that average [19]. As discussed in [14], application of EMD to time series with dominant frequencies
whose ratios are in the range from 0.5 to 2 Hz lead to ‘complicated-mode’ IMFs exhibiting beat phenomena; the issue of how
to decompose such signals with closely spaced frequencies is important and not yet completely resolved.

Although EMD combined with the Hilbert transform (HT) forms a powerful post-processing tool for extracting intrinsic
oscillating components from a time series and identifying the dominant time scales of the dynamics, it has some important
deficiencies. First, application of EMD may lead to spurious IMFs, so that physically meaningful results from EMD can only be
obtained if these are omitted from further consideration in the analysis; spurious IMFs are the direct result of the well estab-
lished lack of orthogonality of the IMFs. The deletion of spurious IMFs from further consideration can be performed by
employing WT spectra as discussed previously. Second, there are concerns regarding the frequency resolution of the EMD re-
sults. Indeed, in order to obtain meaningful results when applying HT to the IMFs, it is necessary that these are mono-com-
ponent or, at least, narrowband (otherwise mixed-mode IMFs in the form of beat phenomena are obtained possessing closely
spaced frequencies). Finally, there are issues concerning the uniqueness of the EMD results. EMD does not result in a unique
decomposition of a measured time series since it is applied in an ad hoc manner and depends on a free stopping parameter;
that is, EMD is not robust in practice. The set of extracted IMFs can be considered as a basis for reconstructing the original
measured time series if it satisfies (or nearly satisfies) the basic conditions of completeness and orthogonality. By virtue of the
EMD sifting algorithm, completeness of the IMFs is guaranteed by construction. It is the lack of orthogonality between IMFs,
however, that generates spurious features in the results and prevents uniqueness of the decomposition.

The lack of IMF orthogonality, however, is a motivation for devising ways in order to refine EMD. First, we note that
orthogonality of the IMFs resulting from EMD analysis can be quantified; e.g., in (3) we may neglect the residual term
RKþ1ðtÞ and introduce the square of the truncated expression (3)
x2ðtÞ ¼
XK

k¼1

c2
kðtÞ þ 2

XK

k¼1

XK

p¼1

ckðtÞcpðtÞ ð7Þ
Then, an index of orthogonality (IO) can be defined by employing the cross term in (7)
IO ¼
XT

t¼0

XK

k¼1

XK

p¼1

ckðtÞcpðtÞ=x2ðtÞ
" #

;0 6 IO < 1 ð8Þ
so in the limit of complete orthogonality of the IMFs it holds that IO! 0. This observation will help us refine the EMD pro-
cess by requiring that the derived IMFs correspond to the least value of IO [typically below a prescribed tolerance, e.g., of
Oð10�3Þ]. This will lead to the development of an advanced EMD process – AEMD [14] through the use of masking signals
[for alternative techniques for improving EMD refer to [1,2,9,12,22]].
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Deering and Kaiser [3] claimed and demonstrated that utilizing masking signals can improve EMD’s deficiency in fre-
quency resolution, which should be useful for intermittency (or mode mixing). The main idea of using a masking signal
on the measured time series is to offset the inability of standard EMD to generate proper IMFs (that is, nearly orthogonal
and narrowband monocomponent), so the success of the AEMD depends on the proper choice of the amplitude and fre-
quency of the applied masking signals. In addition, application of masking signals can successfully address the existence
of inflection points in the time series which cannot be accounted for in the standard EMD [14].

Application of the AEMD technique will be demonstrated with an example which is reproduced from [14] that illustrates
its main features. We consider the signal xðtÞ ¼ cosð2pf1tÞ þ 0:3 cosð2pf2tÞ, f1 ¼ 1 Hz, f2 ¼ 3 Hz, for which the standard EMD
cannot separate the weak higher harmonic component from the strong lower frequency one. A schematic explaining the
application of the masking signal xmaskðtÞ ¼ 0:4xmax cosð2pfmaxtÞ (where fmax ¼ 20f 1 and xmax is the maximum amplitude
of xðtÞÞ is depicted in Figs. 3 and 4. To perform AEMD of xðtÞ, we perform standard EMD analysis of the signal
xþðtÞ � xðtÞ þ xmaskðtÞ yielding the IMFs cþk ðtÞ, k ¼ 0; 1; 2 (cf. Fig. 3a). Then we perform standard EMD analysis of the signal
x�ðtÞ � xðtÞ � xmaskðtÞ yielding the corresponding set of IMFs c�k ðtÞ, k ¼ 0; 1; 2 (cf. Fig. 3b). Finally, we compute the mean
curves of the respective IMFs to minimize the influence of the masking signal; i.e., we define the average IMFs
ck � cþk ðtÞ þ c�k ðtÞ

