Conclusion Abstract

Polyzetas, indexed by words, satisfy shuffle and quasi-shuffle identities. In this respect, one can explore the multiplicative and algorithmic (locally finite) properties of their generating series. In this paper, we construct pairs of bases in duality on which polyzetas are established in order to compute local coordinates in the infinite dimensional Lie groups where their noncommutative generating series live. We also propose new algorithms leading to the ideal of polynomial relations, homogeneous in weight, among polyzetas (the graded kernel) and their explicit representation (as data structures) in terms of irreducible elements.

Introduction

This paper will provide transparent arguments and proofs for results presented at the International Symposium on Symbolic and Algebraic Computation conference, Bath, 6-9 July, 2015 [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF].

For any composition of positive integers, s = (s 1 , . . . , s r ), the polyzetas [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes prounipotents[END_REF] (also called multiple zeta values [START_REF] Zagier | Values of zeta functions and their applications[END_REF]) are defined by the following convergent series ζ(s 1 , . . . , s r ) ∶= n 1 >...>nr>0 n -s1 1 . . . n -sr r , for s 1 > 1.

(

) 1 
The Q-algebra generated by convergent polyzetas is denoted by Z.

Any composition s ∈ (N + ) r can be associated to words [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | Lyndon words, polylogarithms and the Riemann ζ function[END_REF] of the form x s 1 -1 0 x 1 . . . x sr-1 0 x 1 , defined on the alphabet X = {x 0 , x 1 }, or the form y s 1 . . . y sr , defined on the alphabet Y = {y s } s≥1 . The free monoids on these alphabets are respectively denoted by X * and Y * . In this respect, the weight of the composition s, determined by s 1 +. . .+s r , is also the weight of the word y s 1 . . . y sr or the length of the word x s 1 -1 0 x 1 . . . x sr-1 0 x 1 . Using concatenation, shuffle and quasi-shuffle products, in Section 2, 1. We will recall the definition of Hopf algebras (Q⟨X⟩, •, 1 X * , ∆ ¡ , e) and (Q⟨Y ⟩, •, 1 Y * , ∆ , e).

2. Equipping X with the (total) ordering x 0 < x 1 and denoting by LynX, the set of Lyndon words over X, the Poincaré-Birkhoff-Witt (PBW) basis {P w } w∈X * will be expanded over the basis {P l } l∈LynX , of the free Lie algebra Lie Q ⟨X⟩. Its dual basis {S w } w∈X * contains the pure transcendence basis of the algebra (Q⟨X⟩, ¡,1 X * ) denoted by {S l } l∈LynX [START_REF] Reutenauer | Free Lie Algebras[END_REF].

3. Similarly, equipping Y with the (total) ordering y 1 > y 2 > y 3 > . . . and denoting by LynY the set of Lyndon words over Y , the basis {Π l } l∈LynY , of the Lie algebra of primitive elements 1 , and its associated PBW-basis {Π w } w∈Y * will be proposed. The dual basis {Σ w } w∈Y * is polynomial and contains also a pure transcendence basis of the algebra (Q⟨Y ⟩, , 1 Y * ) denoted by {Σ l } l∈LynY [START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

4. We then establish the two following expressions of the diagonal series

D X ∶= w∈X * w ⊗ w = ↘ l∈LynX exp(S l ⊗ P l ), (2) 
D Y ∶= w∈Y * w ⊗ w = ↘ l∈LynY exp(Σ l ⊗ Π l ). (3) 
From these, in Section 3, 1. We will consider two generating series of polyzetas2 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | Lyndon words, polylogarithms and the Riemann ζ function[END_REF]:

Z ¡ ∶= ↘ l∈LynX X exp(ζ(S l )P l ) and Z ∶= ↘ l∈LynY {y 1 } exp(ζ(Σ l )Π l ). (4) 
The coefficients of Z ¡ (resp. Z ) are obtained as the finite parts of the asymptotic expansions of the polylogarithms {Li w } w∈X * (resp. the harmonic sums {H w } w∈Y * ), at 1 (resp. at +∞), in the scale of comparison

{(1 - z) a log b ((1 -z) -1 )} a∈Z,b∈N (resp. {N a H b 1 (N )} a∈Z,b∈N , where H 1 (N ) is the classic harmonic sum 1 + 1 2 + . . . + 1 N ) [24].
2. We have also defined a third one, Z γ [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF], which satisfies, via the extended Schützenberger's factorization on the completed quasi-shuffle Hopf algebra [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] ,

Z γ = e γy 1 Z . (5) 
The coefficients of Z γ are obtained as the finite parts of the asymptotic expansions of {H w } w∈Y * , in the scale of comparison {N a log b (N )} a∈Z,b∈N .

In [START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF], γ denotes the Euler's constant [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF].

3. In order to identify the local coordinates of Z ¡ (and Z ), on a group of associators [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], we will rely on the following comparison (see [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF])

Z γ = B(y 1 )π Y (Z ¡ ), where B(y 1 ) = exp γy 1 - k≥2 (-1) k-1 ζ(k) k y k 1 . (6)
Here, π Y is a linear projection from Q ⊕ Q⟪X⟫x 1 to Q⟪Y ⟫, mapping

x s 1 -1 0 x 1 . . . x sr-1 0
x 1 to y s 1 . . . y sr , and π X denotes its inverse.

By cancellation [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], ( 5) and ( 6) yield the following identity

Z = B ′ (y 1 )π Y (Z ¡ ), where B ′ (y 1 ) = exp k≥2 (-1) k-1 ζ(k) k y k 1 . (7) 
4. Simultaneously, algorithms will be also implemented in Maple to represent polyzetas3 in terms of irreducible polyzetas producing algebraic relations among the local coordinates {ζ(S l )} l∈LynX X (and {ζ(Σ l )} l∈LynY {y 1 } ) [START_REF] Van Chien Bui | Computation tool for the q-deformed quasi-shuffle algebras and representations of structure of MZVs[END_REF].

