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Introduction

The story begins with the celebrated Euler sum [START_REF] Euler | Variae observationes circa series infinitas[END_REF] ζ(s) = n≥1 n -s , s ∈ N, s > 1.

Euler gave an explicit formula expressing the following ratio (with i 2 = -1) :

∀j ∈ N + , ζ(2j) (2iπ) 2j = - 1 2 b 2j (2j)! ∈ Q, (1) 
where {b j } j∈N are the Bernoulli numbers. Multiplying two such sums, he obtained

ζ(s 1 )ζ(s 2 ) = ζ(s 1 , s 2 ) + ζ(s 1 + s 2 ) + ζ(s 2 , s 1 ),
where the polyzeta are given by ζ(s 1 , . . . , s r ) = n 1 >...>nr>0

n -s 1 1 . . . n -sr r , r, s 1 , . . . , s r ∈ N + , s 1 > 1.

1 First seen and computed up to order 17 by Faulhaber. The modern form and proof are credited to Bernoulli [START_REF] Knuth | Johann Faulhaber and Sums of Powers[END_REF].

Establishing relations among polyzetas, ζ(s 1 , s 2 ) with s 1 + s 2 ≤ 16, he proved [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF] ∀s > 1,

ζ(s, 1) = 1 2 ζ(s + 1) - 1 2 s-1 j=1 ζ(j + 1)ζ(s -j). (2) 
Extending (2), Nielsen showed that2 ζ(s, {1} r-1 ) is an homogenous polynomial of degree n + r of {ζ(2), . . . , ζ(s + r)} with rational coefficients [START_REF] Nielsen | Recherches sur le carré de la dérivée logarithmique de la fonction gamma et sur quelques fonctions analogues[END_REF][START_REF] Nielsen | Note sur quelques séries de puissance trouvées dans la théorie de la fonction gamma[END_REF][START_REF] Nielsen | Recherches sur des généralisations d'une fonction de Legendre et d'Abel[END_REF] (see also [START_REF] Ngoc | Fonctions génératrices polylogarithmiques d'ordre n et de paramètre t[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet function[END_REF]).

After that, Riemann extended ζ(s) as a meromorphic function [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie[END_REF] on C. The series converges absolutely in H 1 = {s ∈ C|ℜ(s) > 1}. Moreover, if ℜ(s) ≥ a > 1, it is dominated, term by term, by the absolutely convergent series, of general term n -a so, by Cauchy's criterion, it converges in H 1 (compact uniform convergence and then represents a holomorphic fonction in 3 H 1 [START_REF] Riemann | Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie[END_REF]).

In the same vein ζ(s 1 , . . . , s r ) is well-defined on C r as a meromorphic function [START_REF] Akiyama | Analytic continuation of multiple zetafunctions and their values at non-positive integers[END_REF][START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF][START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF][START_REF] Matsumoto | On the analytic continuation of various multiple zetafunctions, in Number Theory for the Millennium II[END_REF]. Denoting t 0 = 1, u r+1 = 1 and

λ(z) := z/(1 -z), (3) 
this can be done via the following integral representations obtained by the convolution theorem and by changes of variables [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Ngoc | Fonctions génératrices polylogarithmiques d'ordre n et de paramètre t[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet function[END_REF] ζ(s 1 , . . . , s r ) =

1 0 dt 1 1 -t 1 log s 1 -1 (t 0 /t 1 )
Γ(s 1 ) . . .

tr -1 0 dt r 1 -t r log sr-1 (t r-1 /t r ) Γ(s r ) = [0,1] r r j=1 log s j -1 ( 1 u j ) λ(u 1 . . . u j ) Γ(s j ) du j u j = R r + r j=1
λ(e -(u 1 ...u j ) ) Γ(s j ) du j u 1-s j j

.

In fact, one has two ways of thinking polyzetas as limits, fulfilling identities. Firstly, they are limits of polylogarithms, at z = 1, and secondly, as truncated sums, they are limits of harmonic sums when the upper bound tends to +∞. The link between these holomorphic and arithmetic functions is as follows.

For any r-uplet (s 1 , . . . , s r ) ∈ N r + , r ∈ N + and for any z ∈ C such that | z |< 1, the polylogarithm and the harmonic sum are well defined by Li s 1 ,...,sr (z) := These objects appeared within the functional expansions in order to represent the nonlinear dynamical systems in quantum electrodynanics and have been developped by Tomonaga, Schwinger and Feynman [START_REF] Dyson | The radiation theories of Tomonaga, Schwinger and Feynman[END_REF]. They appeared then in the singular expansion of the solutions and their successive (ordinary or functional) derivations [START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF] of nonlinear differential equations with three singularities [START_REF] Bender | Quantum field theory of partitions[END_REF][START_REF] Duchamp | Mathematical renormalization in quantum electrodynamics via noncommutative generating series[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] and then they also appeared in the asymptotic expansion of the Taylor coefficients. The main challenge of these expansions lies in the divergences and leads to problems of regularization and renormalization which can be solved by combinatorial technics [START_REF] Connes | Hopf algebras, renormalization and noncommutative geometry[END_REF][START_REF] Duchamp | An interface between physics and number theory[END_REF][START_REF] Duchamp | Mathematical renormalization in quantum electrodynamics via noncommutative generating series[END_REF][START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF][START_REF] Fliess | Fonctionnelles causales non linéaires et indéterminées non commutatives[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF]. Let4 H r = {(s 1 , . . . , s r ) ∈ C r |∀m = 1, . . . , r, ℜ(s 1 ) + . . . + ℜ(s m ) > m}. From the analytic continuation point of view [START_REF] Akiyama | Analytic continuation of multiple zetafunctions and their values at non-positive integers[END_REF][START_REF] Enjalbert | Analytic and combinatorial aspects of Hurwitz polyzêtas[END_REF][START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF][START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF][START_REF] Matsumoto | On the analytic continuation of various multiple zetafunctions, in Number Theory for the Millennium II[END_REF][START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF] and after a theorem by Abel, one has

