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The multi-scale description of dilute or semi-dilute suspensions involving rods has been successfully ac- complished and applied in many scenarios 

of industrial interest. Many processes involve, however, the flow of rod suspensions in very narrow gaps whose thickness is much smaller than the 

rod length. In these conditions, the evolution of rod orientation is expected to be affected by confinement effects. In the present work, we propose a 

multi-scale description of rod orientation in confined conditions and simple shear flows.
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. Introduction

Fibre suspensions can be described at different scales: (i) mi-

roscopic, the scale related to the fibre; (ii) mesoscopic, the scale

elated to the particle population within a representative volume

f the local macroscopic conditions; and (iii) the macroscopic scale

hat is related to the process and the final composite part. 

Suspensions involving particles can be described at the micro-

copic scale by tracking the motion of each individual particle in-

olved in the system. This approach is based on two main ele-

ents: (i) the knowledge of the equation governing the particle

otion in the fluid flow, and (ii) the availability of computational

esources for tracking efficiently millions of particles. In dilute sus-

ensions, the motion of ellipsoidal particles immersed in a New-

onian fluid can be accurately described by using Jeffery’s equation

22] . For circumventing the difficulties related to simulations at the

icroscopic scale where too many particles are present, these diffi-

ulties being more computational than conceptual, coarser models

ere introduced. 

Mesoscopic kinetic theory models result from coarsening mi-

roscopic descriptions. In kinetic theory models, the individuality

f the particles is lost in favour of a statistical description that

ubstitutes the entities by a series of conformation coordinates

6,12] . For example, when considering a suspension of rods, the
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1

esoscopic description consists in giving the fraction of rods that

t position x and time t are oriented along direction p . This infor-

ation is contained in a probability distribution function – pdf –

hose evolution is governed by a Fokker–Planck equation. Fokker–

lanck equations being multidimensional (in time, physical space

nd conformation space), standard mesh-based discretization tech-

iques fail when addressing their numerical solution. This issue

s known as the ”curse of dimensionality”. The direct solution of

okker–Planck equations has been made feasible in many cases

ith the introduction of the Proper Generalized Decomposition

PGD) approach [8,9] . 

At the macroscopic scale, the pdf is substituted by some of its

oments. Here the level of detail and the involved physics are sac-

ificed in favour of computational efficiency. The equations govern-

ng the time evolution of these moments usually involve closure

pproximations whose impact on the results must be evaluated. 

In the case of dilute suspensions of short fibres in a Newto-

ian fluid, the three scales have been extensively considered with-

ut major difficulties to model the associated systems. Challenges

ppear, however, as soon as the concentration increases. In the

emi-dilute and semi-concentrated regimes, fibre–fibre interactions 

ccur, but in general they can be accurately modelled by intro-

ucing a randomizing diffusion term [15] . There is a wide litera-

ure on the modelling of dilute and semi-dilute suspensions, e.g.

4,17–20,27] . Available models describe quite well the experimen-

al observations. 

When fibre orientation predictions are compared with experi-

ental results in injection processes involving concentrated sus-

ensions of short fibres, a noticeable delay in the orientation

inematics is observed. Some ad hoc modelling approaches were



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Hydrodynamic and contact forces acting on a confined rod immersed in a

simple shear flow.
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proposed to delay the orientation kinematics predicted with the

Folgar and Tucker model [15] . In these models, a fluid-particle slid-

ing mechanism is introduced or different rate equations for the

eigenvalues and eigenvectors of the orientation tensor are used

[28,31,32] . A more physically-based approach was proposed by

Ferec and co-authors in [14] , where the interaction mechanisms

were taken into account within a multi-scale framework. 

All these studies concerned unconfined flows, despite the fact

that processes of industrial interest often involve narrow gaps

where fibres may have length greater than the gap and wall ef-

fects cannot be ignored. The orientation delay was indeed observed

in such confined flows (e.g. [24] ), wherein the orientation process

could probably differ from the one predicted by the standard Jef-

fery equation and the mesoscopic and macroscopic models derived

from it. 

In the present paper, we propose a multi-scale description of

rod orientation in confined conditions and analyse the impact of

initial conditions on rod kinematics under confinement constraints.

It is well known that the orientation kinematics of fibres located

near the wall deviate from Jeffery’s predictions, even when the fi-

bres never enter in contact with the wall [16,21,25,30] . The model

proposed here does not take into account these hydrodynamic con-

finement effects, but rather it considers physical contact between

rods and gap walls through the introduction of the contact force

ensuring wall impenetrability. In order to consider the rod kine-

matics perturbation in absence of physical contact with the wall,

we should consider an extra hydrodynamic force acting on the

dumbbell beads describing the rod (see below); this force would

depend on the distance to the wall and the approaching velocity.

The model proposed in this work aims at capturing the first-order

effects of confinement. The effect of the wall proximity on the fiber

kinematics constitutes a second-order effect, to be addressed in fu-

ture works. 

In what follows, we use the following notation together with

Einstein’s summation convention: 

• if a and b are first-order tensors, then the single contraction ”·”
reads (a · b ) = a j b j ;

• if a and b are first-order tensors, then the dyadic product ”⊗”

reads (a ⊗ b ) jk = a j b k ;
• if a and b are respectively second and first-order tensors, then

the single contraction ” · ” reads (a · b ) j = a jk b k ;
• if a and b are respectively third and first-order tensors, then

the single contraction ” · ” reads (a · b ) jk = a jkm 

b m 

;
• if a and b are second-order tensors, then the double contraction

”: ” reads (a : b ) = a jk b k j ;
• if a and b are respectively second and fourth-order tensors,

then the double contraction ”: ” reads (a : b ) jk = a ml b ml jk .

2. Modelling confined suspensions of rods

We consider a dilute suspension of rigid, non-Brownian, high-

aspect-ratio fibres suspended in a Newtonian fluid of viscosity η.

The fibres are modelled as rigid rods of length 2 L . The rod orienta-

tion is given by the unit vector p located at the rod centre of grav-

ity G and aligned along the rod axis. Inertial effects are neglected

in the sequel. We assume that the presence and orientation of the

rods do not affect the flow kinematics that is defined by the ve-

locity field v T = ( ̇ γ z, 0 , 0) describing a simple shear flow. Elonga-

tion is not considered in this work because it tends to reduce and

even suppress all confinement effects when its intensity with re-

spect to shear is large enough. In the case of pure elongation, the

rods align monotonically in the extension direction and can never

enter in contact with the gap walls. The flow occurs in a narrow

gap � × [ −H, H] , with x T = (x, y ) ∈ � ∈ R 

2 assumed large enough

and z ∈ [ −H, H] with H < L for ensuring confinement conditions.
2

e consider first an individual rod whose centre of gravity is lo-

ated in the mid plane z G = 0 . Thus, both rod extremities enter in

ontact or lose contact with the gap walls simultaneously. With-

ut loss of generality, we consider that the unit vector p related

o bead located at p L points towards the upper wall, and conse-

uently −p points towards the opposite wall. 