� 	
=2, k ¼ 0; 1; 2. Apparently, the leading IMFs c�0 ðtÞ correspond to the harmonic of the masking signal at fre-

quency f3 ¼ 20f 1, which are out-of-phase with each other; therefore, averaging this set of IMFs leads to c0 � 0, which implies
that the effects of the masking signal are almost completely eliminated from further analysis (cf. Fig. 4). The other two IMFs
c1 and c2 provide a physically meaningful decomposition in terms of nearly monochromatic components at frequencies f1

and f2, with small index of orthogonality equal to IO ¼ 4:7� 10�3.
We note that, the selection of the masking signal (or of its parameters) is not unique; e.g., using different values for the

frequency f3 in the previous example may also lead to physically meaningful AEMD results. Examination of several masking
signals to perform AEMD analysis provides some general guidelines for utilizing masking signals in practical signal analysis.
First, the frequency of the masking signal need not necessarily be high. The presence of higher frequency components in the
response implies smaller time step sizes and, hence, larger number of data points required for signal processing, which
causes long computational time and sometimes ill-behaved decomposition. In fact, the use of a masking signal has the effect
Fig. 3. Application of a masking signal xmaskðtÞ ¼ 0:4xmax cosð2pfmaxtÞ; f max ¼ 20f 1 to the signal xðtÞ ¼ cosð2pf1tÞ þ 0:3 cosð2pf2tÞ; f 1 ¼ 1 Hz; f 2 ¼ 3 Hz:
EMD analysis of (a) xðtÞ þ xmaskðtÞ, (b) xðtÞ � xmaskðtÞ [14].
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Fig. 4. Averaging of c�k ; k ¼ 0; 1; 2 for Advanced EMD (AEMD) of xðtÞ ¼ cosð2pf1tÞ þ 0:3 cosð2pf2tÞ, f1 ¼ 1 Hz; f 2 ¼ 3 Hz [14].
of adding artificial noise to the original time series, magnifying the hidden (or weak) frequency components. Therefore, the
choice of the masking signal should hinge on whether it contains frequency components which are similar to those of the
original signal to be analyzed. This requires a pre-test (such as Fourier or wavelet spectral analysis) of the original signal
to identify its frequency content. Second, a successful AEMD of a signal clearly depends on the masking signal amplitude;
that is, it is wise to select the amplitude of the masking amplitude to be sufficiently high in order to amplify sufficiently hid-
den or weak frequency components in the original time series.

We analyze now the transient multi-frequency damped transition of system (1) depicted in Fig. 2. In Fig. 5 we present the
power spectrum and corresponding wavelet transform of the response of the rod end (cf. Fig. 2a), and notice that it possesses
two main distinct harmonics. Hence, it is not necessary to apply a masking signal to perform EMD in this case, so the results
of application of standard EMD analysis are depicted in Fig. 6. There are two dominant, mono-component IMFs with index of
orthogonality IO ¼ 0:0031. These are almost proper IMFs (according to the discussion above), and their superposition accu-
Fig. 5. Rod end response: (a) normalized power spectrum, (b) wavelet transform spectrum; fk denotes the kth eigenfrequency (in Hz) of the rod with no
attachment.
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Fig. 6. EMD analysis of rod response: (a) 1st IMF and its instantaneous frequency superimposed on the WT spectrum, (b) 2nd IMF and its instantaneous
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rately reconstructs the rod end response (cf. Fig. 6c). Moreover, the instantaneous frequencies of the dominant IMFs coincide
with the dominant harmonics of the wavelet transform spectra of the rod end response (cf. Fig. 6a and 6b). The two dominant
IMFs possess nearly constant frequencies identical to the first and fourth eigenfrequencies of the rod with no attachment.
This correlates fully with the representation of the wavelet spectrum of this damped transition on the FEP (cf. Fig. 2c).