∀(s 1 , . . . , s r ) ∈ H r , ζ(s 1 , . . . , s r ) = lim z→1 Li s 1 ,...,sr (z) = lim N →∞ H s 1 ,...,sr (N).
This theorem is no more valid in the divergent cases as, for (s 1 , . . . , s r ) ∈ N r ,

Li {1} k ,s k+1 ,...,sr (z) = n 1 >...>nr>0 z n 1 n 1 . . . n k n s k+1 k+1 . . . n sr r , H {1} k ,s k+1 ,...,sr (N) = N ≥n 1 >...>nr>0 1 n 1 . . . n k n s k+1 k+1 . . . n sr r , Li {1} r (z) = n 1 >...>nr>0 z n 1 n 1 . . . n r = 1 r! log r 1 1 -z , H {1} r (N) = N ≥n 1 >...>nr>0 1 n 1 . . . n r = N k=0 S 1 (k, r) k! , Li {0} r (z) = n 1 >...>nr>0 z n 1 = z 1 -z r , H {0} r (N) = N ≥n 1 >...>nr>0 1 = N r , Li -s 1 ,...,-sr (z) = n 1 >...>nr>0 n s 1 1 . . . n sr r z n 1 , H -s 1 ,...,-sr (N) = N ≥n 1 >...>nr>0 n s 1 1 . . . n sr r .
Here, the Stirling numbers of first and second kind denoted S 1 (k, j) and S 2 (k, j) respectively, can be defined, for any n, k ∈ N, n ≥ k, by

n t=0 S 1 (n, t)x t = x(x + 1) . . . (x + n -1) and S 2 (n, k) = 1 k! k i=0 (-1) i k i (k -i) n .
These divergent cases require the renormalization of the corresponding divergent polyzetas. This is already done for the corresponding four first cases [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF] and it has to be completely done for the remainder [START_REF] Furusho | Desingularization of multiple zeta-functions of generalized Hurwitz-Lerch type[END_REF][START_REF] Guo | Renormalization of multiple zeta values[END_REF][START_REF] Manchon | Nested sums of symbols and renormalised multiple zeta functions[END_REF]. Since the algebras of polylogarithms and of harmonic sums, at strictly positive indices, are isomorphic respectively to the shuffle, (Q X , ⊔⊔ , 1 X * ), and quasi-shuffle algebras, (Q Y , , 1 Y * ), both admitting, as pure transcendence bases, the Lyndon words LynX and LynY over X = {x 0 , x 1 } (x 0 < x 1 ) and Y = {y i } i≥1 (y 1 > y 2 > . . .) respectively, we can index, as in [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], these polylogarithms, harmonic sums and polyzetas, at positive indices, by words.

Moreover, using

1. The one-to-one correspondence between the combinatorial compositions ({1} k , s k+1 , . . . , s r ), the words y k 1 y s k+1 . . . y sr and x k 1 x s k+1 -1 0

x 1 . . . x sr-1 0

x 1 for the indexing by words : Li x s 1 -1 0 x 1 ...x sr -1 0 x 1 := Li s 1 ,...,sr and H ys 1 ...ys r := H s 1 ,...,sr .

Here, π Y is the adjoint of π X for the canonical scalar products where π X is the morphism of AAU, k Y → k X , defined by π X (y k ) = x k-1 0 x 1 . 2. The pure transcendence bases, denoted {S l } l∈LynX and {Σ l } l∈LynY , of respectively (Q X , ⊔⊔ , 1 X * ) and (Q Y , , 1 Y * ); and dually, the bases of Lie algebras of primitive elements {P l } l∈LynX and {Π l } l∈LynY of respectively the bialgebras (Q X , conc, 1 X * , ∆ ⊔⊔ , ǫ) and (Q Y , conc, 1 Y * , ∆ , ǫ) [START_REF] Bui | Pure) transcendence bases in φ-deformed shuffle bialgebras, Submitted to Seminaire Lotharingien de Combinatoire[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF] we established an Abel like theorem [START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], i.e.

lim z→1 exp y 1 log 1 1 -z π Y L(z) = lim N →∞ exp k≥1 H y k (N) (-y 1 ) k k H(N) = π Y Z ⊔⊔ . (4) 
leading to discover a bridge equation for these two algebraic structures5 

exp k≥2 ζ(k) (-y 1 ) k k ց l∈LynY \{y 1 } exp(ζ(Σ l )Π l ) = π Y ց l∈LynX\X exp(ζ(S l )P l ). (5) 
Extracting the coefficients in the generating series allows to explicit counter-terms which eliminate the divergence of {Li w } w∈x 1 X * and {H w } w∈y 1 Y * . Identifying local coordinates in [START_REF] Boutet De Monvel | Remarques sur les séries logarithmiques divergentes, lecture at the workshop Polylogarithmes et conjecture de Deligne-Ihara[END_REF], allows to calculate the finite parts associated to divergent polyzetas and to describe the graded core of the kernel of ζ by algebraic generators 6 .