As just indicated, this work only considers confined flow ex-

ibiting constant shear rate throughout the gap thickness in order

o ensure a constant shear rate along the rod length. This flow

s conceptually of interest because it allows one to identify the

ifferences between the standard (unconfined) Jeffery model and

he one that results when confinement effects take place. It re-

ains, however, quite far from the applicative processing condi-

ions that in general involve more complex flows, in many cases of

oiseuille type. In processing conditions, almost-parabolic velocity

rofiles throughout the gap thickness are usually encountered, im-

lying that the velocity gradient is no longer constant along the

ength of the rod when its extremities approach both walls. In

hese circumstances, one should consider second-order kinemat-

cs in the derivation of the rod rotary velocity, as done in [2,7] for

nconfined flows. In that applicative perspective, one should also

ake into account non-Newtonian rheology of the suspending fluid,

hich adds a major difficulty as discussed in [7] . All these issues

ill be presented and discussed in ongoing publications. In the

resent work, we concentrate on simple shear flows, Newtonian

uspending fluids, and we assume incompressible and isothermal

onditions. 

.1. Microscopic description of confined kinematics of an individual 

od 

It is well known that the kinematics of a rod with infinite as-

ect ratio immersed in an unconfined simple shear flow with ve-

ocity gradient ∇v is given by Jeffery’s equation [22] 

˙ 
 = ∇v · p − (∇v : (p ⊗ p )) p . (1)

Jeffery’s equation predicts full alignment in the flow direc-

ion. For finite aspect ratio ellipsoidal particles, periodic trajecto-

ies known as Jeffery’s orbits are predicted instead. Brownian ef-

ects also avoid full alignment and are generally introduced at the

od population level. 

When the domain thickness is smaller than the rod length ( H

 L ), some Jeffery’s trajectories are forbidden, i.e. those trajecto-

ies involving L p ( t ) · n > H , where n = (0 , 0 , 1) T is the unit vector

efining the thickness direction. In that case, the rod kinematics

re defined by the standard Jeffery model (1) while p · n < H / L

nd are perturbed as soon as the rod reaches the upper and lower

alls. In order to determine the perturbed rod kinematics, we rep-

esent the rod as a dumbbell [1] with hydrodynamic and contact

orces acting on the dumbbell beads as illustrated in Fig. 1 . We as-

ume that hydrodynamic forces applied on each bead F H depend



Fig. 2. Orientation evolution for H/L = 0 . 8 . Confined (red curve) versus unconfined (broken blue curve) trajectories. 
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n the difference of velocities between the fluid and the bead,

he first one given by v 0 + ∇v · p L and the second one by v G + 

˙ p L .

hus, the force F H ( p L ) is given by 

 

H (p L ) = ξ (v 0 + ∇v · p L − v G − ˙ p L ) , (2)

here ξ is the friction coefficient, v 0 the fluid velocity at the rod

entre of gravity, and v G the velocity of the centre of gravity. The

ontact force is assumed to act in the direction perpendicular to

he wall (we thus ignore possible friction at the wall): 

 

C (p L ) = μn , (3)

ith F C (p L ) = −F C (−p L ) . The contact force intensity μ is unknown

t this stage and will be determined such as to prevent the beads

rom penetrating the walls. 

Thus, the total force acting on the bead located at p L is F (p L ) =
 

H (p L ) + F C (p L ) . As inertia is neglected, the resultant force acting

n the dumbbell vanishes. Since F C (p L ) = −F C (−p L ) , the force bal-

nce yields F H (p L ) = −F H (−p L ) and thus 

 G = v 0 , (4) 

.e. the velocity of the rod centre of gravity coincides with the ve-

ocity of the fluid at that position. This ensures that both beads are

imultaneously in contact with the walls. 

The resulting torque must also vanish, that is F = F H + F C = λp ,

ith λ ∈ R . Since v 0 = v G , we have 

(∇v · p L − ˙ p L ) + μn = λp . (5)
3

Premultiplying Eq. (5) by p and taking into account that p · p =
 and 

˙ p · p = 0 , we obtain 

= ξL (∇v : (p ⊗ p )) + μp z , (6)

ith p z = p · n . Injecting this expression for λ into Eq. (5) yields 

L (∇v · p − ˙ p ) + μn = ξL (∇v : (p ⊗ p )) p + μp z p , (7)

r 

(∇v · p − ˙ p ) + 

μ

ξL 
n = (∇v : (p ⊗ p )) p + 

μ

ξL 
p z p . (8)

The rotary velocity ˙ p is thus given by 

˙ 
 = ∇v · p − (∇v : (p ⊗ p )) p + 

μ

ξL 
(n − p z p ) = 

˙ p 

J + 

˙ p 

C . (9)

Here, ˙ p 

J denotes the Jeffery rotary velocity component given by

q. (1) , while the confined component is defined as ˙ p 

C = 

μ
ξL 

(n −
p z p ) . 

We now need to determine the contact force intensity μ. In or-

er to obtain its value we must consider that the contact force

ppears in order to avoid that the bead leaves the flow domain,

hat is ˙ p · n ≤ 0 , with μ � = 0 if p z L = H and 

˙ p 

J · n > 0 . The con-

act force μn must ensure that the resulting velocity is tangent to

he wall. Because dynamical effects are neglected, the bead cannot

ebound. It thus suffices to enforce the condition 

˙ p · n = 0 . Multi-

lying Eq. (9) by n yields 

 = 

˙ p 

J · n + 

μ

ξL 
(1 − p 2 z ) =

[
˙ p 

J 
]

z
+ 

μ

ξL 
(1 − p 2 z ) , (10)



Fig. 3. Orientation evolution for H/L = 0 . 8 (top-left), H/L = 0 . 6 (top-right), H/L = 0 . 4 (bottom-left) and H/L = 0 . 2 (bottom-right). 
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or 

μ = − ξL

1 − p 2 z 

[
˙ p 

J 
]

z
. (11)

Eq. (9) thus reduces to 

˙ p = 

˙ p 

J − 1 

1 − p 2 z 

[
˙ p 

J 
]

z 
( n − p z p ) = 

˙ p 

J + 

˙ p 

C , (12)

with 

˙ p 

J given by Eq. (1) , p z = p · n and 

[
˙ p 

J 
]

z
= 

˙ p 

J · n . 