To end this section, let us point out some crucial points of our purpose :

1. Similar tables 4 for {ζ(l)} l∈LynX X have been obtained up to weight 10 [28],

12 [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF] and 16 [START_REF] Wardi | Tables des relations entre les MZVs en C ++[END_REF]. These differ from the zig-zag relation among the moulds of formal polyzetas, due to Ecalle [START_REF] Ecalle | ARI/GARI, la dimorphie et l'arithmétique des multizêtas: un premier bilan[END_REF], i.e. the commutative generating series of symbolic polyzetas (Boutet de Monvel [START_REF] Boutet De Monvel | Remark on divergent multizeta series[END_REF] and Racinet [START_REF] Espie | Formal computations about multiple zeta values[END_REF] have also given equivalent relations for the noncommutative generating series of symbolic polyzetas, see also [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes prounipotents[END_REF]) producing linear relations and which base themselves on regularized double shuffle relation [START_REF] Blümlein | The multiple zeta value data mine[END_REF][START_REF] Michael | Quasi-shuffle products[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF] and different from identities among associators, due to Drinfel'd [START_REF] Drinfel | Quasi-Hopf algebras[END_REF][START_REF] Drinfel | On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q Q)[END_REF][START_REF] Furusho | The multiple zeta value algebra and the stable derivation algebra[END_REF]].

2. In the classical theory of finite-dimensional Lie groups, any ordered basis of Lie algebra provides a system of local coordinates in suitable neighborhood of the group unity via an ordered product of one-parameter groups corresponding to the ordered basis [START_REF] Wei | On global representations of the solutions of linear differential equations as a product of exponentials[END_REF]. In this work, we get a perfect analogue of this picture for Hausdorff groups, through Schützenberger's factorization, this doesn't depend on regularization (see the next remark) [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

Moreover, through the bridge equation ( 6) relating two elements on these groups and by identification of local coordinates, in infinite dimension, of their L.H.S. and R.H.S. (which involve only convergent polyzetas) we get again a confirmation of Zagier's conjecture, up to weight 12. This is not a consequence of regularized double-shuffle relation (see the next remarks).

3. Of course, the generating series given in ( 4) and ( 5) induce, as already shown in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], three morphisms of (shuffle and quasi-shuffle) algebras, studied earlier in [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] and constructed in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] ζ ¡ ∶ (Q⟨X⟩, ¡,1 X * ) → (Z, ×, 1),

(8) ζ ∶ (Q⟨Y ⟩, , 1 Y * ) → (Z, ×, 1), (9) γ • ∶ (Q⟨Y ⟩, , 1 Y * ) → (Z, ×, 1), (10) 
which satisfy, for any u = x s 1 -1

0 x 1 . . . x sr-1 0 x 1 ∈ x 0 X * x 1 and v = π Y (u), ζ ¡ (u) = ζ (v) = γ v = ζ(s 1 , . . . , s r ) (11) 
and the generators of length (resp. weight) one, for X * (resp. Y * ), satisfy (see ( 4) and ( 5))

ζ ¡ (x 0 ) = ζ ¡ (x 1 ) = ζ (y 1 ) = 0 and γ y 1 = γ. (12) 
Hence, ζ ¡ , ζ and γ • are characters of (shuffle and quasi-shuffle) Hopf algebras, and their graphs, written as series, respectively read [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF] w∈X

* ζ ¡ (w)w = Z ¡ , w∈Y * ζ (w)w = Z , w∈Y * γ w w = Z γ (13) and 5 Z ¡ = (ζ ¡ ⊗ Id X * )D X , Z = (ζ ⊗ Id Y * )D Y , Z γ = (γ • ⊗ Id Y * )D Y .
4. By (4), for any u, v ∈ LynX X and

u ′ = π Y (u), v ′ = π Y (y), one has ζ ¡ (u)ζ ¡ (v) = ζ ¡ (u ¡ v) and ζ (u ′ )ζ (v ′ ) = ζ (u ′ v ′ ). (14) 
By [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF], for any l ∈ LynX X and l ′ = π Y (l), one has, on the other hand

i) ζ ¡ (x 1 ¡ l -x 1 l) = -ζ ¡ (x 1 l) = -⟨Z ¡ x 1 l⟩, ii) ζ (y 1 l ′ -y 1 l ′ ) = -ζ (y 1 l ′ ) = -⟨Z y 1 l ′ ⟩, iii) ⟨B ′ (y 1 ) y 1 ⟩ = 0.
This means that since ( 7) is equivalent to [START_REF] Van Chien Bui | Computation tool for the q-deformed quasi-shuffle algebras and representations of structure of MZVs[END_REF], for the quasi-shuffle product, the regularization to γ is equivalent to the regularization to 0 [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] and this yields immediately the family of regularized double shuffle relations considered in [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Blümlein | The multiple zeta value data mine[END_REF][START_REF] Espie | Formal computations about multiple zeta values[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF][START_REF] Hoang | Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Wardi | Tables des relations entre les MZVs en C ++[END_REF] (see also [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes prounipotents[END_REF][START_REF] Boutet De Monvel | Remark on divergent multizeta series[END_REF][START_REF] Michael | Quasi-shuffle products[END_REF][START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF][START_REF] Waldschmidt | Hopf algebras and transcendental numbers[END_REF]).

Our method is then different from [START_REF] Cartier | Fonctions polylogarithmes, nombres polyzêtas et groupes prounipotents[END_REF][START_REF] Boutet De Monvel | Remark on divergent multizeta series[END_REF][START_REF] Waldschmidt | Hopf algebras and transcendental numbers[END_REF] in which their authors suggest the simultaneous regularization of the divergent polyzeta ζ(1) to the indeterminate

T , i.e. ζ ¡ (x 0 ) = ζ ¡ (x 1 ) = ζ (y 1 ) = T (to compare with (12)).
Since T is transcendent over Q then it can be suitable to be specialized to 0, as effectively done in [START_REF] Espie | Formal computations about multiple zeta values[END_REF][START_REF] Kaneko | On a conjecture for the dimension of the space of the multiple zeta values[END_REF] and, by this way, relations among polyzetas are formally obtained depending mainly on numerical values6 of T .

2 Background

Generalities

Let Y = {y s } s≥1 be an infinite alphabet with the total order y 1 > y 2 > . . .. Y * denotes the free monoid on Y which admits the empty word, denoted by 1 Y * , as neutral element.

Let us define the commutative product on7 QY , denoted by µ (see [START_REF] Van Chien Bui | Combinatorics of ϕ-deformed stuffle hopf algebras[END_REF][START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF]),

∀y s , y t ∈ Y, µ(y s , y t ) = y s+t , (15) 
or its dual coproduct, ∆ µ , defined by

∀y s ∈ Y, ∆ µ y s = s-1 i=1 y i ⊗ y s-i (16) 
satisfying,

∀x, y, z ∈ Y, ⟨∆ µ x y ⊗ z⟩ = ⟨x µ(y, z)⟩. ( 17 
)
Let Q⟨Y ⟩ denote the space of polynomials on the alphabet Y equipped by 1. The concatenation • (or by its associated coproduct, ∆ • ).