As in previous works, to study combinatorial aspects of harmonic sums and polylogarithms7 at non-positive multi-indices, we associate (s 1 , . . . , s r ) ∈ N r to y s 1 . . . y sr ∈ Y * 0 , where Y 0 = {y k } k≥0 , and index them by words (see Section 3) : 1. For H - ys 1 ...ys r := H -s 1 ,...,-sr , we will extend (Theorem 1) a form of Faulhaber's formula which expresses H - p , for p ≥ 0, as a polynomial of degree p + 1 with coefficients involving the Bernoulli numbers using the exponential generating series n>0 ( n k=1 k p )z n /n! = (1e pz )/(e -z -1) [START_REF] Knuth | Johann Faulhaber and Sums of Powers[END_REF]. 2. For Li - ys 1 ...ys r := Li -s 1 ,...,-sr , we will base ourselves (Theorem 2) on the Eulerian polynomials, A n (z) = n-1 k=0 A n,k z k and the coefficients A n,k 's are the Eulerian numbers defined as [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multiple-indices[END_REF][START_REF] Foata | Théorie Géométrique des Polynômes Eulériens[END_REF].

A n,k = k j=0 (-1) j n+1 j (k + 1 -j) n [
Afterwards, for their global renormalisation, we will consider their noncommutative generating series and will establish an Abel like theorem (Theorem 3) analogous to (4). Finally, in Section 4, to determine their algebraic structures (Theorems 4, 5 and 6), we will construct a new law, denoted ⊤, on Q Y 0 , and will prove that the following morphisms of algebras, mapping w to H - w and Li - w , respectively, are surjective and will completely describe their kernels

H - • : (Q Y 0 , ) -→ (Q{H - w } w∈Y * 0 , .), (6) 
Li - • : (Q Y 0 , ⊤) -→ (Q{Li - w } w∈Y * 0 , .). (7) 
2. Background Let K Y 0 be the vector space 8 freely generated by Y * 0 , i.e. K (Y * 0 ) , equipped by 1. The concatenation (or by its associated coproduct, ∆ conc ).

2. The shuffle product, i.e. the commutative product defined, for any x, y ∈ Y 0 and u, v, w ∈ Y * 0 , by

w ⊔⊔ 1 Y * 0 = 1 Y * 0 ⊔⊔ w = w and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v),
or by its associated9 dual coproduct, ∆ ⊔⊔ , defined, on the letters y k ∈ Y 0 , by

∆ ⊔⊔ (y k ) = y k ⊗ 1 Y * 0 + 1 Y * 0 ⊗ y k and extended by morphism. It satisfies, for any u, v, w ∈ Y * 0 , ∆ ⊔⊔ (w) | u ⊗ v = w | u ⊔⊔ v . 3.
The quasi-shuffle (or stuffle 10 , or sticky shuffle) product, i.e. the commutative product defined by, for any y i , y j ∈ Y 0 and u, v, w ∈ Y * 0 , by

w 1 Y * 0 = 1 Y * 0 w = w, y i u y j v = y j (y i u v) + y i (u y j v) + y i+j (u v),
or by its associated dual coproduct, ∆ , defined on the letters y k ∈ Y 0 by

∆ (y k ) = y k ⊗ 1 Y * 0 + 1 Y * 0 ⊗ y k + i+j=n y i ⊗ y j
and extended by morphism. In fact, this is the adjoint of the law as it satisfies, for all u, v, w

∈ Y * 0 , ∆ (w) | u ⊗ v = w | u v . 4.
With the counit defined, for any P ∈ K Y 0 , by ǫ(P

) = P | 1 Y * 0 , one gets 11 H ⊔⊔ = (K Y 0 , conc, 1 Y * 0 , ∆ ⊔⊔ , ǫ) and H ∨ ⊔⊔ = (K Y 0 , ⊔⊔ , 1 Y * 0 , ∆ conc , ǫ), H = (K Y 0 , conc, 1 Y * 0 , ∆ , ǫ) and H ∨ = (K Y 0 , , 1 Y * 0 , ∆ conc , ǫ).

Integro-differential operators

Let C = C[z, z -1 , (1 -z) -1 ] and C : C -(] -∞, 0] ∪ [1, +∞[) → C maps z to 1.
Let us consider the following differential and integration operators acting on C{Li w } w∈X * [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] :

∂ z = d/dz, θ 0 = z∂ z , θ 1 = (1 -z)∂ z , ∀f ∈ C, ι 0 (f ) = z z 0 f (s)ds s and ι 1 (f ) = z z 0 f (s)ds 1 -s .
In here, z 0 = 0 if ι 0 f (resp. ι 1 f ) exists 12 and else z 0 = 1. One can check easily that θ 0 + θ 1 = ∂ z and θ 0 ι 0 = θ 1 ι 1 = Id [START_REF] Duchamp | Mathematical renormalization in quantum electrodynamics via noncommutative generating series[END_REF].