The first term in Eq. (12) corresponds to the standard, uncon-

fined Jeffery kinematics, while the second term avoids that rod

beads leave the flow domain. While preparing this paper, it came

to our attention that Eq. (12) had been derived independently in

[26] using similar arguments but a different procedure. 

Eq. (9) can be rewritten as 

˙ p − � · p = D · p − (D : (p ⊗ p )) p + 

μ

ξL 
(n − p z p ) , (13)

from which we can conclude that the rate of strain due to the flow

kinematics and the reaction forces induce an effective rotation 

˙ p −
� · p , thus ensuring the model objectivity. 

So, to sum up, the kinematics of a rigid rod of length 2 L in a

simple shear flow occurring in a narrow gap of thickness 2 H are
4

iven by the following confined Jeffery model : 
 

 

 

˙ p = 

˙ p 

J if p z L < H 

˙ p = 

˙ p 

J if p z L = H & 

˙ p 

J · n ≤ 0 

˙ p = 

˙ p 

J + 

˙ p 

C if p z L = H & 

˙ p 

J · n > 0 

, (14)

here the rods are in contact with the walls if p z = H/L . It is im-

ortant to notice that expression (12) only applies if the trial Jef-

ery velocity is such that ˙ p 

J · n > 0 . When p z L < H , ˙ p reduces to the

tandard Jeffery contribution 

˙ p 

J . When p z L = H and 

˙ p 

J · n ≤ 0 , the

otary velocity also reduces to the Jeffery contribution. The contact

eing unilateral, a rod can detach from the wall as soon as its ve-

ocity induces the detachment. These conditions, known as Kuhn

nd Tucker or Signorini conditions, are similar to those encoun-

ered when describing unilateral contact or elastoplasticity. When

rojecting Eq. (12) in the thickness direction, we have ˙ p 

J · n = 0 ,

hus ensuring that the rod beads do not leave the flow domain. 

In the numerical tests discussed below, we will occasionally as-

ume fully-confined conditions , meaning that fibres are assumed to

e and always remain in contact with the walls, while their orien-

ation evolution is governed by Eq. (12) . In such case, the contact

s bilateral and fibres are prevented to detach from the wall even

hen 

˙ p 

J · n ≤ 0 . A reaction force must appear to maintain contact
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nd avoid detachment of the rod bead from the wall. In the se-

uel, this particular model will be referred to as the fully-confined

effery model . Although not entirely physical, it will be useful for

alidation purposes. 

.2. Mesoscopic description of a population of rods 

Having described the kinematics of individual rods in confined

ows, we now turn to a population of non-interacting rods. There

re two natural approaches for doing so, i.e. discrete and continu-

us. 

.2.1. Discrete description 

The discrete approach consists in computing the orientation of

ach individual rod belonging to a large discrete ensemble of N 

ods. Thus, the population is described from the individuals com-

osing it, whose conformation is given by vectors p , i = 1 , ..., N ,
i 

time
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1

ig. 5. Fully-confined Jeffery solution a disc , fc (fibre detachment from the wall is prevented

he same direction.

5

ach governed by Eq. (14) . The main drawback of this approach

ies in the necessity of tracking the evolution of each rod by solv-

ng the corresponding equation, and even if conceptually there is

o major difficulty, the computing cost could be excessive in most

ractical applications. 

.2.2. Continuous description 

The continuous approach uses the pdf ψ( x , t , p ) that gives the

raction of rods that are oriented along direction p at position x

nd time t . This description avoids the complexity related to the

mmense number of fibres involved in suspensions of practical in-

erest. 

The pdf satisfies the normalization condition: 
 

S 
ψ(x , t, p ) dp = 1 , ∀ x , ∀ t (15)

here S is the rod conformation space, i.e. the surface of the unit

phere in the unconfined case. 

Conservation of probability leads to the so-called Fokker–Planck

quation 

∂ψ 

∂t 
+ ∇ x · ( ̇ x ψ ) + ∇ p · ( ̇ p ψ ) = 0 , (16)

here the rod rotary velocity ˙ p is given by the confined Jeffery’s

quation (14) and 

˙ x = v (x , t) . 

In the confined case, the permitted orientation domain is ob-

ained by removing from the surface of the unit sphere S both po-

ar regions located beyond the parallels z = ±H. Moreover, if the

df is defined in the resulting 2 D surface, boundary layers are ex-

ected on parallels z = ±H, where rods orient while keeping con-

act with the upper and lower walls, which implies a mesh de-

endence of the discrete solution because rods concentrate on the

arallels that have a null measure on the unit sphere. Appendix A

iscusses a possible alternative route for accomplishing mesoscopic

odelling and simulation, however that route is not considered in

he present work. 

.3. Macroscopic description 

A macroscopic model describes the suspension microstructure

ia suitable moments of the pdf, defined in standard physical do-

ains involving space and time. These moments can be computed

ither via a discrete or continuous approach. 
 (s)
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) versus fully-confined macroscopic description a C ( t ) in the case of rods aligned in



Fig. 6. Isotropic initial orientation distribution for H/L = 0 . 2 and N = 40 0 0 . 
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2.3.1. Discrete approach 

Consider for example the second-order moment of the pdf, also

known as the second-order orientation tensor. In the discrete ap-

proach, we integrate Eq. (14) for the N rods of the population and

compute at each instant the associated orientation tensor accord-

ing to the ensemble average 

a disc (t) = 

1

N 

N ∑ 

i =1

p i (t) ⊗ p i (t) . (17)

Here, the superscript disc refers to the discrete approach. 

As mentioned before, the main disadvantage of this approach

is the computational cost due to the extremely large number of

particles to be considered. 
6

.3.2. Continuous approach: the two limiting cases 

In the continuous approach, the orientation distribution

unction is substituted by its moments for describing the mi-

rostructure [3] at the macroscale, and an evolution equation

or these moments is derived from the Fokker–Planck equation.

sually, macroscopic descriptions of rod suspensions are based on

he use of the first two non-vanishing moments, i.e. the second

nd fourth-order moments, a and A , respectively defined by 

 = 

∫ 
S 

p ⊗ p ψ(x , t, p ) dp , (18)

nd 

 = 

∫ 
S 

p ⊗ p ⊗ p ⊗ p ψ(x , t, p ) dp . (19)



Fig. 8. Initial in-plane isotropic orientation distribution related to the fully-confined simulation on z = H, H/L = 0 . 2 , implying p z = 0 . 2 for all fibres. 
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Fig. 9. Confined Jeffery’s orientation tensor a disc ( t ) versus fully-confined macro- 
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isotropic distribution depicted in Fig. 8 .
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Odd moments vanish in view of the symmetry of the pdf:

(x , t, p ) = ψ(x , t, −p ) . 

