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Wave propagation properties in oscillatory chains with
cubic nonlinearities via nonlinear map approach

Francesco Romeo, Giuseppe Rega
Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ‘‘La Sapienza’’, Via Gramsci 53, 00197 Roma, Italy 
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of
nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations
relating the amplitudes in adjacent chain sites (n,n + 1) thereby considering a dynamical system where the location
index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions
of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of
chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled peri-
odic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D
map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex
domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-
bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings con-
cerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
1. Introduction

One-dimensional chains of coupled oscillators are suitable for modeling a number of physical systems arising in dif-
ferent scientific contexts such as condensed-matter physics, optics, chemistry and mechanics. In the latter, periodically
reinforced structures as well as trusses, are frequently used in aerospace, naval, and civil engineering and can be con-
veniently modeled as periodic systems. It is well known that the dynamics of linear multi-coupled periodic systems is
governed by frequency intervals or bands where disturbances propagate harmonically (pass-bands), decay (stop-bands)
or propagate harmonically with attenuation (complex-bands). Moreover, the natural frequencies fall within pass-bands.
In contrast to the vast literature concerning linear periodic structures, few works have so far appeared in the mechanical
context on the dynamics of nonlinear periodic systems. Monocoupled periodic systems of infinite extent with material
nonlinearities have been addressed in [8]. Two different asymptotic approaches have been devised for studying standing
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(stop-band) and traveling (pass-bands) waves; amplitude dependent frequencies bounding nonlinear propagation and
attenuation zones have been found. In [9] an array of elastic oscillators coupled through buckling sensitive elastica
has been addressed both numerically and experimentally. The existence of transitions from soliton-like motions to spa-
tially and temporally disordered motions due to a sudden excitation has been shown relying on a modified Toda lattice
model. Chains of oscillators with cubic nonlinearities have been studied in [7,3] through numerical and asymptotic ap-
proaches, respectively.

Being interested in dynamical phenomena with the same length scale of the interoscillator distance, discrete nonlin-
ear systems are considered in this work, whose main goal is to analytically investigate the modification of the boundary
of the linear propagation/attenuation zones due to the nonlinearities. In particular, one-dimensional chains of linearly
coupled nonlinear oscillators are addressed by means of nonlinear maps [1,2]. In this realm, the governing difference
equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites
(n,n + 1), thereby considering a dynamical system where the location index n plays the role of the discrete time. By
doing so, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions (pass-
bands) is equivalent to finding regions of linearly stable map solutions.

The paper is organised as follows. In Section 2 monocoupled chains of oscillators with cubic nonlinearity are stu-
died. Pass- and stop-band regions are analytically determined for period-q orbits as they are governed by the eigen-
values of the linearized 2D map arising from linear stability analysis of periodic orbits. In Section 3 chains of
nonlinear oscillators in complex domain are tackled. The interest in this model lies in its mathematical representation
as it is equivalent to a fictitious bi-coupled chain of nonlinear oscillators. In this case, where a 4D real map governs the
wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the
2D map analysis. In essence, the nonlinear map, embedding the linear one whose propagation zones boundaries have
been derived in closed form for bi-coupled periodic systems in [4], allows to determine the corrections of such bound-
aries due to the nonlinearities. In both 2D and 4D cases the nonlinearity causes amplitude dependent pass- and stop-
bands, and the occurrence of vibration modes in the linear attenuation zones observed in the literature [5] can thereby
be explained.

Numerical investigations carried out by nonlinear map iteration are presented in Section 4. They are mainly aimed at
characterizing the bounded solutions occurring within the passing band, where, besides periodic orbits, quasiperiodic
and chaotic orbits do exist. Good agreement between the approximate analytical prediction of the propagation regions
and the numerical evidence is found.
2. Chain of nonlinear oscillators in real domain

A mechanical model for a chain of linearly coupled nonlinear oscillators, schematically depicted in Fig. 1, has been
chosen in the form:
m€qn þ k1qn þ k3q3n þ kð2qn � qn�1 � qnþ1Þ ¼ 0 ð1Þ
The equation of motion (1) is characterized by on-site cubic nonlinearity, as e.g. in [3,7], describing a chain of Ham-
iltonian oscillators. Moreover it is worth noticing that Eq. (1) is formally equivalent to the discrete nonlinear Schrö-
dinger equation (DNLS) in real domain considered in [1]. Periodic solutions of Eq. (1) are sought for by assuming
the time harmonic solution qn = ancos(xt) (harmonic balance with only the first harmonic), and setting
a ¼ mx2 � k1
k