Studying the power spectrum and corresponding wavelet transform of the response of the nonlinear attachment depicted
in Fig. 7, we note that there exist closely spaced, time-varying harmonics in this case, so we need to apply a masking signal in
order to obtain nearly mono-component and nearly orthogonal (i.e., proper) IMFs. In this case we perform AEMD by applying
the masking signal xmaskðtÞ ¼ �0:4Vmax cosð2pf1masktÞ � 0:36Vmax cosð2pf2masktÞ to the time series, where Vmax is the maxi-
mum response of the response of the nonlinear attachment, 2pf1mask ¼ 2:214 rad=s � x4=5, and f2mask ¼ 4f 1mask. In Fig. 8
we depict the resulting (almost proper) IMFs together with their instantaneous frequencies; the index of orthogonality of
these IMFs is equal to IO ¼ 0:0139. Similar to the response of the end of the rod, the response of the nonlinear attachment
possesses two dominant IMFs that accurately reconstruct the original time series (cf. Fig. 8c and 8f). Considering, however,
the instantaneous frequencies of the two IMFs, we note that in this case the first dominant IMF possesses a nearly constant
frequency equal to one-fifth of the fourth eigenfrequency of the rod with no attachment, whereas the second IMF possesses a
slowly varying eigenfrequency which ends up ‘locking’ to one third of the first eigenfrequency of the rod in the time interval
250 < t < 500.

These results correlate fully with the damped transitions depicted in the FEP of Fig. 2c, as they indicate that the first IMF
of the rod end response and the first IMF of the nonlinear attachment capture the initial 1:5 TRC of the damped dynamics
during initiation of the motion on the subharmonic tongue Tð4Þ1=5 (with the rod possessing the dominant frequency x4 and the
nonlinear attachment the frequency x4=5). In addition, the second IMF of the rod end response and the second IMF of the
nonlinear attachment capture the second (delayed) 1:3 TRC of the dynamics on the subharmonic tongue T ð1Þ1=3 (with the rod
oscillating at frequency x1 and the nonlinear attachment at frequency x1=3). Clearly, there are additional (secondary) TRCs
and transitions in the dynamics, especially in the initial high-energy regime of the motion, but in our analysis we will focus
only on the aforementioned two dominant TRCs.

Hence, an interesting decomposition of the two dominant TRCs of the dynamics in terms of the dominant IMFs of the rod
and attachment responses is achieved by AEMD. In the next section we demonstrate how the AEMD results can be employed
to construct an accurate reduced order model of the strongly nonlinear damped transition considered above.
9
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Fig. 7. Response of the nonlinear attachment: (a) normalized power spectrum, (b) wavelet transform spectrum, (c) masking signal for AEMD; fk denotes the
kth eigenfrequency (in Hz) of the rod with no attachment.
4. Nonlinear nonparametric system identification (NNSI)

Based on the previous AEMD results we perform nonparametric nonlinear system identification leading to nonlinear
interaction model (NIM) for the rod-attachment nonlinear damped transition of Fig. 2. Considering first the rod end response
and referring to the AEMD results depicted in Fig. 6, we note that this response can be modeled by a system of uncoupled,
forced linear oscillators, termed intrinsic modal oscillators – IMOs
€u1 þ ku
4 _u1 þx2

4u1 � Ku
4ðtÞejx4t þ cc

€u2 þ ku
1 _u2 þx2

1u2 � Ku
1ðtÞejx1t þ cc

ð9Þ
where cc denotes complex conjugate. The inhomogenous (forcing) terms in (9) are in the form of ‘fast’ oscillating terms ejxkt ,
k ¼ 1; 4 modulated by the ‘slowly’ varying complex amplitudes Ku

kðtÞ, k ¼ 1; 4; this implies that we have assumed that the
modulations Ku

kðtÞ vary much slower than the corresponding carrying signals ejxkt .
The main motivation for considering this form of ROM for the rod end response, is so that the response of each of the two

IMOs reproduces approximately one of the dominant IMFs of the dynamics of the rod end (cf. Fig. 6). Since the superposition
of the IMFs reconstructs the original time series, the same result should hold for the combined response u1ðtÞ þ u2ðtÞ of the
IMOs in (9). The reasoning behind the specific structure of the ROM (9), i.e., in the form of a set of linear damped and forced
oscillators, lies in the fact that each of the dominant IMFs of the rod end response possesses two constant dominant fast fre-
quencies equal to the first and fourth eigenfrequencies of the rod, respectively. It follows that (at least in principle) each of
the dominant IMFs can be regarded as the response of a damped linear oscillator (i.e., an IMO) with an eigenfrequency equal
to one of the fast frequencies of the rod end response and a viscous damping coefficient ku