We consider two extreme situations, namely the unconfined

ase which yields the standard macroscopic description based on

effery’s equation, and the fully-confined case wherein all rods are

n contact with the gap walls. The latter is certainly relevant in

onditions of intense confinement, namely for H 	 L . In this case,

e can further assume that rod orientations are distributed in the

llowed region of the unit sphere but under a lubrication kinemat-
7

cal constraint. These three modelling frameworks are described

elow. 

• The unconfined case: For unconfined rods, the orientation is de-

fined on the surface of the unit sphere S, and the associated

Fokker–Planck equation is readily exploited to derive the clas-

sical evolution equation for the second-order orientation tensor

associated to the standard Jeffery model [5] :

˙ a J = ∇v · a J + a J · (∇v ) T − 2 A 

J : ∇v . (20)

Here, the superscript J indicates that we consider the orienta-

tion tensors associated with the standard Jeffery model for un-

confined systems. 
• The fully-confined case: In the other limiting case, we assume

that all rods in the suspension are in contact with the walls

and that the contact is bilateral, i.e. rods can orient but always

remain in contact with the walls. In this situation, we can de-

rive an evolution equation for what we call the fully-confined

orientation tensor a C defined as

a C = 

∫ 
C 

p ⊗ p ψ(p ) dp , (21)

with C = { p , p z = ±H/L } .
Indeed, we have 

˙ a C = 

∫ 
C 

p ⊗ p 

˙ ψ (p ) dp , (22)

where 

˙ ψ = −∇ p · ( ̇ p ψ(p )) . (23)

Integration by parts with respect to coordinates p yields 

˙ a C = 

∫ 
C 
( ̇ p ⊗ p + p ⊗ ˙ p ) ψ(p ) dp . (24)

In the confined case 

p = 

(
q 

p z 

)
, (25) 
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Fig. 10. Fully-confined Jeffery’s orientation tensor versus a C ( t ) for a population of

rods with the fully-confined initial isotropic distribution depicted in Fig. 8 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with p z = ±H/L, from which Eq. (21) gives 

a C = 

∫ 
C

(
q ⊗ q p z q 

p z q 

T p 2 z 

)
ψ(p ) dp . (26)

Considering now Eq. (24) , with 

˙ p ⊗ p = 

(
˙ q 

0 

)
⊗

(
q 

p z 

)
, (27)

and 

p ⊗ ˙ p = 

(
q 

p z 

)
⊗

(
˙ q 

0 

)
, (28)

we obtain 

˙ a C = 

∫ 
C

(
( ̇ q ⊗ q + q ⊗ ˙ q ) p z ̇ q 

p z ̇ q 

T 0 

)
ψ(p ) dp . (29)

Now, we define the in-plane second-order orientation tensor

b according to 

b = 

∫ 
C

q ⊗ q ψ(p ) dp . (30)

This new tensor does not have a unit trace since ‖ q ‖ 2 = 1 − H 2 

L 2 
.

We also define a vector c , 

c = 

∫ 
C

q p z ψ(p ) dp , (31)

which does not vanish because the pdf is symmetric, i.e.

ψ(p ) = ψ(−p ) and q and p z have opposite sign on each par-

allel z = ±H defining C. 

With these definitions and Eq. (26) , we obtain the orientation

tensor a C , 

a C = 

(
b c 

c T H 2

L 2

)
, (32)

and its time derivative reads 

˙ a C = 

(
˙ b 

˙ c 

˙ c T 0 

)
, (33)

with 

˙ b and 

˙ c given by Eq. (29) . 

In order to obtain 

˙ b and 

˙ c , we need to derive the expression

of ˙ q . For that purpose, we decompose the velocity gradient ac-

cording to 

∇v = 

(
G g 

j T G 

)
, (34)
8

such that 

∇v · p = 

(
G g 

j T G 

)(
q 

p z 

)
= 

(
G · q + g p z 

j T · q + Gp z 

)
. (35)

As detailed in Appendix B , we obtain 

˙ q = G · q − δ1 (G : (q ⊗ q )) q + δ2 g 

− δ3 (q 

T · g ) q , (36)

with δ1 = 

1

1 −p 2 z 
, δ2 = p z and δ3 = 

p z
1 −p 2 z 

= δ1 δ2 . 

Thus, the time derivative of tensor b is given by 

˙ b = G · b + b · G 

T − 2 δ1 G : B 

+ (g ⊗ c + c ⊗ g ) − 2 δ3 B · g , (37)

with B and B being respectively the third and fourth-order

in-plane orientation tensors related to the in-plane orien-

tation q . Both will be expressed from c and b through

adequate closure relations. The simplest closure consists in

assuming {
B = 

1 
p z

b ⊗ c 

B = b ⊗ b 

. (38)

It is exact when the rods are fully aligned (i.e. when the pdf

reduces to a Dirac delta distribution). In the general case, its

validity must be checked carefully. The development of more

accurate closure approximations following the rationale consid-

ered in [10,11,23,29] constitutes a work in progress that will be

reported in future publications. 

Finally, we obtain the time evolution of the first-order moment

˙ c = 

∫ 
C

˙ q p z ψ(p ) dp , (39)

by considering the expression of ˙ q given by Eq. (36) , 

˙ c = G · c − δ1 δ2 G : B + δ2 
2 g − δ3 δ2 b · g . (40)

• The lubrication simplified model: Inspired by lubrication the-

ory that successfully reduces the 3D flow equations in the

case of thin gaps by neglecting out-of-plane velocities, in the

case of intense confinement, i.e. H / L < 0.3, we could as-

sume ˙ p z ≈ 0 . Moreover, the in-plane components of ˙ p 

J and

of its confined counterpart ˙ p given by (12) are very close in

such situation. Thus, one could ignore the unconfined motion

of rods in the thin gap and consider that all rods are each

fully confined by an imaginary wall located at the initial bead

z -coordinates.

This is equivalent to computing the fully-confined solution a C

at each z , a C ( t ; z ), z ∈ [0, H ], and then considering the average

˜ a C (t; H) = 

∫ H

0

ω(z) a C (t; z) dz, (41)

where ω( z ) is the fraction of rods that initially have a bead lo-

cated at z (the other bead being at −z). 

Thus, ˜ a C could be retained as a simplified orientation descrip-

tor when confinement becomes dominant. 

In what follows, ˜ a C is calculated by integrating a C at different

coordinates z i uniformly distributed in the gap [0, H ] and then

averaging these solutions. For an isotropic initial distribution in

the gap, we obtain the through-the-thickness average of a C . 

Another possibility, not exploited in the present paper, con-

sists in deriving the equation governing the time evolution of

tensor ˜ a C by introducing Eqs. (37) and (40) into the time deriva-

tive of Eq. (41) and then performing integration. The derivation

is detailed in Appendix C , where we show that, even though a

closed evolution equation does not exist, suitable approximate

expressions can be obtained. 