� 2 and b ¼ � k3
k

ð2Þ
the following second-order difference equation for the stationary amplitude is obtained
ðaþ ba2nÞan þ anþ1 þ an�1 ¼ 0 ð3Þ
Fig. 1. Monocoupled nonlinear spring-mass chain.
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Eq. (3), relating the amplitudes a in adjacent chain sites n � 1, n and n + 1, can be rewritten in matrix form as
anþ1

an

� �
¼ �a� ba2n �1

1 0

� �
an
an�1

� �
ð4Þ
or an+1 = T(an)an, where T(an) is the nonlinear transfer matrix. In the linear case, T represents a symplectic linear trans-
formation and its reciprocal eigenvalues k satisfy k1k2 = 1. As well known [6], such eigenvalues govern the stationary
wave transmission properties: if the eigenvalues lie on the unit circle, then free waves propagate harmonically without
attenuation (pass-band, P); if the eigenvalues are real, then free waves decay without oscillations (stop-band, S). In the
more general nonlinear case, T(an) belongs to the class of area preserving maps [1] such that det(DT(an)) = 1, where DT

is the Jacobian or tangent map with reciprocal eigenvalues. Therefore, in order to study the stationary wave transmis-
sion properties of the one-dimensional nonlinear chain (1) of length N, it is convenient to rely on the eigenvalues of the
linearized map equations in the neighborhood of an orbit ranging from (a0,a1) to (aN�1,aN). Indeed, according to [2],
the transformation (4) can be considered as a dynamical system where the chain index n plays the role of discrete time n,
so that the analysis of the transmission properties is equivalent to the stability analysis of the orbits.

The linear stability of a given orbit is investigated by introducing a small perturbation un; linearizing the map equa-
tions, a second-order difference equation for the perturbation is obtained
unþ1 þ un�1 þ ðaþ 3ba2nÞun ¼ 0 ð5Þ
Eq. (5) can be put in matrix form leading to the two-dimensional Jacobian
DT ¼ �a� 3ba2n �1

1 0

� �
ð6Þ
The interest lies in the linear stability of spatially periodic orbits an+q = an with cycle length q. The eigenvalues of DT

are determined by its trace, so the stability of period-q orbits is described by tr(DTq), where DTq is given by the matrix
product
DTq ¼
Yq�1

n¼0

DTðanÞ ð7Þ
If the eigenvalues lie on the unit circle, then stable elliptic periodic cycles or oscillating solutions (pass-band, P)
occur; if the eigenvalues are real, then unstable hyperbolic periodic cycles or exponentially increasing solutions
(stop-band, S) occur [2], see Fig. 2.

By setting anþ1 ¼ ~xnþ1 and an ¼ ~ynþ1, we can express the map (4) as
T :
~xnþ1 ¼ �~yn � ~xnðb~x2n þ aÞ
~ynþ1 ¼ ~xn

ð8Þ
For period-1 orbits the curves bounding the propagation regions, where the eigenvalues lie on the unit circle, can be
determined by the condition jtr(DT)j = 2. Having introduced the change of variables ð~x; ~yÞ ! ðx=

ffiffiffi
b

p
; y=

ffiffiffi
b

p
Þ, such

boundaries are given by
Fig. 2. Stability-propagation equivalence based on the eigenvalues of the Jacobian DT.
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r :¼ fðx; aÞj3x2 þ aþ 2 ¼ 0g
s :¼ fðx; aÞj3x2 þ a� 2 ¼ 0g

ð9Þ
and are shown in Fig. 3a in the x-positive half-plane. The curves r and s represent hyperbolic (k1 = k2 = 1) and reflec-
tion hyperbolic (k1 = k2 = �1) boundaries, respectively. In Fig. 3b–d further curves ti, lying inside the pass-band region,
are depicted; they are determined by satisfying the condition jtr(DTq)j = 2 for q = 2, 3, 4 and their number depends on
the periodicity of the orbit, i.e. ti with i = 1, . . . ,q � 1. While the curves r are always hyperbolic boundaries, the curves s
are either hyperbolic with reflection boundaries, for q odd, or hyperbolic boundaries, for q even. Whenever a period-q
orbit crosses a curve ti it temporarily loses its stability or, equivalently, does not propagate, through either a saddle-
node or a period-doubling bifurcation for i even or i odd, respectively. Such alternating pattern of the internal curves
ti implies that, while the elliptic even-period orbits become hyperbolic at the upper pass-band boundary, the odd-period
ones, at the same boundary, become hyperbolic with reflection. It must be emphasized that the periodicity q governs the
new born internal curves without affecting the overall propagation region. As expected, the nonlinearity (b 5 0) implies
a propagation region depending on the amplitude of oscillations x ¼ ~x