For any u = y t 1 . . . y tr ∈ Y * 0 , one can also rephrase the construction of polylogarithms as Li u = (ι

t 1 -1 0 ι 1 . . . ι tr-1 0 ι 1 )1 Ω , Li - u = (θ t 1 +1 0 ι 1 . . . θ tr +1 0 ι 1 )1 Ω and [12] θ 0 Li x 0 π X u = Li π X u ; θ 1 Li x 1 π X u = Li π X u ; ι 0 Li π X u = Li x 0 π X u ; ι 1 Li u = Li x 1 π X u . ( 8 
)
The subspace C{Li w } w∈X * (which is, in fact, a subalgebra) is then closed under the action of {θ 0 , θ 1 , ι 0 , ι 1 } and the operators θ 0 ι 1 and θ 1 ι 0 admit respectively λ (see ( 3)) and 1/λ as eigenvalues (C{Li w } w∈X * is their eigenspace) [START_REF] Duchamp | Mathematical renormalization in quantum electrodynamics via noncommutative generating series[END_REF] :

∀f ∈ C{Li w } w∈X * , (θ 0 ι 1 )f = λf and (θ 1 ι 0 )f = f /λ, (9) 
∀w ∈ X * , (θ 0 ι 1 ) Li w = λ Li w and (θ

1 ι 0 ) Li w = Li w /λ. (10) 

Eulerian polynomials and Stirling numbers

It is well-known that [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multiple-indices[END_REF][START_REF] Foata | Théorie Géométrique des Polynômes Eulériens[END_REF] for any n ∈ N + ,

Li - yn (z) = zA n (z) (1 -z) n+1 = n k=0 n-1 j=k-1 A n,j j + 1 k (-1) k 1 (1 -z) n+1-k (11) = n+1 t=1 (t -1)!(-1) t+n+1 S 2 (n + 1, t) (1 -z) t . ( 12 
)
Using the notations given in Section 2.2, one also has

If k > 0 then θ k 0 λ(z) = 1 1 -z k j=1 S 2 (k, j)j!λ j (z) else λ(z). ( 13 
)
Let T be the invertible matrix

(t i,j ) j≥0 i≥1 ∈ Mat ∞ (Q ≥0 ) defined by If i > j then t i,j = S 1 (i, j + 1) (i -1)! else 0. (14) 
3. Combinatorial aspects of harmonic sums and polylogarithms 13 defined by

= b s 1 then B ys 1 (z) = B s 1 (z) is the s th 1 -Bernoulli polynomial [31]. Now, let M = m i,j i≥0 j≥1 ∈ Mat ∞ (Q) be the invertible matrix
m i,j =          0, if i < j -1, b i , if j = 1, i = 1 1/2, if j = i = 1 im i-1,j-1 /j, if i > j -1 > 0. (15) 
Let us consider also the following invertible matrix D ∈ Mat r (N)

d i,j =    0, if 1 ≤ i < j ≤ r, n 1 . . . n i , if 1 ≤ i = j ≤ r, n 1 . . . n j b yn j+1 ...yn i , if 1 ≤ j < i ≤ r,
Then its inverse, D -1 = (v i,j ), can be also described as follows

v i,j =    0, if 1 ≤ i < j ≤ r, 1/(n 1 . . . n i ), if 1 ≤ i = j ≤ r, -b ′ yn j+1 ...yn i /(n 1 . . . n i ), if 1 ≤ j < i ≤ r.
Proposition 1 ( [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multiple-indices[END_REF]). For any N > 0 and y n 1 . . . y nr ∈ Y * , one has

β yn 1 ...yn r (N + 1) = r k=1 ( k i=1 n i )b yn k+1 ...yn r H - y n 1 -1 ...y n k -1 (N). Proof -Successively B yn 1 ...yn r (N + 1) -B yn 1 ...yn r (N) = n 1 N n 1 -1 B yn 2 ...yn r (N), . . . , B yn 1 ...yn r (2) -b yn 1 ...yn r = n 1 1 n 1 -1 B yn 2 ...yn r (1)
. It follows the expected result:

β yn 1 ...yn r (N + 1) = n 1 N k 1 =1 k n 1 -1 1 B yn 2 ...yn r (k 1 )
13 In this paper, M -1 and M t denote as usual the inverse and transpose of the matrix M .

= n 1

N k 1 =1 k n 1 -1 1 β yn 2 ...yn r (k 1 ) + n 1 N k 1 =1 k n 1 -1 1 b yn 2 ...yn r . . . = r k=1 ( k i=1 n i )b yn k+1 ...yn r H - y n 1 -1 ...y n k -1 (N). Theorem 1. 1. For any w ∈ Y * 0 , H - w is a polynomial function , in N, of degree (w) + |w|. 2. If w ∈ Y * , there exists a polynomial G - w , of degree (w)-1, such that H - w (N) = (N + 1)N(N -1) . . . (N -|w| + 1)G - w (N). Conversely, for any N, k ∈ N + , one has N k = k-1 j=0 (-1) j+k-1 k j H - y j (N).
3. We get (for r = 1, this corresponds to Faulhaber's formula [START_REF] Faulhaber | Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden[END_REF][START_REF] Knuth | Johann Faulhaber and Sums of Powers[END_REF]) :

H - yn 1 ...yn r (N) = β y n 1 +1 ...y nr +1 (N + 1) -r-1 k=1 b ′ y n k+1 +1 ...y nr +1 β y n 1 +1 ...y n k +1 (N + 1) r i=1 (n i + 1)
.