k , k ¼ 1; 2. The specific forms of the
inhomogeneous (forcing) terms in (9), i.e., as modulated periodic signals, are dictated by the realization that any alternative
type of excitation would be off-resonance and, hence, their effects on the rod dynamics would be small, of a secondary nat-
ure. In essence, these inhomogeneous terms represent the nonlinear modal interactions between the rod end and the non-
linear attachment at the dominant fast frequencies of the damped response of the rod edge. We also observe that the IMOs of
the ROM (9) are uncoupled since the dominant fast frequencies of the rod end response are distinct (cf. the wavelet spectra of
Fig. 5); when the dynamics possesses closely spaced frequencies, this should be accounted for in the ROM, and the simple
form (9) should be adjusted to reflect ‘mode mixing’ (beat phenomena). Finally, we note that this system identification and
reduced order modeling process is fully nonparametric in the sense that it does not depend on the specific form of nonlin-
10
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Fig. 8. AEMD analysis of the response of the nonlinear attachment, 0 < t < 1000: (a) 1st IMF and its instantaneous frequency superimposed on the WT
spectrum, (b) 2nd IMF and its instantaneous frequency superimposed on the WT spectrum, (c) reconstruction of response by superimposing the two leading
(dominant) IMFs, (d) detail of 1st IMF and its instantaneous frequency for 0 < t < 100, (e) detail of 2nd IMF for 0 < t < 400 and its instantaneous frequency
for 0 < t < 300, (f) detail of reconstruction of the response by the two dominant IMFs for 0 < t < 200.
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earity of the system, as it relies on direct analysis of measured time series. Moreover, the resulting NIM is of rather simple
form and the strongly nonlinear modal interactions are represented in the most general form, i.e., as time dependent
functions.

Following similar reasoning and taking into account that the damped response of the attachment possesses two dominant
fast frequencies approximately equal to x4=5 and x1=3, we construct the approximate ROM for the damped dynamics of the
nonlinear attachment
€v1 þ kv
4 _v1 þ ðx4=5Þ2v1 � Kv

4ðtÞejðx4=5Þt þ cc

€v2 þ kv
1 _v2 þ ðx1=3Þ2v2 � Kv

1ðtÞejðx1=3Þt þ cc
ð10Þ
Each of the two IMOs of the ROM (10) reproduces approximately a dominant IMF of the response of the nonlinear attach-
ment. From the AEMD results of the previous section we recall that the first IMF possesses a nearly constant frequency equal
to one-fifth of the fourth eigenfrequency of the rod, whereas the second IMF possesses a slowly varying eigenfrequency that
‘locks’ to one third of the first eigenfrequency of the rod at a later-stage of the motion. In the ROM (10) the time variation of
the instantaneous frequency of the second IMF is not taken into account; but rather, to a first order of approximation, the
NIM possesses constant eigenfrequencies. This approximation will be reflected in the accuracy of the reproduction of the
IMFs by the NIM, especially in the early- and later-stages of the motion of the nonlinear attachment. We note that the first
IMO in (10) models the initial stage of the response of the nonlinear attachment, i.e., the initial 1:5 TRC of the damped
dynamics during initiation of the motion on the subharmonic tongue Tð4Þ1=5; whereas the second IMO models the second (de-
layed) TRC of the dynamics on the subharmonic tongue Tð1Þ1=3.

We make the remark at this point that the basis for the aforementioned reduced order modeling procedure is the con-
struction of NIMs that accurately reproduce the dominant IMFs of the rod end and nonlinear attachment responses. This
is not an ad hoc requirement since, as discussed in [14], the slowly varying envelopes and phases of the dominant IMFs
of the responses of coupled oscillators coincide with the slow flow of the problem. By slow flow we denote the underlying
(governing) dynamics of the problem once the (secondary) fast dynamics are averaged out. Although we did not derive the
slow flow of the dynamics of the system considered herein, the responses of the NIMs (9) and (10) approximately reproduce
the dominant IMFs, so the slowly varying envelopes and phases of these responses represent the slow flow dynamics gov-
erning the rod-attachment nonlinear interaction. Hence, the construction of the NIMs (9) and (10) is physics-based and formal;
in fact, the aforementioned correspondence between EMD and slow flow dynamics provides a theoretical foundation and
gives physical meaning to the dominant IMFs.