ffiffiffi
b

p
, in contrast to the linear case, where the prop-

agation region is given by jaj 6 2: this is better shown in terms of the dimensional amplitude ~x in Fig. 4.
In order to find periodic orbits of the map T defined by Eq. (4), it is convenient to exploit its reversibility, therefore it

can be cast into the product of two involutions T = T1T2, given by
T1 :
~xnþ1 ¼ ~yn
~ynþ1 ¼ ~xn

T2 :
~xnþ1 ¼ ~xn
~ynþ1 ¼ ð�b~x2n � aÞ~xn � ~yn

ð10Þ
The involutions (10) satisfy T2
1 ¼ T2

2 ¼ I so that the inverse of T can be expressed as T�1 = T2T1. The sets of fixed
points of T1 and T2 form two curves in the phase plane, ~x ¼ ~y and ~y ¼ 1=2~xðb~x2 þ aÞ respectively, called symmetry
lines. The latter curves are very useful to determine periodic orbits since a periodic orbit initially on the symmetry line
stays on the line as the parameters are changed [1]. For instance, period-1 and period-4 orbits, representing the fixed
points of T and T4, respectively, born on the symmetry line of T1, are determined as
Fig. 3. Propagation region of period-q orbits: (a) q = 1, (b) q = 2, (c) q = 3, (d) q = 4.
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Fig. 4. Amplitude dependent propagation band vs increasing nonlinearity.
Period-1 : x ¼ y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� a

p

Period-4 : x ¼ y ¼ �
ffiffiffiffiffiffiffi
�a

p ð11Þ
and are superimposed in Fig. 3a and d, respectively. The propagation properties of the periodic orbits (11) will be
numerically investigated in Section 4. It can be noticed that, regardless of the periodicity q, the bounded orbits region
coincides with that of the period-1 case whose boundaries are given by the curves of Eq. (9). However, the loss of sta-
bility through the upper bound involves different bifurcations if even-period or odd-period orbits are considered.
Namely, while odd-period ones lose stability via period-doubling bifurcation, such as point A at a = �4 in the following
Fig. 7 for the period-1 case, the even-period orbits lose stability via saddle-node bifurcation, such as point B at a = �1
for the period-4 case.
3. Chain of nonlinear oscillators in complex domain

In this section the analysis is focused on a chain of nonlinear oscillators in complex domain. The dynamics is gov-
erned by the following differential equation
m€qn þ k1qn þ k3jqnj
2qn þ kð2qn � qn�1 � qnþ1Þ ¼ 0 ð12Þ
which describes a number of physical models including molecular crystal chains, coupled nonlinear waveguides in optics
and nonlinear electrical lattices. By setting
a2 ¼ mx2 � k1
k

and b ¼ k3
k

ð13Þ
and by substituting qn = Ane
�ixt, with A complex, the following equation for the stationary solutions is obtained
ð2� a2ÞAn þ bjAnj2An � Anþ1 � An�1 ¼ 0 ð14Þ
Eq. (14) can be rewritten in the form
Anþ1

An

� �
¼ 2� a2 þ bjAnj2 �1

1 0

" #
An

An�1

� �
ð15Þ
Eq. (15) can be put in the compact form An+1 = T(An)An, where T(An) is still an area preserving map enabling to
analyse the transmission properties along the line followed in the previous section for the real domain case. However
in this case A is a complex amplitude leading to a four-dimensional real map. Thus, by introducing a small complex-
valued perturbation un and setting An = Bn + iCn, un = xn + iyn, a 4D real map can be cast:
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xnþ1