Fig. 11. Comparison of confined a disc and unconfined a J , disc solutions computed by using a population of rods large enough to ensure their use as reference solutions, and the

orientation tensor a J ( t ) obtained by integrating Eq. (20) using the quadratic and hybrid closure relations, a quad and a hybr respectively, for different initial confined orientation

distributions.
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. Model predictions in simple shear flow

In this section, we discuss the predictions of the proposed mod-

ls for the case of a simple shear flow with velocity v T = ( ̇ γ z, 0 , 0 )
nd ˙ γ = 1 . Since we consider a unit shear rate, the time coordinate

n most of the graphical representations that follow can be viewed

s a shear strain coordinate. 

In all simulations carried out and discussed below, the coupling

etween flow and orientation is voluntarily neglected. The reasons

re threefold. First, we wish to focus on the orientation process

or a given unperturbed velocity field in order to analyze the con-

nement effects without having other disturbances than the ones

elated to the orientation mechanisms. Second, before addressing

he semi-dilute or semi-concentrated flow regimes, we believe that

he dilute case must be understood beforehand. Third, the consti-

utive equation relating the extra-stress to the orientation descrip-

ion should be revisited and probably modified in view of con-

nement effects. This analysis is currently underway within our

roup. 

.1. Evaluating the trajectory of a single rod 

First, we consider the evolution of a single rod, or equivalently,

f a population of rods all of them aligned in the same direction,

sing both the proposed extension of Jeffery’s equation to confined

ystems and the equations governing the evolution of the moments

f the distribution function under confinement conditions. 

.1.1. Solution of the confined Jeffery equation 

Here, we track the orientation of a rod initially unconfined, that

s p z L < H , but whose Jeffery trajectory implies at a certain instant
9

hat p 
J 
z (t) L > H. It is important to note that in our model all ini-

ial orientations associated with Jeffery’s trajectories never reach-

ng the domain wall (or reaching it at the highest point where the

rajectory becomes tangent to the wall) will follow a Jeffery trajec-

ory without any perturbation. As indicated in the introduction, hy-

rodynamic effects appear when the rod approaches the gap walls.

hese second-order effects are ignored in the simulations that fol-

ow. 

Fig. 2 shows the orientation trajectory followed by the rod. At

he beginning, because the rod is unconfined, it follows the tra-

ectory dictated by Jeffery’s equation (1) . The actual trajectory p ( t )

s depicted in red whereas the unconfined Jeffery motion p 

J ( t ) is

epresented by the broken blue curve. Until reaching the walls, as

xpected, both trajectories superpose and consequently cannot be

istinguished. As soon as one of the rod beads reaches the up-

er wall p z L = H (the other bead reaches simultaneously the lower

all, but by using symmetry arguments we only refer to the one

ouching the upper wall), with 

˙ p 

J · n > 0 for both trajectories, the

ctual trajectory and the one associated to the unconfined Jeffery

otion bifurcate from each other. The Jeffery trajectory continues

ts unconfined motion with p 
J 
z L > H whereas the confined rod con-

inues to slide on the upper wall p z L = H until it detaches from it. 

The orientations satisfying the contact condition p z L = H define

he two thick black parallels depicted in Fig. 2 . Thus, we notice

hat during a time interval the rod orients toward the flow direc-

ion while remaining in contact with the walls. In fact, during this

eriod of time, the confined rod is crossing an infinity of forbidden

effery trajectories with 

˙ p 

J · n > 0 . Finally, at a certain instant the

od reaches an unconfined Jeffery orbit that is tangent to the wall.

his means that even if p z L = H, we have ˙ p 

J · n = 0 and then the
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Fig. 12. Comparing the orientation development for two different degrees of con- 

finement: H/L = 0 . 2 (top) and H/L = 0 . 3 (bottom): lubrication fully-confined macro- 

scopic ˜ a C (t; H) versus confined Jeffery’s a disc ( t ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Orientation time delay for different degrees of confine- 

ment H / L .

H / L �t/ �t J 
f l 
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contact force vanishes. The rod having thus reached a permitted,

unconfined Jeffery trajectory, it follows it for the remainder of the

simulation. Although the final orientation, i.e. full alignment of the

rod with the flow, is the same as the one reached by the purely

unconfined Jeffery motion, the confined trajectory has a slightly

higher time of flight. 

In order to evaluate the effect of confinement on the orienta-

tion time, we consider different confinement ratios H / L and cal-

culate the time elapsed between the instant at which the con-

fined and unconfined trajectories (having the same starting point)

diverge (after reaching the wall) and the instant at which both

trajectories reach an orientation degree quantified by p x = 0 . 9 .

The different unconfined versus confined trajectories followed by

the fibres are depicted in Fig. 3 , and the delay time normalized

by the unconfined flight time (given by Jeffery’s solution) for the

different confinement ratios are reported in Table 1 . 

3.1.2. Fully-confined orientation tensor 

Here, the initial confined orientation is given by p 

T (t = 0) =
(−p x , p y , H/L ) , with p y ≈ 0, H/L = 0 . 8 and such that ‖ p (t = 0) ‖ =
1 . The confined Jeffery equation (14) was integrated with the ini-

tial condition p (t = 0) . The orientation tensor at each time step
10
 

disc ( t ) was calculated from a disc (t) = p (t) ⊗ p (t) (having all rods

riented in the same direction is equivalent to consider N = 1 in

q. (17) ), and compared with the fully-confined orientation ten-

or a C ( t ) obtained by integrating Eq. (33) from the initial condition

 

C (t = 0) = p (t = 0) ⊗ p (t = 0) that allowed to define b (t = 0) and

 (t = 0) . 

Fig. 4 compares both solutions. It can be noticed that they are

n perfect agreement at the beginning of the orientation process

hen confinement is intense, while they differ slightly from each

ther at the end when fibres detach. As just mentioned, the con-

ned macroscopic model involving a C prevents detachment. 

It is important to notice that in this case the quadratic closures

38) involved in the evolution equation (33) for a C are exact. Thus,

ny difference between both solutions is probably due to the fact

hat the description given by a C assumes fully-confined rods (i.e.

hey never detach from the wall), while Eq. (14) allows rods to de-

ach from the wall. 

In order to confirm this hypothesis on the origin of the noticed

eviations, we solved the same problem but, when integrating the

onfined Jeffery equation, fibres were not allowed to detach from

he wall and remained in contact with the wall for the remainder

f the simulation. Fig. 5 shows, that when full-confinement con-

itions apply, both solutions are in perfect agreement. It is impor-

ant also to notice that when the orientation distribution is fully

oncentrated, i.e. given by a Dirac delta distribution, the third and

ourth-order closures of B and B respectively, involved in Eqs. (37)

nd (40) , are exact and then the discrete and continuous solution

rocedures remain in perfect agreement. 