Returning now to the NIMs (9) and (10), we compute the damping coefficients and inhomogeneous terms (representing
nonlinear modal interactions) by imposing the requirement that each of the IMOs of the ROMs reproduces a dominant IMF of
the rod end or the nonlinear attachment responses. To demonstrate this analytical computation we consider an IMO with the
general form
€yþ k _yþx2y � KðtÞejxt þ cc ð11Þ
where KðtÞ is a slow (complex) modulation of the fast periodic signal ejxt . We analyze the dynamics of (11) by performing a
slow/fast partition of the dynamics. To this end, we introduce the new complex variable gðtÞ ¼ _yðtÞ þ jxyðtÞ, and express the
real dependent variable and its derivatives as
yðtÞ ¼ g � �g
2jx

; _yðtÞ ¼ g þ �g
2

; €yðtÞ ¼ _g � jx
2
ðg þ �gÞ ð12Þ
where overbar denotes complex conjugate. Employing (12) the IMO (11) is expressed in the equivalent complex form
_gðtÞ � jxgðtÞ þ ðk=2Þ½gðtÞ þ �gðtÞ� ¼ KðtÞ: ð13Þ
We now assume that the response of (12) can be decomposed in terms of slow and fast components through the relation
gðtÞ ¼ uðtÞejxt , where uðtÞ denotes the slow (complex) modulation of the response of the IMO. Substituting this expression
into (12), we derive the expression relating the complex modulations KðtÞ and uðtÞ
_uðtÞ þ ðk=2ÞuðtÞ ¼ KðtÞ: ð14Þ
Expression (14) provides a way for computing (identifying) the slowly varying forcing term KðtÞ and the damping coefficient
k. Indeed, by assuming that the response of the IMO (11) is approximately equal to the dominant IMF cðtÞ, we may regard
uðtÞ as the slow component of the complexification ŵðtÞ � cðtÞ þ jH½cðtÞ� of that IMF. The slow component of the complex-
ification ŵðtÞ is computed by employing expressions (6) computing its amplitude and phase. Assuming that the IMF pos-
sesses the dominant (‘fast’) frequency x, we express the complexification of the IMF in the polar form
ŵðtÞ ¼ bAðtÞej½ĥðtÞ�xt�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Slow component

ejxt|{z}
Fast component

ð15Þ
where bAðtÞ ¼ c2ðtÞ þH½cðtÞ�2
n o1=2

; tan ĥðtÞ ¼H½cðtÞ�=cðtÞ and x̂ðtÞ ¼ _̂hðtÞ. It follows that the slow modulation uðtÞ can be
approximated as
12



Fig. 1
uðtÞ � jxbAðtÞej½ĥðtÞ�xt� ð16Þ
where the factor jx in (16) accounts for the slightly different definitions of gðtÞ and ŵðtÞ. Relations (14) and (16) determine
the complex modulation KðtÞ once the damping coefficient k is estimated through an optimization procedure (i.e., by requir-
ing that the response of the IMO best approximates the corresponding IMF).

The aforementioned procedure was applied to determine the nonlinear modal interactions Ku;v
1;4ðtÞ forcing the IMOs (9)

and (10); for this computation the IMFs depicted in Figs. 6 and 8 were filtered to eliminate high-frequency effects caused
by numerical differentiation Lee et al. [14,15]. The results are depicted in Figs. 9–12 for corresponding damping coefficients
ku

4 ¼ 0:18; ku
1 ¼ 0:4; kv

4 ¼ 1:0, and kv
1 ¼ 1:2. In essence, the nonlinear modal interactions provide us with a picture of the tran-
1. Nonlinear modal excitation of the IMO of the response of the attachment at frequency x4=5: (a) magnitude, (b) real part, (c) imaginary part.

Fig. 10. Nonlinear modal excitation of the IMO of the rod end response at frequency x1:(a) magnitude, (b) real part, (c) imaginary part.

Fig. 9. Nonlinear modal excitation of the IMO of the rod end response at frequency x4: (a) magnitude, (b) real part, (c) imaginary part.
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Fig. 12. Nonlinear modal excitation of the IMO of the response of the attachment at frequency x1=3: (a) magnitude, (b) real part, (c) imaginary part.
sient exchange of energy between the dominant harmonics of the rod end and attachment responses, as well as the time
windows where these exchanges occur. By employing these results we are able to reproduce all the dominant IMFs, as de-
picted in Figs. 13 and 14. In addition, by superimposing the responses of the responses of the IMOs (9) and (10) we can repro-
duce the original strongly nonlinear transient responses, as depicted in Fig. 15. The early- and later-time discrepancies
between the responses of the NIM (10) and the nonlinear attachment (cf. Fig. 14c and 14d) are attributed to the time vari-
Fig. 13. Comparison between the NIM (9) and the exact transient response of the rod end: (a,b) first dominant IMF compared to the first IMO; (c and d)
second dominant IMF compared to the second IMO.
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Fig. 14. Comparison between the NIM (10) and the exact transient response of the nonlinear attachment: (a and b) first dominant IMF compared to the first
IMO; (c and d) second dominant IMF compared to the second IMO.
ations of the dominant frequencies of the nonlinear attachment in these regimes of the dynamics (cf. the wavelet spectrum
of Fig. 7b), which was not taken into account the the NIM (10) since fixed eigenfrequencies were assumed for the IMOs