Proof -For any y n ∈ Y and w = y n y m ∈ Y * , putting p = (w) + |w|, we have 2. By Faulhaber's formula [START_REF] Faulhaber | Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden[END_REF][START_REF] Knuth | Johann Faulhaber and Sums of Powers[END_REF], one has H - y i (N) t i≥0 = M N j t j≥1 . Thus, by inversion matrix, the third result follows.

H - yn (N) = 1 n + 1 n k=0 n + 1 k b k (N + 1) n+1-k , H - ynym (N) = m k=0 p-1-k l=0 p-k-l q=0 b k b l (m + 1)(p -k) m + 1 k p -k l p -k -l q N q . 1. As above, H - yn , H - ynym are polynomials of respective degrees n + 1, n + m + 2. Since, for any s ∈ N, w ∈ Y * 0 , N ∈ N + , H - ysw (N + 1) -H - ysw (N) = N s H - w (N) then H - ysw satisfies the difference equation f (N + 1) -f (N) = N s H - w (N) (see Lemma 3 below). For |w| = k > 2, suppose H - w is a polynomial and deg(H - w ) = (w) + |w|. Now, let y s ∈ Y 0 . Then H - ysw is not constant. Indeed, H - ysw (N) = N n=1 n s H - w (n -1). Moreover, H - ysw (N + 1) -H - ysw (N) = (N + 1) s H - w ( 

Let H

-:= H - y n 1 -1 . . . H - y n 1 -1 ...y nr -1 t
and β := β yn 1 . . . β yn 1 ...yn r t .

Hence, H -(N) = D -1 β(N + 1) and the last result follows.

Example 1.

• For r = 1,

H - y 0 (N) = N, H - y 1 (N) = N(N + 1)/2, H - y 2 (N) = N(N + 1)(2N + 1)/6, H - y 3 (N) = N 2 (N + 1) 2 /4. • For r = 2, H - y 2 0 (N) = N(N -1)/2, H - y 2 1 (N) = N(N -1)(3N + 2)(N + 1)/24, H - y 1 y 2 (N) = N(N -1)(N + 1)(8N 2 + 5N -2)/120, H - y 2 y 1 (N) = N(N -1)(N + 1)(12N 2 + 15N + 2)/120.
• For r = 3,

H - y 3 0 (N) = N(N -1)(N -2)/6, H - y 3 1 (N) = N 2 (N -1)(N -2)(N + 1) 2 /48, H - y 2 1 y 2 (N) = N(N -1)(N -2)(N + 1)(48N 3 + 19N 2 -61N -24)/5040, H - y 2 1 y 3 (N) = N(N -1)(N -2)(N + 1)(7N 2 + 3N -2)(5N 2 -3N -12)/6720.

Combinatorial aspects of polylogarithms at non-positive multi-indices

Definition 2 (Extended Eulerian polynomials). For any w = y s 1 . . . y sr ∈ Y + , the polynomial A - w , of degree (w), is defined as follows

If r = 1, A - w = A s 1 else A - w = s 1 i=0 s 1 i A - y i A - y s 1 +s 2 -i ys 3 ...ys r
where, for any n ∈ N, A n denotes the n-th classical Eulerian polynomial.

Note that the coefficients of the polyomials {A - w } w∈Y * 0 are integers.

Theorem 2.

1. If r > 1 then Li - ys 1 ...ys r = s 1 t=0 s 1

t Li - yt Li - y s 1 +s 2 -t ys 3 ...ys r .

For any w

∈ Y * 0 , Li - w (z) = λ |w| (z)A - w (z)(1 -z) -(w) ∈ Z[(1 -z) -1 ] is a polynomial function of degree 14 (w)+ | w | on (1 -z) -1 . Conversely, we get (1 -z) -k = (1 -z) -1 + k j=2 S 1 (k, j) Li - y j-1 (z)/(k -1)!.
3. We have Li - ys 1 ...ys r (z) = λ(z) |w| s 1 +...+sr i=r s 1 ...+s r-1 j=0 l i,j z i-1-j (1z) -i , where [START_REF] Duchamp | Mathematical renormalization in quantum electrodynamics via noncommutative generating series[END_REF]. Hence, 1. The actions of θ i , ι i yield immediately the expected result. Next, using θ i , ι i , one has Li -

l i,j = 1≤kt≤st k 1 +...+kr =i r n=1 (k n !S 2 (s n , k n )) t 1 +...+t r-1 =j 0≤tm≤km 1≤m≤r-1 r-1 p=1 k r + . . . + k r-p+1 + p -t r-p+1 -. . . -t r-1 t r-p k r-p + t r-p+1 + . . . t r-1 k r-p -t r-p . Proof -For w = y s 1 . . . y sr ∈ Y * 0 , Li - w = (θ s 1 +1 0 ι 1 ) . . . (θ s r-1 +1 0 ι 1 ) Li - ys r
w (z) = λ |w| (z)A - w (z)(1 -z) -(w) and Li - w ∈ Z[(1 -z) -1 ]. Hence, Li - w is a polynomial of degree (w) + |w| (w)+ | w | on (1 -z) -1 . 2. Since (1 -z) -j t j≥1 = T (1 -z) -1 (Li - y i (z)) i≥1
t then, by matrix inversion, the expected result follows immediately.