.2. Evolution of a population of rods 

We now consider a population of rods having different initial

rientations and thus following different trajectories. 

.2.1. Discrete calculation of the orientation tensor 

We consider a population of N = 40 0 0 rods having an almost

sotropic initial orientation on the allowed part of the unit ball sur-

ace, the one limited by the parallels z = ±H, as shown in Fig. 6 .

he trajectory of each p i ( t ) is obtained by integrating the confined

effery model (14) . The results will be compared with those of the

nconfined case, p 

J 
i 
(t) , governed by the standard Jeffery equation

1) . 

At each instant, the second-order orientation tensor is com-

uted for both the confined and the unconfined systems, a disc ( t )

nd a J , disc ( t ) respectively, according to: 

 

disc (t) = 

1

N 

N ∑ 

i =1

p i (t) ⊗ p i (t) , (42)

nd 

 

J,disc (t) = 

1

N 

N ∑ 

i =1

p 

J 
i 
(t) ⊗ p 

J 
i 
(t) . (43)

In Fig. 7 , one notices that the orientation a disc 
xx experiences a

light delay with respect to a 
J,disc 
xx , and the peak in a 

J,disc 
zz disappears

hen confinement effects act. 
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Fig. 13. Fully-confined solutions a C ( t ) for different degrees of confinement H / L .
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When considering a population of rods rather than a single rod,

he delaying effect of confinement is less noticeable due to the av-

raging of results involving a number of unconfined trajectories as-

ociated with rods that never reach the walls. Thus, we can con-

lude that the impact of confinement is quite moderate in what

oncerns the orientation moments. 

.2.2. Impact of the closure relation 

We now assume a population of rods with a fully-confined ini-

ial isotropic distribution, isotropic in what concerns the in-plane

onfined tensor b (t = 0) as depicted in Fig. 8 . 

The solution of the fully-confined macroscopic model for a C ( t )

s compared with the integration of the confined Jeffery model

14) . Fig. 9 compares both solutions and differences are noticed

rom the very beginning of the orientation process. These differ-

nces could be attributed to the closure relations (38) involved in

he formulation of a C . It is easy to verify that the closure relations

reviously introduced for expressing B and B as a function of b and

 are only exact in the case of full alignment (when the orientation

df reduces to a Dirac distribution). 

In order to quantify more precisely the impact of the closures

n the computed solution a C , Fig. 10 compares a C with the second-

rder orientation tensor obtained from the integration of the fully-

onfined Jeffery equation (12) for all fibres in the population, inte-

ration that prevents their detachment from the wall. From these

esults, we conclude that errors introduced by the closure relations

38) accelerate noticeably the dynamics of alignment in confined

uspensions, but cannot explain entirely the differences that Fig. 9

eveals. 

.2.3. Unconfined versus confined Jeffery models 

The results just discussed indicate that confinement only has

 slight influence on the kinematics of the orientation process, as

ig. 7 reveals. It is thus of interest to have a further look at the un-

onfined Jeffery equation (1) and the associated evolution equation

20) for the orientation tensor a J when considering a confined ini-

ial orientation distribution. Here, we use the quadratic and hybrid

losure relations for expressing the fourth-order orientation tensor

 

J in terms of a J [27] . Other closures exist, such as the natural

nd the orthotropic ones [10,11,13] . The former does not, however,

ave an explicit expression in the 3D case and the latter predicts

purious oscillations in absence of diffusion. For these reasons, we

onsider the quadratic are hybrid closures that are expected to per-

orm reasonably well in unconfined conditions. 

In the numerical experiments that follow, we specify initially

wo Gaussian orientation states on the allowed part of the unit ball

urface, both depicted in Fig. 11 , limited by the parallels z = ±H,
11
ith H/L = 0 . 2 and 0.8. Thus, for integrating Eq. (20) , we specify 

 

J (t = 0) = 

1

N 

N ∑ 

i =1

p i (0) ⊗ p i (0) , (44)

here the initially-confined discrete orientations p i (0) are those

hown in Fig. 11 . 

Fig. 11 compares the confined and unconfined solutions com-

uted by using a population of rods large enough to ensure their

se as reference solutions, and the orientation tensor a J ( t ) ob-

ained by integrating Eq. (20) using the quadratic and hybrid clo-

ure relations, for the two initial confined orientation distributions

epicted in that figure. The main conclusions that can be drawn

rom these results are: 

• The out-of-plane component ( •zz ) for the unconfined Jeffery

model is only slightly different from the one related to the con-

fined model;
• For confined initial conditions, confined kinematics delay

slightly the evolution of the second-order orientation tensor ob-

tained from a population of rods large enough to consider the

computed solution as almost exact statistically (i.e. solving the

corresponding Fokker–Planck equation would give the same re-

sult). The delay increases with the degree of confinement, as

measured by the reciprocal of the ratio H / L ;
• Closure relations are responsible for artificially accelerating the

evolution of the second-order moment resulting from the in-

tegration of its unconfined evolution equation with confined

initial conditions. Closure approximations become less accurate

(i.e. the orientation process accelerates) as the degree of con-

finement increases (i.e. as H / L decreases);
• The quadratic and hybrid closures produce similar results.

Two main reasons could be advanced for explaining the noticed

eviations: (i) standard closure relations are inappropriate in pres-

nce of confinement; and (ii) the second-order moment alone is

ot an accurate descriptor of a constrained probability distribution.

A natural route is the development of empirical closure rela-

ions, inspired from the works of [10,11,13] that were successfully

mplemented in [23,29] . This could be a valuable route indeed, and

 fitted closure should of course work well as long as the operat-

ng conditions remain similar to the ones that served to construct

t. Although useful from an applicative point of view, this approach

as two main limitations: (i) it could hide the real physical reasons

or the noticed deviations; and (ii) a closure fitted from a particular

onfined flow could fail as soon as the flow and degree of confine-

ent differ significantly from the ones that were used to obtain

he particular fit. 

In order to analyze the ability of a second-order tensor to rep-

esent a confined orientation distribution, we decided to compute

he solution of a J ( t ) from Eq. (20) , but instead of using a closure

elation for the fourth-order orientation tensor A 

J , we obtained it

rom the solution of the equation governing its time evolution that

n its turn involves the sixth-order orientation tensor A 

J (t) . In or-

er to avoid once again the use of a closure relation, we computed

 

J (t) from its evolution equation that now involves the eight-

rder orientation tensor. We finally substituted the latter with the

losure approximation A 

J (t) ⊗ a J (t) . Despite these effort s to con-

ider a formulation up to order 6, involving a J , A 

J and A 

J with

heir 3 2 + 3 4 + 3 6 components and their corresponding evolution

quations (in fact much less, due to normalization conditions and

ymmetry properties), the computed solution was found to be very

oor. 