2. The shuffle product, i.e. the commutative product defined by [START_REF] Reutenauer | Free Lie Algebras[END_REF], for any

y s , y t ∈ Y and u, v, w ∈ Y * w ¡ 1 Y * = 1 Y * ¡ w = w, y s u ¡ y t v = y s (u ¡ y t v) + y t (y s u ¡ v) (18) 
or by its associated coproduct, ∆ ¡ , defined, on the letters by,

∀y s ∈ Y, ∆ ¡ y s = y s ⊗ 1 Y * + 1 Y * ⊗ y s (19)
and extended so as to make it a homomorphism for the concatenation product. It satisfies

∀u, v, w ∈ Y * , ⟨∆ ¡ w u ⊗ v⟩ = ⟨w u ¡ v⟩. ( 20 
)
3. The quasi-shuffle product, i.e. the commutative product defined by [START_REF] Michael | Quasi-shuffle products[END_REF], for any y s , y t ∈ Y and u, v, w ∈ Y * ,

w 1 Y * = 1 Y * w = w, y s u y t v = y s (u y t v) + y t (y s u v) + µ(y s , y t )(u v) (21)
or by its associated coproduct, ∆ , defined, on the letters by,

∀y s ∈ Y, ∆ y s = ∆ ¡ y s + ∆ µ y s (22)
and extended so as to make it a homomorphism for the concatenation product. It satisfies

∀u, v, w ∈ Y * , ⟨∆ w u ⊗ v⟩ = ⟨w u v⟩. (23) 
Note that ∆ ¡ and ∆ are morphisms from Q⟨Y ⟩ for the concatenation but

∆ µ is not (for example ∆ µ (y 2 1 ) = y 1 ⊗ y 1 , whereas ∆ µ (y 1 ) 2 = 0).
Hence, with the counit e defined by e(P ) = ⟨P 1 Y * ⟩ (for any P ∈ Q⟨Y ⟩). We get two pairs of mutually dual bialgebras

H ¡ = (Q⟨Y ⟩, •, 1 Y * , ∆ ¡ , e), H ∨ ¡ = (Q⟨Y ⟩, ¡,1 Y * , ∆ • , e), (24) 
H = (Q⟨Y ⟩, •, 1 Y * , ∆ , e), H ∨ = (Q⟨Y ⟩, , 1 Y * , ∆ • , e). ( 25 
)
Let us then consider the following diagonal series8 

D ¡ = w∈Y * w ⊗ w and D = w∈Y * w ⊗ w. (26) 
Here, for the algebras where live in D ¡ and D , the operation on the right factor of the tensor product is the concatenation, and the operation on the left factor is the shuffle and the quasi-shuffle, respectively. By the Cartier-Quillen-Milnor and Moore (CQMM) theorem [START_REF] Van Chien Bui | Combinatorics of ϕ-deformed stuffle hopf algebras[END_REF][START_REF] Milnor | On the structure of Hopf algebras[END_REF], the connected N-graded, co-commutative Hopf algebra H ¡ is isomorphic to the envelop- ing algebra of the Lie algebra of its primitive elements which is Lie Q ⟨Y ⟩ :

H ¡ ≅ U(Lie Q ⟨Y ⟩) and H ∨ ¡ ≅ U(Lie Q ⟨Y ⟩) ∨ . (27) 
Hence, denoting by (l 1 , l 2 ) the standard factorization 9 of l ∈ LynY Y , let us consider 1. The PBW basis {P w } w∈Y * constructed recursively as follows [START_REF] Reutenauer | Free Lie Algebras[END_REF] 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ P ys = y s for y s ∈ Y, P l = [P l 1 , P l 2 ]
for l ∈ LynY Y, st(l) = (l 1 , l 2 ),

P w = P i 1 l 1 . . . P i k l k for w=l i 1 1 ...l i k k , with l 1 ,...,l k ∈LynY, l 1 >...>l k . ( 28 
)
Example 1. i) Considering on the alphabet Y ∶

P y 1 = y 1 , P y 2 = y 2 , P y 2 y 1 = y 2 y 1 -y 1 y 2 , P y 3 y 1 y 2 = y 3 y 1 y 2 -y 2 y 3 y 1 + y 2 y 1 y 3 -y 1 y 3 y 2 .
ii) Considering on the alphabet X = {x 0 , x 1 }, x 0 < x 1 ∶

P x 1 = x 1 , P x 0 x 1 = x 0 x 1 -x 1 x 0 , P x 0 x 2 1 = x 0 y 2 1 -2x 1 x 0 x 1 + y 2 1 x 0 , P x 2 0 x 2 1 x 0 x 1 = x 2 0 x 2 1 x 0 x 1 -x 2 0 x 3 1 x 0 + 2x 0 x 1 x 0 x 2 1 x 0 + 2x 1 x 0 x 1 x 0 x 0 x 1 -x 2 1 x 3 0 x 1 + x 2 1 x 2 0 x 1 x 0 -x 0 x 1 x 2 0 x 2 1 -2x 0 x 2 1 x 0 x 1 x 0 + x 0 x 3 1 x 2 0 + x 1 x 3 0 x 2 1 -2x 1 x 2 0 x 1 x 0 x 1 -x 1 x 0 x 2 1 x 2 0 .
2. and, by duality10 , the basis {S w } w∈Y * of (Q⟨Y ⟩, ¡), i.e.

∀u, v ∈ Y * , ⟨P u S v ⟩ = δ u,v . (29) 
This linear basis can be computed recursively as follows [START_REF] Reutenauer | Free Lie Algebras[END_REF] 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ S ys = y s , for y s ∈ Y, S l = y s S u , for l = y s u ∈ LynY, S w = S ¡i 1 l 1 ¡ . . . ¡ S ¡i k l k i 1 ! . . . i k ! for w = l i 1 1 . . . l i k k , with l 1 , . . . , l k ∈ LynY, l 1 > . . . > l k . (30) Example 2. i) Considering on the alphabet Y ∶ S y 1 = y 1 , S y 2 = y 2 , S y 2 y 1 = y 2 y 1 , S y 3 y 1 y 2 = y 3 y 2 y 1 + y 3 y 1 y 2 .
ii) Considering on the alphabet X ∶

S x 1 = x 1 , S x 0 x 1 = x 0 x 1 , S x 0 x 2 1 = x 0 x 2 1 , S x 2 0 x 2 1 x 0 x 1 = x 2 0 x 2 1 x 0 x 1 + 3x 2 0 x 1 x 0 x 2 1 + 6x 3 0 x 3 1 .
Similarly, by CQMM theorem, the connected N-graded, co-commutative Hopf algebra H is isomorphic to the enveloping algebra of its primitive elements:

Prim(H ) = Im(π 1 ) = span Q {π 1 (w) w ∈ Y * }, (31) 
where, for any w ∈ Y * , π 1 (w) is obtained as follows [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

π 1 (w) = w + (w) k=2 (-1) k-1 k u 1 ,...,u k ∈Y + ⟨w u 1 . . . u k ⟩ u 1 . . . u k . ( 32 
)
Note that (32) is equivalent to the following identity

w = k≥0 1 k! u 1 ,...,u k ∈Y * ⟨w u 1 . . . u k ⟩ π 1 (u 1 ) . . . π 1 (u k ). (33) 
In particular, for any y s ∈ Y , the primitive polynomial π 1 (y s ) is given by

π 1 (y s ) = y s + s i=2 (-1) i-1 l j 1 ,...,j i ≥1,j 1 +...+j i =s y j 1 . . . y j i . ( 34 
) Example 3. π 1 (y 1 ) = y 1 , π 1 (y 2 ) = y 2 -1 2 y 2 1 , π 1 (y 3 ) = y 3 -1 2 (y 1 y 2 + y 2 y 1 ) + 1 3 y 3 1 .
As previously, the expressions (34) are equivalent to

y s = i≥1 1 i! s 1 +...+s i =s π 1 (y s 1 ) . . . π 1 (y s i ), y s ∈ Y . ( 35 
)
Example 4.

y 1 = π 1 (y 1 ), y 2 = π 1 (y 2 ) + 1 2! π 1 (y 1 ) 2 , y 3 = π 1 (y 3 ) + 1 2! (π 1 (y 1 )π 1 (y 2 ) + π 1 (y 2 )π 1 (y 1 )) + 1 3! π 1 (y 1 ) 3 .
Now let us consider the (endo-)morphism of algebras φ ∶ (Q⟨Y ⟩, •, 1) → (Q⟨Y ⟩, •, 1) satisfying φ(y k ) = π 1 (y k ); it can be shown that φ is an automorphism of Q⟨Y ⟩. Then we have [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], i) φ realizes an isomorphism from the bialgebra (Q⟨Y ⟩, •, ∆ ¡ , e) to the bial- gebra (Q⟨Y ⟩, •, ∆ , e).

ii) In particular, we have the following commutative diagram

Q⟨Y ⟩ ∆ ¡ / / φ Q⟨Y ⟩ ⊗ Q⟨Y ⟩ φ⊗φ Q⟨Y ⟩ ∆ / / Q⟨Y ⟩ ⊗ Q⟨Y ⟩. iii) H ≅ U(Prim(H )) and H ∨ ≅ U(Prim(H )) ∨ .
iv) The dual bases {Π w } w∈Y * and {Σ w } w∈Y * of respectively U(Prim(H ))

and U(Prim(H )) ∨ can be obtained as images, respectively by φ and φ- 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Π ys = π 1 (y s ) for y s ∈ Y, Π l = [Π l 1 , Π l 2 ] for l ∈ LynY Y, st(l) = (l 1 , l 2 ), Π w = Π i 1 l 1 . . . Π i k l k for w = l i 1 1 . . . l i k k , with l 1 , . . . , l k ∈ LynY, l 1 > . . . > l k . (36) Example 5. Π y 1 = y 1 , Π y 2 = y 2 -1 2 y 2 1 , Π y 2 y 1 = y 2 y 1 -y 1 y 2 , Π y 3 y 1 y 2 = y 3 y 1 y 2 -1 2 y 3 y 3 1 -y 2 y 2 1 y 2 + 1 4 y 2 y 4 1 -y 1 y 3 y 2 + 1 2 y 1 y 3 y 2 1 + 1 2 y 2 1 y 2 2 -1 2 y 2 1 y 2 y 2 1 -y 2 y 3 y 1 + 1 2 y 2 2 y 2 1 + y 2 y 1 y 3 + 1 2 y 2 1 y 3 y 1 -1 2 y 3 1 y 3 + 1 4 y 4 1 y 2 .
2. and, by duality, the basis {Σ w } w∈Y * of (Q⟨Y ⟩, ), i.e.

∀u, v ∈ Y * , ⟨Π u Σ v ⟩ = δ u,v . (37) 
This linear basis can be computed recursively as follows [START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Σ ys = y s , for y s ∈ Y, Σ l = (☆) 1 i! y s k 1 +...+s k i Σ l 1 ...ln , for l = y s 1 . . . y s k ∈ LynY, Σ w = Σ i 1 l 1 . . . Σ i k l k i 1 ! . . . i k ! , for w = l i 1 1 . . . l i k k , with l 1 , . . . , l k ∈ LynY, l 1 > . . . > l k . (38) 
In (☆), the sum is taken over all {k 1 , . . . , k i } ⊂ {1, . . . , k} and all l 1 ≥ . . . ≥ l n such that (y s 1 , . . . , y s k ) * ⇐ (y s k 1 , . . . , y s k i , l 1 , . . . , l n ), where * ⇐ denotes the transitive closure of the relation on standard sequences, denoted by ⇐ [START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF].

Using Example 2.ii), we have in general, for any l ∈ LynY, π [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]:

X (Σ l ) ≠ S π X l (resp. LynX ∖ {x 0 }, π Y (S l ) ≠ Σ π Y l )
Example 6. l ∈ LynY Σ l π X (l) ∈ LynX π Y S π X (l) y 1 y 1 x 1 y 1 y 2 y 2 x 0 x 1 y 2 y 2 y 1 y 2 y 1 + 1 2 y 3 x 0 x 2 1 y 2 y 1 y 3 y 1 y 2 y 3 y 2 y 1 + y 3 y 1 y 2 + y 2 3 x 2 0 x 2 1 x 0 x 1 y 3 y 1 y 2 + 3y 3 y 2 y 1 + 1 2 y 4 y 2 + 1 2 y 5 y 1 + 1 3 y 6 +6y 4 y 2 1

Local coordinates

Following Wei-Norman's theorem [START_REF] Wei | On global representations of the solutions of linear differential equations as a product of exponentials[END_REF], we know that, for a given (finite dimensional) k-Lie group11 G, its Lie algebra g, and a basis B = (b i ) 1≤i≤n of g, there exists a neighbourhood W of 1 G (in G) and n local coordinate k-valued analytic functions

W → k, (t i ) 1≤i≤n
such that, for all g ∈ W ,

g = → 1≤i≤n
e t i (g)b i = e t 1 (g)b 1 . . . e tn(g)bn .