3. The expected result follows by using [START_REF] Dyson | The radiation theories of Tomonaga, Schwinger and Feynman[END_REF] in the following expressions

Li - ys 1 ...ys r = s 1 k 1 =0 s 1 +s 2 -k 1 k 2 =0
. . . 

s 1 + s 2 -k 1 k 2 . . . s 1 + . . . + s r -k 1 -. . . -k r-1 k r (θ kr 0 λ)(θ k 2 0 λ) . . . (θ kr 0 λ). Example 2. Since Li - ymyn = (θ m+1 0 ι 1 ) Li - yn = θ m 0 (θ 0 ι 1 ) Li - yn and (θ 0 ι 1 ) Li - yn = Li 0 Li - yn , one has Li - ymyn = θ m 0 [Li 0 Li - yn ] = m l=0 m l Li - y l Li - y m+n-l . For example, Li - y 2 1 (z) = Li y 0 (z) Li - y 2 (z) + (Li - y 1 (z)) 2 = -(1 -z) -1 + 5(1 -z) -2 -7(1 -z) -3 + 3(1 -z) -4 , Li - y 2 y 1 (z) = Li y 0 (z) Li - y 3 (z) + 3 Li - y 1 (z) Li - y 2 (z) = (1 -z) -1 -11(1 -z) -2 + 31(1 -z) -3 -33(1 -z) -4 + 12(1 -z) -5 , Li - y 1 y 2 (z) = Li y 0 (z) Li - y 3 (z) + Li - y 1 (z) Li - y 2 (z) = (1 -z) -1 -9(1 -z) -2 + 23(1 -z) -3 -23(1 -z) -4 + 8(1 -z) -5 .

Asymptotics of harmonic sums and singular expansion of polylogarithms

Proposition 2 ([11]). Let w ∈ Y *

0 . There are non-zero constants C - w and B -

w such that 15 H - w (N) N →∞ N (w)+|w| C - w and Li - w (z) z→1 B - w (1 -z) -((w)+|w|) . Moreover, C - 1 Y * 0 = B - 1 Y * 0 = 1 and, for any w ∈ Y + 0 , C - w = w=uv,v =1 Y * ((v) + |v|) -1 ∈ Q and B - w = ((w)+ | w |)!C - w ∈ N + .
Proof -By Theorem 15 This means lim N →+∞ N -((w)+|w|) H - w (N ) = C - w and lim z→+1 (1z) (w)+|w| Li - w (z) = B - w . 16 using the Kleene star of series without constant term S * = (1 -S) -1 .

12 By Theorems 1, 2 and, for any w ∈ Y * 0 , denoting p = (w) + |w|, one also has

Θ(N) = 1 Y * 0 + w∈Y + 0 p-1 j=0 (-1) p+j-1 p j H - y j (N) w, Λ((1 -z) -1 ) = 1 Y * 0 + (Li - y 0 (z) -1)y 0 + w∈Y + 0 \{y 0 } (-1) p+1 (Li - y 0 (z) -1) + p j=2 (-1) p+j S 1 (p, j) (p -1)! Li - y j-1 (z) w.
By Definition 3 and Proposition 2, we get Theorem 3. Let us consider now the following noncommutative generating series

H -:= w∈Y * 0 H - w w and L -:= w∈Y * 0 Li - w w.
Then

17 lim N →+∞ Θ ⊙-1 (N) ⊙ H -(N) = lim z→1 Λ ⊙-1 ((1 -z) -1 ) ⊙ L -(z) = C -. Definition 4. Let P ∈ Q Y 0 such that H - P ≡ 0. Let B - P , C - P ∈ Q and n(P ) ∈ N be defined respectively by Li - P (z) z→1 (1 -z) -n(P ) B - P and H - P (N) N →∞ N n(P ) C - P .
It is immediate that • Step 2: Let p := p max -1 and

J 1 := {v ∈ suppP |(v)+ | v |= p}. Compute C 1 = c∈J 1 α c C - c H - c∈J αcc | N p . If C 1 = 0 then C 0 := C 1 else go on with p -1. 17 i.e., H -(N ) N →+∞ C -⊙ Θ(N ) and L -(z) z→1 C -⊙ Λ((1 -z) -1
) where Θ ⊙-1 and Λ ⊙-1 denote the inverses for Hadamard product of Θ and Λ respectively (to be compared with (4)). The equivalences are understood term by term. 18 The support of

P = u∈Y * 0 x u u ∈ Q Y 0 is defined by suppP = {w ∈ Y * 0 | P | w = 0}
and the scalar product, on Q Y 0 , is defined by P | w = x w . 19 This process, over Q Y 0 , ends after a finite number of steps.

Example 5. P = 12y 2 y 4 1y 2 y 2 3 -9y = -269 1400 = 0 and then C - P = -269 1400 .