Following the rationale described in [3] , we attempted to de-

cribe the initial confined distribution depicted in Fig. 6 from

ts associated moments a , A and A . Use of the first three non-

anishing moments was found insufficient for approximating the
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actual distribution. Many additional higher-order moments would

be needed, which is not practical and would compromise the ef-

ficiency of the solution procedure. As discussed in [3] , the ori-

entation tensors can be viewed as the Fourier series expansion

coefficients of the orientation distribution function. Limitations of

Fourier series for approximating rectangular functions like the ones

associated to a uniform distribution in a region of the conforma-

tion space (surface of unit sphere) are well known. In that situa-

tion, it is preferable to consider the direct solution of the Fokker–

Planck equation, which constitutes an appealing route for further

developments [8,9] . 

3.3. Lubrication approach 

In order to validate the lubrication approach of the fully con-

fined macroscopic model ( Section 2.3.2 ), we compare in Fig. 12

for two different degrees of confinement, H/L = 0 . 2 and H/L =
0 . 3 , the solutions obtained from the confined Jeffery model (14)

that is considered as the reference solution, associated to an ini-

tially uniform orientation distribution in the allowed region of the

unit sphere ( Fig. 6 ), and the lubrication counterpart of the fully-

confined macroscopic model. It can be noticed that the orientation

kinematics is described quite well by the proposed macroscopic

model, which thus seems a valuable tool for calculating the ori-

entation evolution in highly-confined systems. 

In order to understand the lubrication mechanisms and more

concretely the effects of averaging between different fully-confined

orientation evolutions, we depict in Fig. 13 the fully-confined solu-

tions obtained for different confinement ratios H / L . 

4. Conclusions

In this paper, we have extended the standard Jeffery model for

rod kinematics in a Newtonian fluid in order to take account of

confinement effects in a simple shear flow occurring in a narrow

gap. The proposed confined Jeffery model (14) is meant to describe

the kinematics of individual rods in confined flows. It is in princi-

ple easily exploited for a discrete description of a population of

non-interacting, confined rods ( Section 2.2.1) . The development of

a continuous mesoscopic description is more delicate. Although a

sophisticated, confined Fokker–Planck model, based on the use of

two probability distribution functions, is derived in Appendix A ,

we did not pursue this route in view of the anticipated numeri-

cal challenges. Finally, we have developed a continuous model for

the macroscopic scale in the limiting case where rods can orient

but always remain in contact with the walls. Using suitable clo-

sure approximations, we have thus obtained the evolution equa-

tion (33) for the fully-confined second-order orientation tensor a C ,

as detailed in Section 2.3.2 and Appendix B . In the case of intense

confinement, i.e. H / L < 0.3, we can ignore the unconfined motion

of rods in the thin gap and consider, in the spirit of lubrication the-

ory, that each rod is fully confined by an imaginary wall located

at its extremities. This led us to retain the gap-averaged, fully-

confined orientation tensor ˜ a C as suitable descriptor when confine-

ment is dominant. It can be computed either via the average (41)

involving values of a C through the gap, or else as solution of an

evolution equation derived in Appendix C . 

Numerical experiments have been conducted for a simple shear

flow, with rods having initial orientations on the allowed part of

the unit ball surface, i.e. the one limited by the walls. We found

that the orientation kinematics predicted with the confined and

unconfined Jeffery models applied to a population of rods are quite

similar, with only a slight delay in confined systems. 

In view of this result, we performed the same simulations with

the unconfined Jeffery equation (1) and the associated macroscopic

evolution equation (20) for the second-order orientation tensor a J .
12
o our surprise, radically different results were obtained: the evo-

ution of orientation as predicted by the macroscopic model for the

rientation tensor a J ( t ), i.e. the second moment of the orientation

df, is much faster than that obtained by computing with the Jef-

ery model the orientation evolution a J , disc ( t ) of a discrete popula-

ion of rods. The origin of this difference is due to the impossibil-

ty of describing the confined orientation pdf and its time evolution

sing only the second-order moment of the pdf. Consideration of

dditional higher-order moments (up to order 6) was found insuf-

cient in this regard. 

Thus, we conclude from this study that the main challenge with

raditional macroscopic models involving moments of the orienta-

ion pdf lies more with representation capabilities in highly con-

ned conditions than with a suitable description of the induced

rientation kinematics. Use of the averaged fully-confined macro-

copic descriptor ˜ a C proposed in this paper is recommended in fu-

ure theoretical developments. 
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ppendix A. Advanced mesoscopic modelling 

For representing accurately the orientation distribution at the

esoscopic scale, we could consider two pdf’s, ψ 

J (x , t, p ∈ J ) and

 

C (x , t, p ∈ C) , with

J = { p , p z ∈ (−H/L, H/L ) }
C = { p , p z = ±H/L } , (A.1)

here the normalization condition reads 
 

J
ψ 

J (x , t, p ) dp + 

∫ 
C
ψ 

C (x , t, p ) dp = 1 . (A.2)

Now, assuming homogeneous flow for the sake of simplicity

nd without loss of generality, the dependence of both pdf’s on the

pace coordinates x can be ignored and the Fokker–Planck equa-

ion reads:
 

 

 

∂ψ 

J 

∂t 
+ ∇ p · ( ̇ p 

J ψ 

J ) = 0 , p ∈ J
∂ψ 

C 

∂t 
+ ∇ p · ( ̇ p 

M ψ 

C ) = Q 

+ − Q 

−, p ∈ C +
, (A.3)

here, due to symmetry considerations, we only consider the up-

er parallel C + = { p , p z = H/L } , and 

˙ p 

M represents the velocity on

he manifold, defined from 

˙ 
 

M = 

{
˙ p if ˙ p · n = 0 

0 if ˙ p · n � = 0 

, (A.4)

ith 

˙ p given by Eq. (14) . 

Here, Q 

+ = ( ̇ p 

+ · t ) ψ 

J (p ) represents the unconfined rods

eaching the manifold C + , t being the unit vector tangent to the

nit sphere S, normal to the manifold C + and pointing outward of

he allowed region J , with the upstream velocity ˙ p 

+ given by 

˙ 
 

+ = 

{
˙ p 

J i f ˙ p 

J · n > 0 

0 otherwise 
. (A.5)

On the other hand, confined rods leaving the manifold C + are

iven by Q 

−, with Q 

− = −( ̇ p 

− · t ) ψ 

C (p ) , with 

˙ 
 

− = 

{
˙ p 

J i f ˙ p 

J · n < 0 

0 otherwise 
. (A.6)

The only boundary condition to be prescribed at the boundary

f J to ensure conservation of probability reads 

 

J (p ) | ∂J − = ψ 

C (p ) | C∩ ∂J − , (A.7)
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t  ∫
here ∂J 

− denotes the part of the boundary of J through which

ods leaving the manifold C come into domain J . 