In summary, the IMOs (9) and (10) are in the form of sets of linear, uncoupled oscillators, whereas their forcing terms
represent the strongly nonlinear modal interactions between the rod and the essentially nonlinear attachment. These forcing
terms provide us with information on the level and (slow) temporal dependence of these interactions. The use of linear NIMs
for studying strongly nonlinear dynamical interactions was enabled by the accurate identification of the dominant frequen-
cies at which these interactions occurred, and by the equivalence between the IMFs computed by AEMD and the underlying
slow flow dynamics which was demonstrated in [14]. This last observation provides a theoretical foundation for the linear
NIMs (9) and (10).

Employing this formulation we are able to identify the nonlinear temporal energy exchanges between the rod and the
attachment and the precise time scales (frequencies) at which these interactions occur. Hence, the aforementioned proce-
dure leads to multi-scale system identification. In addition, the derived NIMs are of relatively simple form, so they can readily
be used for further study of strongly nonlinear dynamical processes and control of these processes. Moreover, the nonpara-
metric way employed for performing the system identification of the dynamics; the fact that it is based on direct analysis of
measured time series and the simple linear form of the resulting NIMs enable application of the proposed approach to a
broad class of dynamical systems.
5. Concluding remarks

A main advantage of our proposed technique is that it is nonparametric, eliminating the necessity for a priori assumption
of functional forms for stiffness and damping nonlinearities, which might restrict system identification. Hence, at least in
principle, it is applicable to a broad range of linear as well as nonlinear dynamical systems, including systems with smooth
or non-smooth nonlinearities (such as clearances, vibroimpacts, and dry friction), and strong (even nonlinearizable) or weak
nonlinear effects. This is due to the fact that the proposed method directly analyzes the actual measured time series which
contain full information of the dynamics and do not rely on computed characteristics of the signals (such as FT analysis). In
addition, it is multi-scale and provides directly a measure of the dimensionality of the underlying dynamics (which can be of
much smaller order – indeed, many orders of magnitude smaller) than the dimensionality of the underlying computational
15



Fig. 15. Comparison between the NIMs (9) and (10) and the exact transient responses: (a) rod end, (b) nonlinear attachment.
model. Finally, the method is computationally tractable, conceptually meaningful, and can be used for the construction of
accurate low-order models of the dynamics that fully capture the basic resonant interactions between components that give
rise to complex and rich dynamical phenomena, such as sudden nonlinear transitions, formation of instabilities, and multi-
frequency behavior.

The presented nonlinear system identification and reduced order modelling technique although nonparametric, was per-
formed under two basic assumptions. First, that the analyzed signals (time series) possessed distinct ‘fast’ frequencies; this
assumption allowed us to derive NIMs in the form of uncoupled linear oscillators (the IMOs) forced by transient nonlinear
modal interactions. When the measured time series possesses closely spaced frequencies, the ROMs must be modified to ac-
count for beat phenomena between the modes corresponding to these frequencies; even in this case, however, a slow/fast
decomposition of the dynamics can be performed so the basic principles of the outlined nonlinear system identification
method still apply. The second basic assumption in deriving the NIMs (9) and (10) was that the IMOs possessed constant
eigenfrequencies; yet, as shown in the specific application considered in this work, this might not be the case in practice,
so that this assumption might introduce errors in the modeling of the dynamics (as indeed was the case in reproducing
the early- and later-stage regimes of the response of the nonlinear attachment in Fig. 15). In order to improve the accuracy
of the NIMs in such regimes of the motion it is necessary to consider IMOs with modulated eigenfrequencies. Provided that
the modulations of the eigenfrequencies are sufficiently slow (compared to the eigenfrequencies themselves), a slow/fast
decomposition of the dynamics can still be performed [13]; so the system identification method can be extended in this case
as well. This is the focus of current work by the authors.
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