xn
ynþ1

yn

0
BBB@

1
CCCA ¼

Dn �1 En 0

1 0 0 0

En 0 F n �1

0 0 1 0

2
6664

3
7775

xn
xn�1

yn
yn�1

0
BBB@

1
CCCA ð16Þ
where
Dn ¼ 2� a2 þ 2bðB2
n þ C2

nÞ þ bðB2
n � C2

nÞ
En ¼ 2bBnCn

F n ¼ 2� a2 þ 2bðB2
n þ C2

nÞ � bðB2
n � C2

nÞ
ð17Þ
By rewriting Eq. (16) as
xnþ1

xn
ynþ1

yn

0
BBB@

1
CCCA ¼ DTðAnÞ

xn
xn�1

yn
yn�1

0
BBB@

1
CCCA ð18Þ
the stability of spatially periodic orbits An+q = An is governed by the reciprocal eigenvalues of the corresponding lin-
earized map DTq which transfers the state through the complete cycle of length q. If the eigenvalues of DTq lie on
the unit circle, then stable elliptic periodic cycles or oscillating solutions (pass-band) occur. If the eigenvalues are real,
then unstable hyperbolic periodic cycles or exponentially increasing solutions (stop-band) occur. Since each member of
a periodic orbit family exhibits the same stability type, it is sufficient to consider only one of the periodic points of each
family [2], e.g. period-1 orbits and the associated map DT(An). The characteristic polynomial of the matrix DT(An) has
the form
k4 þ I1k
3 þ I2k

2 þ I1kþ 1 ¼ 0 I1; I2 2 R ð19Þ

with
I1 ¼ 2a2 � 4� 4bjAnj2 ð20Þ
I2 ¼ 6� 4a2 þ a4 þ 4bð2� a2ÞjAnj2 þ 3b2jAnj4 ð21Þ
Although the original problem is mono-coupled and implies two-dimensional maps, a fourth order characteristic
equation is obtained due to the adopted complex-valued representation. Such instance prompts the mathematical anal-
ogy with [4], where linear bi-coupled periodic structures have been analysed on the basis of the invariants Ij (j = 1, 2) of
transfer matrix and analytical results on the single unit free waves (characteristic waves) propagation properties have
been derived. According to that paper, an exhaustive geometrical representation of such propagation properties is
achieved by identifying in the two-dimensional space {Ij} the domains in which the four eigenvalues k are of the same
type. In particular, perfect transmission is allowed in the passing domain where the following condition holds
1

4
�I1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ I21 � 4I2

q� �
2 ½�1; 1� ð22Þ
The invariants Ij (j = 1, 2) in Eqs. (20) and (21) of the four-dimensional map in tangent space DT(An) are amplitude-
dependent, therefore, from (22) it follows that transmission is possible within the following boundaries
r :¼ ðjAnj; aÞ
affiffiffiffiffiffi
3b

p ¼ jAnj
����

� �

s :¼ ðjAnj; aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b
ða2 � 4Þ

s
¼ jAnj

�����
( ) ð23Þ
Eq. (23) represent analytical approximations to the pass-band boundaries modified by the presence of nonlinearities
(see Figs. 5 and 6). The curves r and s represent hyperbolic and reflection hyperbolic boundaries, respectively; regardless
of the level of nonlinearity b, their intersection occurs at a ¼

ffiffiffi
6

p
. It must be noted that the same condition for the cor-

responding linear model gives j2 � a2j 6 2, in agreement with the linear dispersion relation that can be obtained by con-
sidering a periodic traveling wave solution of the linearized equation (12) in the form qn(t) = Aei(jsn�xt), leading to
2 � a2 = 2cos(js), where j and s represent the wave number and the spacing between adjacent masses, respectively.
According to the actual mono-coupled nature of the system, complex conjugate eigenvalues cannot occur as the con-
dition for their existence, 8þ I21 � 4I2 < 0, leading to 4b2jAnj4 < 0, cannot be satisfied.
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Fig. 5. Propagation band as a function of the amplitude A for; (a) b = 0.05, (b) b = 0.1, (c) b = 0.5.