The proof relies on the fact that, (t 1 , . . . , t n ) → e t 1 (g)b 1 . . . e tn(g)bn is a local diffeomorphism from k n to G at a neighbourhood of 0.

Example 7 (Wei-Norman in finite dimensions).

Let M ∈ Gl + (2, R) (Gl + (2, R) denote the connected component of 1 in the Lie group 12 Gl(2, R) M = a 11 a 12 a 21 a 22
In order to perform the decomposition, we will "go back to identity" by computing M T DU = I, where I stands for the identity matrix, T is upper unitriangular, D diagonal strictly positive and U unitary, then M = U -1 D -1 T -1 will be the Iwasawa [START_REF] Bourbaki | Integration. Chapter VII-IX[END_REF] decomposition of M . The decomposition algorithm goes in three steps as follows (step 4 is a summary) 

⎞ ⎠ = C (1) 1 C (1) 2 = M 1 .
the both of columns are orthogonal if t 1 = -a 11 a 12 +a 21 a 22 a 2 11 +a 2 21 .

(Normalization)

We normalize M 1 ,

M 2 = C (1) 1 C (1) 2 ⎛ ⎜ ⎝ 1 C (1) 1 0 0 1 C (1) 2 ⎞ ⎟ ⎠ = M 1 D = M 1 e -log( C (1) 1 ) ⎛ ⎜ ⎝ 1 0 0 0 ⎞ ⎟ ⎠ -log( C (1) 2 ) ⎛ ⎜ ⎝ 0 0 0 1 ⎞ ⎟ ⎠ .

(Unitarization)

As the columns of M 2 form an orthogonal basis and as det(M 2 ) > 0, one can write

M 2 = ⎛ ⎝ a (2) 11 a (2) 12 a (2) 21 a (2) 22 ⎞ 
⎠ = cos(t 2 ) -sin(t 2 ) sin(t 2 ) cos(t 2 ) = e t 2 ⎛ ⎜ ⎝ 0 1 -1 0 ⎞ ⎟ ⎠ ,
and as M 2 is in a neighbourhood of I 2 , one has t 2 = arctan( a 21 a 11 ).

(Summary)

M T D = M 2 = e arctan( a 21 a 11 ) ⎛ ⎜ ⎝ 0 1 -1 0 ⎞ ⎟ ⎠ , hence M = e arctan( a 21 a 11 ) 0 1 -1 0 D -1 T -1 = e arctan( a 21 a 11 ) 0 1 -1 0 e log( C 1 ) 1 0 0 0 e log( C (1) 2 ) 0 0 0 1 e ⟨C 1 C 2 ⟩ C 1 2 0 1 0 0 .
One then gets a Wei-Norman decomposition of M with respect to the basis of the Lie algebra gl(2, R):

0 1 -1 0 , 1 0 0 0 , 0 0 0 1 , 0 1 0 0 .
Now, in infinite dimensions, i.e. here within the algebra of double series (whose support is a subset of Y * ⊗ Y * ) endowed with the law ¡ ⊗•, we have Schützenberger's factorization(s) [START_REF] Duchamp | Sweedler's duals and schützenberger's calculus[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF] as a perfect analogue of Wei-Norman's theorem for the group of group-like series. For D ¡

D ¡ = ↘ l∈LynY exp(S l ⊗ P l ) ∈ H ∨ ¡ ⊗H ¡ ;
or with the law ⊗•, we also have the extension of Schützenberger's factorization for D which is then [START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

D = ↘ l∈LynY exp(Σ l ⊗ Π l ) ∈ H ∨ ⊗H .
These can be used to provide a system of local coordinates on the Hausdorff group (i.e. group of group-like elements 13 ). Applying these factorizations to the multiple zeta functions ζ ¡ , ζ , or to Z ¡ and Z (which are all group-like), we have the representations

Z ¡ = ↘ l∈LynX X e ζ(S l )P l and Z = ↘ l∈LynY {y 1 } e ζ(Σ l )Π l .
It means that all relations among polyzetas which can be seen here will be taken from relations among their local coordinates. Our method is to use identity [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF] to reduce relations between the two systems of local coordinates {ζ(S l )} l∈LynX and {ζ(Σ l )} l∈LynY .

3 Structure of polyzetas

Representations of polynomials on bases

The aim of this subsection is to provide a method to represent any polynomial of Q⟨Y ⟩ in terms of each basis {P w } w∈Y * , {S w } w∈Y * , {Π w } w∈Y * or {Σ w } w∈Y * . Recall that the bases {P w } w∈Y * and {Π w } w∈Y * are homogeneous and upper triangular, the bases {S w } w∈Y * and {Σ w } w∈Y * are homogeneous and lower triangular 14 . Without loss of generality we can assume that P ∈ Q⟨Y ⟩ is a homogeneous polynomial of weight n, we now represent P in terms of the basis {Σ w } w∈Y * by the following algorithm.

Algorithm 1

INPUT: A homogeneous polynomial P of weight n.

OUTPUT: The representation of P in terms of the basis {Σ w } w∈Y * .

Step 1. We choose the leading term 15 of P , assumed λ 1 w 1 . Expressing the word w 1 as follows

w 1 = Σ w 1 + v<w 1 ,(v)=n α v v. ( 39 
)
The polynomial P can now be rewritten in the form 13 In fact, these series are respectively characters for ¡ or .

P = λ w 1 Σ w 1 + v<w 1 ,(v)=n β v v. ( 40 
)
14 w.r.t the words and the lexicographic ordering, for example, Σw = w + ∑ v<w,(v)=(w) αvv. 15 This term includes the greatest word in the support of P and its coefficient.

Step 2. We repeat Step 1 with P now understood as the polynomial ∑ v<w 1 ,(v)=n β v v, and so on until the last monomial which admits the smallest word of weight n, y n , and we really have y n = Σ yn . At last, by re-expressing the coefficients, we will obtain the representation of the original in form that

P = v≤w 1 ,(v)=n λ v Σ v . ( 41 
)
Example 8. P ∶= 2y 1 y 2 -1 2y 3 .

Step 1. Since Σ y 1 y 2 = y 1 y 2 + y 2 y 1 + y 3 , we replace y 1 y 2 with Σ y 1 y 2 -y 2 y 1 -y 3 in P P = 2Σ y 1 y 2 -2y 2 y 1 -5 2y 3 .