Note that in the Fokker–Planck model (A.3) , domains C and

 exchange rods while ensuring conservation of probability. Do-

ain J , due to its 2D nature, exchanges rods through its bound-

ry, whereas C being 1D, the rod exchange appears as a source

erm in the balance equation (in fact C as previously defined is

nbounded). 

The numerical treatment of the resulting mesoscopic model is

uite delicate because rods leaving the manifold C usually group on

he two trajectories in J consisting of the unconfined Jeffery orbits

angent to the manifold C that implies a Dirac delta distribution in

 . For this reason, discretization based on the use of continuous

pproximations remains extremely difficult even when considering

wo pdf’s. The use of a particle-based integration technique consti-

utes however a plausible route. 

ppendix B. Evolution equation for the confined orientation 

ensor 

In this appendix, we address the obtention of Eq. (36) . For that

urpose, we consider the confined Jeffery equation 

˙ 
 = 

˙ p 

J − 1 

1 − p 2 z 

[
˙ p 

J 
]

z
( n − p z p ) , (B.1) 

here p is written as 

 = 

(
q 

p z 

)
, (B.2) 

nd the gradient of velocity as 

v = 

(
G g 

j T G 

)
. (B.3) 

The first term of Eq. (B.1) involves 

v · p = 

(
G g 

j T G 

)(
q 

p z 

)
= 

(
G · q + g p z 

j T · q + Gp z 

)
, (B.4)

nd 

p 

T · ∇v · p 

)
p = 

((
q 

T p z 
)(G g 

j T G 

)(
q 

p z 

))(
q 

p z 

)

= 

(
q 

T · G · q + 

(
q 

T · g 

)
p z + 

(
j T · q 

)
p z + Gp 2 z 

)( q 

p z 

)
. (B.5) 

Operating on the second term of Eq. (B.1) , we obtain 

˙ p 

J 
]

z
= j T · q + Gp z −

(
q 

T · G · q 

)
p z −

(
q 

T · g 

)
p 2 z −

(
j T · q 

)
p 2 z − Gp 3z 

(B.6) 

nd 

( n − p z p ) = 

(
0 

1 

)
− p z 

(
q 

p z 

)
= 

( −p z q 

1 − p 2 z 

)
. (B.7) 

Thus, we finally obtain 
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˙  = G · q + g p z −
(
q 

T · G · q 

)
q −

(
q 

T · g 

)
p z q −

(
j T · q 

)
p z q − Gp 2 z q 

− 1

1 − p 2 z 

(
−
(
j T · q 

)
p z q − Gp 2 z q + 

(
q 

T · G · q 

)
p 2 z q 

+ 

(
q 

T · g 

)
p 3 z q + 

(
j T · q 

)
p 3 z q + Gp 4 z q 

)
, (B.8) 

hat can be rewritten as 

˙  = G · q − δ1 

(
q 

T · G · q 

)
q + δ2 g − δ3 

(
q 

T · g 

)
q (B.9)

ith δ1 = 

1

1 −p 2 z 
, δ2 = p z and δ3 = 

p z
1 −p 2 z 

. 

ppendix C. Time evolution of the averaged confined 

rientation tensor based on the lubrication approximation 

By introducing Eqs. (37) and (40) into the time derivative of

q. (41) , we obtain 

˙ ˜ 
 = G · ˜ b + 

˜ b · G 

T − 2 G :

∫ H

0 

ω(z) δ1 B dz 

+ (g ⊗ ˜ c + ̃

 c ⊗ g ) − 2 

(∫ H

0

ω(z) δ3 B dz 

)
· g , (C.1) 

nd 

˙ ˜ 
 = G · ˜ c − G : 

∫ H

0

ω(z) δ1 δ2 B dz 

+ 

(∫ H

0

ω(z) δ2 
2 dz 

)
g −

(∫ H

0

ω(z) δ3 δ2 b dz 

)
· g , (C.2) 

ith p z = z/L and δ1 = 

1

1 −p 2 z 
, δ2 = p z and δ3 = 

p z
1 −p 2 z 

= δ1 δ2 . 

A closed solution cannot be derived, but approximate expres-

ions can be obtained by closing the integral terms. For that pur-

ose, we define 
 

 

 

 

 

 

 

˜ b = 

∫ H 
0 ω(z) b dz 

˜ c = 

∫ H 
0 ω(z) c dz 

˜ B = 

∫ H 
0 ω(z) B dz 

˜ B = 

∫ H 
0 ω(z) B dz 

, (C.3) 

eading to the decomposition 

 

 

 

 

 

 

b = 

˜ b + �b 

c = 

˜ c + �c 

B = 

˜ B + �B 

B = 

˜ B + �B 

, (C.4) 

ith, by construction, 
 

 

 

 

 

 

 

 

 

∫ H 
0 ω(z)�b dz = 0 ∫ H 
0 ω(z)�c dz = 0 ∫ H 
0 ω(z)�B dz = 0 ∫ H 
0 ω(z)�B dz = 0 

. (C.5) 

The co-factors involving the delta coefficients in Eqs. (C.1) and

C.2) are noted for the sake of notational simplicity as D 1 = δ1 ,

 2 = δ3 , D 3 = δ1 δ2 , D 4 = δ2 
2 

and D 5 = δ2 δ3 . They accept the de-

omposition 

 i = 

˜ D i + �D i , i = 1 , . . . , 5 , (C.6)

ith 

∫ H 
0 ω(z)�D i dz = 0 , ∀ i .

Thus, neglecting integrals involving products of variations, as

or example 
∫ H 

0 ω(z)�D 1 �b dz ≈ 0 , and taking into account that

ilda variables do not depend on the z -coordinate and that
 H ω(z) dz = 1 , Eqs. (C.1) and (C.2) read: 
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[  

[

[

[

 

[

˙ ˜ b = G · ˜ b + 

˜ b · G 

T − 2 ̃

 D 1 G : ˜ B + (g ⊗ ˜ c + ̃

 c ⊗ g ) − 2 ̃

 D 2 ̃  B · g ,

(C.7)

and 

˙ ˜ c = G · ˜ c − ˜ D 3 G : ˜ B + 

˜ D 4 g − ˜ D 5 ̃
 b · g . (C.8)

These equations require appropriate closure relations for the av-

erage higher-order orientation moments ˜ B and 

˜ B . 
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