Fig. 6. Amplitude dependent propagation band vs increasing nonlinearity.
For period-2 orbits, Eq. (22) must be satisfied by the invariants Ij (j = 1, 2) of the map DT2(An). In this case the
external boundaries of the pass-band are still given by Eq. (23), while two new born curves, shown in Fig. 5a, arise in-
side the P region, namely t11 :¼ ðjAnj; aÞ j jAnj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 2Þ=b

p
and t12 :¼ ðjAnj; aÞ j jAnj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 2Þ=3b

p
. Moreover, the

boundaries r and s become both hyperbolic, while the new internal ones are both of reflection hyperbolic type. When-
ever a period-1 orbit crosses one of these curves, it temporarily loses its stability through a period-doubling bifurcation.
4. Numerical results vs analytical predictions

4.1. Real domain

Periodic orbits of map T in Eq. (8) are numerically investigated in this section. In the numerical procedure only the
orbits with amplitude smaller than a selected upper limit are considered bounded; it has been verified that the stability
or boundedness zone boundary is not affected by the upper limit value as long as the number of iterations exceeds the
order of 102. In Fig. 7 bifurcation diagrams for period-1 and period-4 orbits obtained by iterating the map T starting
with initial conditions along the curves of Eq. (11), are shown. According to the analytical predictions, bounded peri-
odic orbits are found within the P zone as indicated by the continuous lines, whereas after crossing the upper boundary
unbounded orbits take place, as shown by the occurrence of empty intervals along the curves. The eigenvalues obtained
by the numerical iteration of the maps confirm for odd- and even-period orbits the different type of loss of stability
analytically predicted.
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Fig. 7. Numerical bifurcation diagrams for period-1 and period-4 orbits.
Yet, it is worth noticing that, within the propagation zone, not only regular solutions but also a rich variety of non-
regular bounded orbits can occur [1]. In Fig. 8 several orbits occurring numerically in the neighbourhood of the inter-
sections of period-1 and period-4 orbits with internal critical thresholds, when varying initial conditions, are shown on
the phase plane of T. Temporary loss of stability of period-1 orbits according to a tripling bifurcation at a = �3.5 and a
quadrupling bifurcation at a = �3 are shown in Fig. 8a and b, respectively. These bifurcated solutions occur where the
period-1 orbits cross the curves t2 of T

3 (point A in Fig. 8a) and T4 (point B in Fig. 8b), respectively, where saddle-node
bifurcations are analytically predicted. In particular, Fig. 8a shows the fixed point of the map T (period-1 orbits) on the
symmetry line at x = y = 1.224 splitting into a period-3 orbit, as well as the ensuing quasiperiodic orbits diverging along
three paths when varying the initial conditions. In Fig. 8b the fixed point at x = y = 1 splits into a period-4 orbit and
then quasiperiodic orbits and chaotic layers occur before the onset of unbounded solutions. In turn, Fig. 8c, besides a
number of neighboring quasiperiodic orbits, shows two pairs of doubled numerical solutions at a ¼ �

ffiffiffi
2

p
=2, consistent

with the analytical crossing of the reference period-4 orbit with the period doubling bifurcation curve t3 of T
4 (point C

in Fig. 8c). It must be noticed that since period-2 orbits do not exist, period doubling bifurcations of period-1 orbits at
the intersection with t1 of either T

2 or T4 cannot occur.
4.2. Complex domain

To the aim of numerically investigating the periodic orbits of Eq. (12), the stationary equation (14) can be recast
using polar coordinates by substituting An ¼ rnei#n and separating real and imaginary parts, thus leading to
rnþ1 cosD#nþ1 þ rn�1 cosD#n ¼ ð2� a2 þ br2nÞrn
rnþ1 sinD#nþ1 � rn�1 sinD#n ¼ 0

ð24Þ
where D#n+1 = #n+1 � #n. Next, by introducing the following change of variables, representing a bilinear combination
of the wave amplitudes on each segment of the chain [2],
xn ¼ 2rnrn�1 cosD#n

yn ¼ 2rnrn�1 sinD#n

zn ¼ r2n � r2n�1

ð25Þ
and defining J = rnrn�1 sinD#n, after rescaling the quantities �xn ¼ 2Jxn, �zn ¼ 2Jzn and �b ¼ Jb, Eq. (24) can be written,
omitting the bar, as a two-dimensional real map
T :
xnþ1 ¼ ½2� a2 þ bðwn þ znÞ�ðwn þ znÞ � xn

znþ1 ¼ 1
2

x2nþ1
�x2n

wnþzn
� zn

ð26Þ
where wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ z2n þ 1

p
.