Step 2. Since Σ y 2 y 1 = y 2 y 1 + 1 2y 3 , we replace y 2 y 1 with Σ y 2 y 1 -1 2y

3 in P P = 2Σ y 1 y 2 -2Σ y 2 y 1 -3 2y 3 .
Since y 3 = Σ y 3 , we thus get

P = 2Σ y 1 y 2 -2Σ y 2 y 1 -3 2Σ y 3 .
Corollary 1. For any w ∈ Y * , we can represent16 

w = P w + u>w, u = w α 1 u P u = S w + u<w, u = w α 2 u S u , w = Π w + v>w,(v)=(w) β 1 v Π v = Σ w + v<w,(v)=(w) β 2 v Σ v .

Identifying the local coordinates

We now use the alphabet X = {x 0 , x 1 } ordered by x 0 < x 1 . Returning to formula [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF], with the bases {P w } w∈X * and {S w } w∈X * defined as ( 28) and ( 30), we will find relations among polyzetas by identifying on the bases as local coordinates. First, we expand B ′ , given in [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF], in form of generating series of y 1 .

Lemma 1. We have

B ′ (y 1 ) = 1 + m≥2 B (m) y m 1 , with B (m) = ⌊m 2⌋ i=1 k 1 ,...,k i ≥2 k 1 +...+k i =m (-1) m-i ζ(k 1 ) . . . ζ(k i ) k 1 . . . k i ,
where ⌊m 2⌋ is the largest integer not greater than m 2.

Proof. Expanding the exponential, one has successively

B ′ (y 1 ) = n≥0 1 n! k≥2 (-1) k-1 ζ(k) k y k 1 n = n≥0 1 n! k 1 ,...,kn≥2 (-1) k 1 +...+kn-n ζ(k 1 ) . . . ζ(k n ) k 1 . . . k n y k 1 +...+kn 1 = 1 + m≥2 ⎛ ⎜ ⎜ ⎝ ⌊m 2⌋ n=1 1 n! k 1 ,...,kn≥2 k 1 +...+kn=m (-1) m-n ζ(k 1 ) . . . ζ(k n ) k 1 . . . k n ⎞ ⎟ ⎟ ⎠ y m 1 = 1 + m≥2 B (m) y m 1 . Example 9. B (2) = - ζ(2) 2 , B (3) = ζ(3) 3 , B (4) = - ζ(4) 4 + ζ(2) 2 2 2 , B (5) = ζ(5) 5 -2 ζ(2) 2 ζ(3) 3 . 

Identifying with respect to the basis {Π w } w∈Y *

Using the duality of the bases, we rewrite (7) as follows

v∈Y * ζ (Σ v )Π v = B ′ (y 1 ) v∈Y * ζ ¡ (π X (Σ v ))Π v . (42) 
Moreover, we see that B ′ (y 1 ) is a series of a single letter (like a single variable), y 1 , and

y k 1 Π v = Π k y 1 Π v = Π y k 1 v , ∀k ≥ 1, v ∈ Y * .
We can then identify the coefficients in (42) and obtain:

Proposition 1. i) For any v ∈ Y * y 1 Y * , one has 17 ζ(Σ v ) = ζ(π X Σ v ). ii) For any v = y k 1 w ∈ Y * , k ≥ 1, w ∈ Y * y 1 Y * , one has ζ ¡ (π X Σ v ) + k m=2 B (m) ζ ¡ (π X Σ y k-m 1 w ) = 0.
Proof. From Lemma 1, we see that ⟨B ′ (y 1 ) m) . Using the basis {Π w } w∈Y * as a coordinate system, we identify the coefficients of the two sides in (42) and obtain the preceding statements.

y 0 1 ⟩ = 1, ⟨B ′ (y 1 ) y 1 ⟩ = 0 and ∀m ≥ 2, ⟨B ′ (y 1 ) y m 1 ⟩ = B (
Example 10.

For

v = y 2 , ζ(Σ y 2 ) = ζ(S x 0 x 1 ). 2. For v = y 2 y 3 , ζ(Σ y 2 y 3 ) = ζ(S x 0 x 1 x 2 0 x 1 ) -2ζ(S x 2 0 x 1 x 0 x 1 ) -2ζ(S x 3 0 x 2 1 ) + ζ(S x 4 0 x 1 ). 3. For v = y 3 1 , -1 2 ζ(S x 0 x 2 1 ) + 1 6 ζ(S x 2 0 x 1 ) + B (3) = 0. 4. For v = y 2 1 y 2 , ζ(S x 0 x 3 1 ) -ζ(S x 2 0 x 2 1 ) + 1 2 ζ(S x 3 0 x 1 ) + B (2) = 0.

Identifying with respect to the basis {P w } w∈X *

Let us denote by 18 {P ′ w } w∈X * x 1 the reductions of {P w } w∈X * x 1 on Q ⊕ Q⟨X⟩x 1 . By applying the mapping π X on the two sides of (42) and using the duality of the bases, we can rewrite the regularization as follows

B ′ (x 1 ) u∈X * x 1 ζ ¡ (S u )P ′ u = u∈X * x 1 ζ (π Y S u )P ′ u . (43) 
Similarly, remarking that B ′ (x 1 ) is a series of a single letter, x 1 ,

x k 1 P u = P k x 1 P u = P x k 1 u , ∀k ≥ 1, u ∈ X * . Proposition 2. i) For any u ∈ X * x 1 X * , ζ(S u ) = ζ(π Y S u ). ii) For any u ∈ x 1 X * x 2 1 X * , ζ (π Y S u ) = 0. iii) For any u = x k 1 w ∈ X * , k ≥ 2, w ∈ X * x 1 X * , B (k) ζ(S w ) = ζ (π Y S u ).
Proof. Similarly to Proposition 1, admitting the basis {P w } w∈X * as a coordinate system, we identify the coefficients of the two sides in (43) and then obtain the statements.

Example 11.

1. For u = x 0 x 1 , ζ(S x 0 x 1 ) = ζ(Σ y 2 ). 2. For u = x 0 x 1 x 2 0 x 1 , ζ(S x 0 x 1 x 2 0 x 1 ) = ζ(Σ y 2 y 3 ) + 2ζ(Σ y 3 x 2 ) + 6ζ(Σ y 4 x 1 ) - 5ζ(Σ y 5 ). 3. For u = x 1 x 0 x 1 , ζ(Σ y 2 y 1 ) -3 2 ζ(Σ y 3 ) = 0. 4. For u = x 2 1 x 0 x 1 , B (2) ζ(S x 0 x 1 ) = 2ζ(Σ y 4 ) -ζ(Σ y 2 ) 2 -ζ(Σ y 3 y 1 ).

Algorithms to represent the structure of polyzetas

From Proposition 1 and 2, we really have relations among polyzetas represented on the bases {S w } w∈X * and {Σ w } w∈Y * . In fact, thanks to the formulas ( 30) and (38), we can easily represent these relations on the pure transcendence bases {S l } l∈LynX or {Σ l } l∈LynY respectively.