• Suppose, in the r thstep, that the linear combination of coefficients of

N pmax-r+1 in H - w with w ∈ {u ∈ suppP |(u)+ | u |≥ p max -r + 1} is zero, namely C r-1 = 0, then in (r + 1) th -step to compute the linear combination of coefficients of N pmax-r in H - w with w ∈ {u ∈ suppP |(u)+|u| ≥ p max -r+1}, and the linear combination of C - w with w ∈ {u ∈ suppP |(u)+ | u |= p max -r}.
If the sum of above results is not 0 then it is C - P else one jumps to next step. For P = w∈Y * c w w, the similar algorithm can be used to compute B - P : 

• Step 1: Let J := {v ∈ suppP |(v)+ | v |= p max }. Compute B 0 = c∈J α c B - c . If B 0 = 0, then B - P = B 0 else go to next step. • Step 2: Let J 1 = {v ∈ suppP |(v)+ | v |= p max -1}.
3. Let w 1 , w 2 ∈ Y * 0 . Then H - w 1 H - w 2 = H - w 1 w 2 .
Proof -Associating (s 1 , . . . , s k ) to w, the quasi-symmetric monomial function on the commuting variables t = {t i } i≥1 is defined by

M 1 Y * (t) = 1 and M w (t) = n 1 >...>n k >0 t s 1 n 1 . . . t s k n k . For any u, v ∈ Y * 0 , since M u M v = M u v then H - s 1 ,...,s k is obtained by specializing, in M w , t = {t i } i≥1 at t i = i if 1 ≤ i ≤ N and else at t i = 0 for i ≥ N + 1 for i ≥ N + 1.
By the -extended Friedrichs criterion [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF], we get Theorem 4.

1. The generating series H -is group-like and log H -is primitive. 

ker H

- • is a prime ideal of (Q Y 0 , ), i.e. Q Y 0 \ ker H - • is
1. Let w, v ∈ Y * 0 . Then C - w C - v = C - w ⊔⊔ v = C - w v .
2. For any

P, Q / ∈ ker H - • , C - P C - Q = C - P Q and Q Y 0 \ ker H - • is a - multiplicative monoid containing Y * 0 . Let us prove C -
• can be extended as a character C -, for ⊔⊔ or equivalently, by the Freidrichs' criterion [START_REF] Reutenauer | Free Lie Algebras[END_REF], C -is group-like and then log C -is primitive, for ∆ ⊔⊔ . Lemma 1. Let A is a R-associative algebra with unit and f :

⊔ n≥0 P n -→ A (see Definition 5) such that 1. For any u, v ∈ Y * 0 , f (u ⊔⊔ v) = f (u)f (v) and f (1 Y * 0 ) = 1 A . 2.
For any finite set I, one has f ( i∈I α i w i ) = i∈I α i f (w i ) where i∈I α i w i ∈ P n ( finite non-trivial positive linear combination).

Then f can be uniquely extended as a character i.e. S f = w∈Y * 0 f (w)w is grouplike for ∆ ⊔⊔ .

Proof -The linear span of P n is the space of homogeneous polynomials of degree n, (i.e., P n -P n = R n Y 0 ), P n being convex (and non-void), f extends uniquely, as a linear map, to R n Y 0 and then, as a linear map, on ⊕ n≥0 R n Y 0 = R Y 0 . This linear extension is a morphism for the shuffle product as it is so on the (linear) generators Y * 0 . By definition of f and S f , it is immediate

S f | 1 Y * 0 = 1 A . One can check easily that ∆ ⊔⊔ (S f ) = S f ⊗ S f . Hence, S f is group-like, for ∆ ⊔⊔ .
Corollary 2. The noncommutative generating series C -is group-like, for ∆ ⊔⊔ .

Proof -It is a consequence of Lemma 1 and Corollary 1.

1. Let s be a linear section of φ, i.e. φ • s = Id A . Then let x⊤y = s(φ(x)φ(y)).

It is straightforward ⊤ satisfies [START_REF] Euler | Variae observationes circa series infinitas[END_REF]. Now, x⊤y = s(φ(x)φ(y)) ∈ Im(s) if, moreover x⊤y ∈ ker(φ), as (0) = Im(s) ∩ ker(φ), we must have x⊤y = 0 and hence [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF].

2. We have to prove "Every product ⊤ of the form ⊤ = α • ⊤ 0 satisfies ( 16)-( 17)" and conversely "every product ⊤ which satisfies ( 16)-( 17) is of the form Now, let us suppose that ⊤ satisfies ( 16) and ( 17) and first compute an idempotent (for ⊤) e such that φ(e) = 1 A . We start with any preimage e 0 of 1 A and form e = e 0 ⊤e 0 . Then φ(e 0 ⊤e 0e 0 ⊤e 0 ⊤e 0 ) = φ(e 0 )φ(e 0 )φ(e 0 )φ(e 0 )φ(e 0 ) = 1 -1 = 0. Hence, e 0 ⊤e 0e 0 ⊤e 0 ⊤e 0 = e 0 ⊤(e 0e 0 ⊤e 0 ) ∈ ker(φ) and then, by ( 17 

⊤ = α • ⊤ 0 ".
The map s is a section of φ as φ(s(y)) = φ(x⊤e) = φ(x)φ(e) = φ(x).