8



Fig. 8. Bifurcations of analytical periodic orbits at internal critical thresholds (left) and corresponding numerical phase portraits with
varying initial conditions (right) around: (a) tripling bifurcation of period-1 orbits (point A); (b) quadrupling bifurcation of period-1
orbits (point B); (c) period-doubling bifurcation of period-4 orbits (point C).
The numerical analysis will be focused on period-1 and period-2 orbits of the map (26), which are determined by [2]
Period-1 :
x ¼ 1

2
ð2� a2 þ bwÞw

z ¼ 0

Period-2 :
x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�a2
b

	 
2

� 1

r
z ¼ 0

ð27Þ
where w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
. In order to analyse the results of the numerical investigations against the propagation properties of

the original chain of complex nonlinear oscillators (12), the orbits in Eq. (27) are mapped onto the a � jAj plane where
9



the stability boundaries (23) have already been determined. By considering that rn = jA0j and setting r1 = r0 = jA0j, the
mapping can be obtained by the following relation
Fig. 9.
(b) per
jA0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20

16J 2
þ J 24

s
ð28Þ
ensuing from Eq. (25) on account of the J-rescaled variables. The rescaling parameter J, with meaning of a conserved
physical quantity, is determined as follows. The period-1 orbit equation (271) for b > 0 has either no roots or two real
roots corresponding to one hyperbolic and one elliptic fixed point. Therefore, it can be inferred that it crosses the hyper-
bolic boundary given by Eq. (231)
jA0j ¼
affiffiffiffiffiffi
3b

p ð29Þ
with b ¼ �b=J , where the two real roots are born. By labeling the coordinates of the intersection point with ða�; x�0Þ, for a
given strength of nonlinearity �b, J can be obtained by matching Eqs. (28) and (29) thus leading to
J 2 ¼ 3x�0�b

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�4 � 9�b

2
q ð30Þ
With a path following procedure, the coordinates of each intersection point, corresponding to different values of the
conserved quantity J according to (30), are then used as starting points to obtain bifurcation diagrams of period-1 or-
bits through numerical iteration of the map (271). In Fig. 9a the bounded period-1 orbits, represented by dotted lines,
are shown for five different values of J and b = 0.2. Within the parameter range investigated, 0 < J < 2, only bounded
orbits are found inside the P zone, consistent with the analytical prediction. The bifurcation diagram for period-2 or-
bits, obtained through iteration of the map (272), is also shown in Fig. 9b. For each value of J, these orbits, represented
by the thicker dotted lines, are born at the period doubling bifurcations of period-1 orbits; according to the analytical
predictions, such bifurcation points are located along the internal line t11 ðjAnj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 2Þ=b

p
Þ, whereas the line t12

seems to play no role.
In Fig. 10a a number of orbits obtained numerically from the map (26) when varying either a control parameter or

the initial conditions are shown on the phase plane for b = 0.2 and J = 1. Fig. 9a shows at a = 1.111 period-1 orbits and
then, as a increases, quasiperiodic orbits; afterwards, at a = 1.68, period-2 orbits surrounded by quasiperiodic and cha-
otic orbits take place. A similar involved picture of regular and complex orbits is found by varying initial conditions at
a = 1.63 as shown in Fig. 10b where period-2 orbits, surrounding quasiperiodic orbits, and a chaotic separatrix layer are
observed. Finally, Fig. 10c shows several period-1 orbits (represented by small circles) and a chaotic sea developed after
the period doubling bifurcation occurring at a ¼

ffiffiffiffiffiffiffiffiffiffiffi
2þ b

p
.

Bifurcation diagrams for b = 0.2 and for increasing values of J from bottom to top: J = 0.5, 0.75, 1, 1.5, 2; (a) period-1 orbits,
iod-2 orbits.
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Fig. 10. Numerical phase portraits (right), for b = 0.2 and J = 1, with a varying control parameter (a, c) or varying initial conditions
(b), within the analytical propagation band (left).
5. Conclusion

Propagation properties of periodic orbits in nonlinear oscillatory chains have been studied based on the analogy
with the linear stability analysis of the relevant maps (space/time, i.e. a nonlinear dynamical approach to wave prop-
agation properties). The boundaries of pass-band regions have been analytically determined for both real and complex
oscillatory chains with cubic nonlinearities. Within pass-band regions bifurcation thresholds of various order periodic
orbits have also been determined. Regardless of the periodicity q, the bounded orbits region coincides with that of the
period-1 case. However, the loss of stability, or orbits� unboundedness, occurring at the upper bound involves different
bifurcations if even-period or odd-period orbits are considered, namely, saddle-node and period-doubling bifurcation,
respectively. The analytical predictions have been validated through comparison with numerical solutions of the maps
highlighting the occurrence of a variety of bounded, also nonperiodic, orbits.
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