In the two following algorithms, one uses these relations and the other one (Algorithm 3) uses as well the structures of shuffle and stuffle products, we will eliminate these relations, in weight, to find the structure of polyzetas represented on the bases {S l } l∈LynX and {Σ l } l∈LynY . The following two algorithms will be proceeded by recurrence on the weight of the words.

The same result obtained will be shown in the next subsection.

Algorithm 2

This algorithm uses Proposition 1 and Algorithm 1 to establish polynomial relations among polyzetas on the basis {S l } l∈LynX or uses Proposition 2 and Algorithm 1 to establish relations among polyzetas on the basis {Σ l } l∈LynY .

We display here the second case.

INPUT: A positive integer n.

OUTPUT: The representations of polyzetas of weight n in terms of irreducible elements of polyzetas on the transcendence basis {Σ l } l∈LynY .

Step 1. We set the list, denoted by X n , of all words 19 of weight 20 n of X * x 1 .

Step 2. For each w ∈ X n , we set the polynomial P ∶= π Y (S w ) in Q⟨Y ⟩ and thanks to Algorithm iii) If w ∈ x 0 X * x 1 LynX, we rewrite w in the form of Lyndon factorization, w = l i 1 1 . . . l i k k . By taking ζ(S l j ), j = 1 . . . k from the data of lower weights, we make the relation

1 i 1 ! . . . i k ! ζ(S l 1 ) i 1 . . . ζ(S l k ) i k = ζ(P).
Step 3. We reduce the above relations to representations of polyzetas in terms of irreducible elements.

The next lemma will give another way to find the relations among the family {ζ ¡ (S w )} w∈X * and the family {ζ (Σ w )} w∈Y * .

Lemma 2. i) For any l 1 , l 2 ∈ LynX X (resp. l 1 , l 2 ∈ LynY {y 1 }), one has

ζ(S l 1 ¡ S l 2 ) = ζ(π Y (S l 1 ) π Y (S l 2 )), ζ(Σ l 1 Σ l 2 ) = ζ(π X (Σ l 1 ) ¡ π X (Σ l 2 ))). ii) For any w ∈ x 0 X * x 1 or w ∈ x 1 x 0 X * x 1 (resp. w ∈ Y * y 2 1 Y * ), one has ζ ¡ (S w ) = ζ (π Y (S w )), ζ (Σ w ) = ζ ¡ (π X (Σ w )).
Proof. Remark that, for any w ∈ X * , S w = w + ∑ v<w α v v and if l ∈ LynX X then l ∈ x 0 X * x 1 .

Relying on properties of polyzetas on words, i.e. [24, 25]

ζ(l 1 ¡ l 2 ) = ζ(π Y (l 1 ) π Y (l 2 )), ∀l 1 , l 2 ∈ LynX X, ζ ¡ (x 1 ¡ l) = ζ (y 1 π Y (l)), ∀l ∈ LynX X,
we get the expected results. For w = x 1 x 2 0 x 1 (in x 1 x 0 X * x 1 ) and w = y 1 y 3 (in y 1 Y * ):

0 = 1 2 ζ(Σ y 2 ) 2 + ζ(Σ y 3 y 1 ) -2ζ(Σ y 4 ), 0 = - 1 2 ζ(S x 0 x 1 ) 2 + ζ(S x 2 0 x 2 1 ) + ζ(S x 3 0 x 1 ). Algorithm 3 
This algorithm uses Lemma 2 and Algorithm 1 to establish polynomial relations among polyzetas on the basis {S l } l∈LynX or the basis {Σ l } l∈LynY . We display here the second case.

INPUT: A positive integer n.

OUTPUT: The representations of polyzetas of weight n in terms of irreducible elements of polyzetas on the transcendence basis {Σ l } l∈LynY .

Step 1. We set a list, denoted by X n , all words of weight n in x 0 X * x 1 or x 1 x 0 X * x 1 .

Step 2. We establish polynomial relations of weight n as follows. For each w ∈ X n , we make a polynomial P in Q⟨Y ⟩ by the way:

i) If w ∈ LynX then P ∶= π Y (S l 1 ) π Y (S l 2 ) -π Y (S l 1 ¡ S l 2 ), where (l 1 , l 2 ) is the standard factorization of w. ii) If w = x 1 w 1 then P ∶= π Y (S x 1 ) π Y (S w 1 ) -π Y (S x 1 ¡ S w 1 ). iii) If w = l i 1 l . . . l i k k , l 1 , . . . , l k ∈ LynX, l 1 > . . . > l k then P ∶= π Y (S l 1 ) i 1 . . . π Y (S l k ) i k -π Y (S l 1 ¡ . . . ¡ S l k ).
Thanks to Algorithm 1, we represent ζ(Σ P ) in terms of {ζ(Σ l )} l∈LynY (here, ζ(Σ l ) are taken from the data of lower weights). At last, we make the relation ζ(Σ P ) = 0.

Step 3. We reduce the above relations to representations of polyzetas in terms of irreducible elements.

These algorithms produce homogeneous polynomial relations among local coordinates {ζ(Σ l )} l∈LynY (resp. {ζ(S l )} l∈LynX ). Each identity is indexed by a Lyndon word and is not an identity of the tautological form

ζ(Σ l ) = ζ(Σ l ) (or ζ(S l ) = ζ(S l )). (44) 
Replacing "=" by " →" in these homogeneous polynomial relations, we obtain a noetherian rewriting system among {ζ(Σ l )} l∈LynY (resp. {ζ(S l )} l∈LynX ) in which irreducible terms are polyzetas involved in tautologies (44) and they are viewed as algebraic generators of the algebra of convergent polyzetas [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].

Results

Representation of polyzetas in terms of irreducible polyzetas

The following results were computed by our package in Maple [START_REF] Van Chien Bui | Computation tool for the q-deformed quasi-shuffle algebras and representations of structure of MZVs[END_REF] thanks to Algorithm 2 (or Algorithm 3). We show here representations of polyzetas in terms of irreducible polyzetas of the bases indexed by Lyndon words on the two alphabets X and Y .

For each weight n, the list of Lyndon words l ∈ LynY will be displayed in the second column, and their projection over X, i.e. π X (l) ∈ LynX, will be displayed in the fourth column which are also, due to a lemma by D. Perrin, the list of Lyndon words in LynY (see Table 1). Table 1: Representation of polyzetas in terms of irreducible polyzetas up to weight 6.

n l ζ(Σ l ) π X (l) ζ(S π X (l) ) 3 y 2 y 1 3 2 ζ(Σ y 3 ) x 0 x 2 1 ζ(S x 2 0 x 1 ) y 4 2 5 ζ(Σ y 2 ) 2 x 3 0 x 1 2 5 ζ(S x 0 x 1 ) 2 4 y 3 y 1 3 10 ζ(Σ y 2 ) 2 x 2 0 x 2 1 1 10 ζ(S x 0 x 1 ) 2 y 2 y 2 1 2 3 ζ(Σ y 2 ) 2 x 0 x 3 1 2 5 ζ(S x 0 x 1 ) 2 y 4 y 1 -ζ(Σ y 3 )ζ(Σ y 2 ) + 5 2 ζ(Σ y 5 ) x 3 0 x 2 1 -ζ(S x 2 0 x 1 )ζ(S x 0 x 1 ) + 2ζ(S x 4 0 x 1 ) y 3 y 2 3ζ(Σ y 3 )ζ(Σ y 2 ) -5ζ(Σ y 5 ) x 2 0 x 1 x 0 x 1 -3 2 ζ(S x 4 0 x 1 ) + ζ(S x 2 0 x 1 )ζ(S x 0 x 1 ) 5 

Conclusion of the results

Let us denote by Z n the Q-vector space generated by polyzetas of weight n and d n its dimension.

From the above representations, we obtain their bases as follows:

• n = 2, d 2 = 1, Z 2 = span Q {ζ(Σ y 2 )} = span Q {ζ(S x 0 x 1 )} 

• n = 3, d 3 = 1, Z 3 = span Q {ζ(Σ y 3 )} = span Q {ζ(S x 2 0 x 1 )} • n = 4, d 4 = 1, Z 4 = span Q {ζ(Σ y 2 ) 2 } = span Q {ζ(S x 0 x 1 ) 2 } • n = 5,

Conclusion

In the classical theory of (finite-dimensional) Lie groups, every ordered basis of the Lie algebra provides a system of local coordinates of a suitable neighbourhood of the unity (of the group) via an ordered product of one-parameter groups corresponding to the (ordered) basis.

Here, we get a perfect analogue of this geometrical picture for the Hausdorff groups (in shuffle and stuffle Hopf algebras) through Schützenberger's factorization. This does not depend on the regularization of shuffle and quasi-shuffle.

Moreover, through the bridge equation ( 6) which relates two elements on these groups and an identification of the local coordinates of the L.H.S. and R.H.S. of [START_REF] Van Chien Bui | Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras[END_REF] which involve only convergent polyzetas as local coordinates, we get, up to weight 12,

• a confirmation of the Zagier's dimension conjecture,

• two families of irreducible polyzetas (i.e two algebraic bases for polyzetas), which are not due to the regularized double-shuffle relations (and we do not need any regularization). This implementation will be used, in our forthcoming work, to determine the asymptotic expansions of harmonic sums via Euler-Maclaurin formula.
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  1 , of respectively {P w } w∈Y * and {S w } w∈Y

* .

More precisely, 1. The PBW basis {Π w } w∈Y * for U(Prim(H )) can be constructed recursively as follows [?,

[START_REF] Van Chien Bui | Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

P is a primitive element if ∆ (P ) = 1 Y * ⊗ P + P ⊗ 1 Y * . This Lie algebra is isomorphic (but not equal) to the free Lie algebra.

In[START_REF] Van Chien Bui | Combinatorics of ϕ-deformed stuffle hopf algebras[END_REF], only convergent polyzetas arise then will not need any regularization.

The Maple program runs on a computer Core(TM)i5-4210U CPU @ 1.70GHz and obtains results up to weight 12[START_REF] Van Chien Bui | Computation tool for the q-deformed quasi-shuffle algebras and representations of structure of MZVs[END_REF].

They form a Gröbner basis of the ideal of polynomial relations among the convergent polyzetas and the ranking of this basis is based mainly on the order of Lyndon words[START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Hoang | Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Wardi | Tables des relations entre les MZVs en C ++[END_REF]. For that, this basis is also called Gröbner-Lyndon basis.

They are group-like :∆¡(Z¡) = Z¡ ⊗ Z¡, ∆ (Z ) = Z ⊗ Z , ∆γ(Zγ) = Zγ ⊗ Zγ.

Since the Q-algebra of polyzetas is not a Q[T ]-algebra, how then can we determine these values ?

QY denotes the Q-vector space generated by the alphabet Y , as a basis.

Of course, we have (set theoretically) D¡ = D , but their structural treatments will be different.

A pair of Lyndon words (l1, l2) is called the standard factorization of l if l = l1l2 and l2 is the smallest nontrivial proper right factor of l (for the lexicographic order) or, equivalently its longest such.

The dual family, i.e. the set of coordinates forming a basis in the algebraic dual which is here the space of noncommutative series, but as the enveloping algebra under consideration is graded in finite dimensions (by the multidegree), these series are in fact multi-homogeneous polynomials.

Real (with k = R) or complex (with k = C).

It is the group of matrices with positive determinant.

w and (w) respectively denote the length and the weight of the word w.

As x0X * x1 and Y * y1Y * are disjointed, the unique notation ζ(P ) is used here to replace ζ¡(P ) or ζ (P ) if the polynomial P only contains convergent words.

They are defined by P′ w = π X (π Y Pw), ∀w ∈ X * . Note that π Y Pw = π Y w = 0, ∀w ∈ X * x0.

Note that, there are 2 n-1 words of weight n.

In the alphabet X, the weight of a word is understood as the length of that word.

• n = 7, d 7 = 3,

),

),

We can see that these dimensions satisfy the following recurrence [START_REF] Zagier | Values of zeta functions and their applications[END_REF] 

This means that, up to weight 12, our results obtained by the previous algorithms verify the Zagier's dimension conjecture. As a consequence, this conjecture holds up to weight 12 if and only if the irreducible polyzetas, contained in each two following different lists, are algebraically independent (see [START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] for a discussion). 

This does not occur, due to a lemma by D. Perrin, with the Lyndon words themselves on which {ζ(l)} l∈LynY (or {ζ(l)} l∈LynX ) was provided in [START_REF] Bigotte | Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés[END_REF][START_REF] Hoang | Lyndon words, polylogarithms and the Riemann ζ function[END_REF][START_REF] Wardi | Tables des relations entre les MZVs en C ++[END_REF]. Hence, we insist on the fact that {ζ(Σ l )} l∈LynY and {ζ(S l )} l∈LynX provide two different systems of local coordinates and two lists of irreducible polyzetas (see Table 2).