To end, it remains to prove that x⊤y = s(φ(x)φ(y)) but

s(φ(x)φ(y)) = s(φ(x⊤y)) = x⊤y⊤e. (19) 
Now x⊤y⊤e -x⊤y has image, by φ, zero and then x⊤(y⊤ey) = 0 which, in virtue of [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF], ends the proof that s exists and is such that x⊤y = s(φ(x)φ(y)). Now, if s 1 , s 2 are two sections of φ, there is α ∈ G

φ such that s 2 = αs 1 . We can reprove it easily in our context. One has just to consider a basis of Im(s 1 ), take into account that ker(φ) ⊕ Im(s

1 ) = ker(φ) ⊕ Im(s 2 ) = V and construct α by α | Im(s 1 ) = s 2 , φ | Im(s 1 ) and α | ker(φ ) = Id ker(φ) . Let ⊤ i be constructed from s i , i = 1, 2. Then x⊤ 2 y = s 2 (φ(x)φ(y)) = αs 1 (φ(x)φ(y)) = α(x⊤ 1 y).
3. Straightforward following the proof of the previous point.

Theorem 5.

1. There is at least a law ⊤ such that the morphism defined in ( 7) is onto and, such that, for any P, Q ∈ Q Y 0 ,

Li - P ⊤Q = Li - P Li - Q . ( 20 
)
If P ⊤Q ∈ ker(Li - • ) then P ⊤Q = 0. (21) 
Then, let

G = {α ∈ GL(Q Y 0 )| Li - • •α = Li - • } ⊂ GL(Q Y 0 ).
2. Any other law satisfying (20), ( 21) is of the form α • ⊤( one orbit under G).

3. The associative commutative law ⊤ in ( 22) is non dualizable.

Proof -For V = Q Y 0 and φ = Li - • , the first result is a consequence of Lemma 2. The last is a consequence of the caracterization of dualizability [START_REF] Bui | Pure) transcendence bases in φ-deformed shuffle bialgebras, Submitted to Seminaire Lotharingien de Combinatoire[END_REF].

By Theorem 2, {Li - w } w∈Y * 0 can be represented in {Li - ys } s≥0 ∪ {Li -

1 Y * 0 }. Thus, since, for any u, v ∈ Y * 0 , Li - u Li - v ∈ span Q {Li - y k } k≥0 then we get successively Li - u Li - v = a 1 Y * 0 (u, v) + |u|+(u)+|v|+(v)-1 s=0 a s (u, v) Li - ys ,
and then, one defines

u⊤v = a 1 Y * 0 (u, v)1 Y * 0 + |u|+(u)+|v|+(v)-1 s=0 a s (u, v)y s . (22) 
This defines a law of ⊤ which is associative and commutative on Q Y 0 .

Example 7. 

Since Li

- 1 Y * 0 = C then, for y ∈ Y 0 , y⊤1 Y * 0 = 1 Y * 0 ⊤y = y. 2. One has 21 , Li - ym (z) Li - yn (z) = z 2 (1 -z) 2 1 (1 -z) m+n m+n-2 k=0 A - m,n,k z k
:= -1 0 ∈ Mat ∞ (Q).
With the matrices M, T given respectively in ( 14), [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF] and by Theorems 1, 2, there exists two matrices Ξ w , Ω w ∈ Mat ∞ (Q) such that

h - w = Ξ w 1 N j t j≥1 = Ξ w 1 0 0 M -1 1 h - 1 Y * 0 , l - w = Ω w C (1 -z) -j t j≥1 = Ω w 1 0 U T -1 -1 C l - 1 Y * 0 ,
Then one has successively

Ξ w 1 0 0 M -1 = Ω w 1 0 U T -1 -1 and Ξ w = Ω w 1 0 U T -1 -1 1 0 0 M , 1 h - 1 Y * 0 = 1 0 0 M 1 N j t j≥1 and C l - 1 Y * 0 = 1 0 U T -1 C 1 (1-z) j t j≥1 .
The expected result follows.

Conclusion

In this work, we have etablished combinatorial and asymptotic aspects concerning harmonic sums and polylogarithms at non-positive multi-indices, by extending Faulhaber's formula, the Bernoulli and Eulerian polynomials.

Via an Abel like theorem about their noncommutative generating series, we have also globally renormalized the corresponding polyzetas and made precise their algebraic structures.

In the forthcoming works, we will give an integral representation for polylogarithms at non-positive multi-indices, {Li - w } w∈Y * 0 , for regularization of the corresponding polyzetas.

Appendix A : Cones and extensions

Let V be a R-vector space. We remind [START_REF] Bernstein | Matrix Mathematics -Theory, Facts, and Formulas[END_REF] the reader that a blunt convex cone in V is a convex cone which does not contain zero. If C = ∅ is such a cone, then the vector space generated by C is

span R (C) = C -C = {x -y} x,y∈C . (24) 
Let S ⊂ X * a non empty linearly free set. The blunt convex cone generated by S is the set of sums C S = { w∈S α w w} α∈R (S) + \{0} . It amounts to the same to rephrase it with finite families and, in view of [START_REF] Guo | Renormalization of multiple zeta values[END_REF], the linear span of S is exactly C S -C S . Now, C being still a non-empty convex cone, we say that a function ϕ : C → W (W be a R-vector space) is linear on C if φ(αx + βy) = αφ(x) + βφ(y) for x, y ∈ C, α, β ≥ 0, α + β > 0. This is an easy exercise to check that such a ϕ is the restriction of a unique linear map φ (C -C) → W .

n 1 >

 1 ...>nr>0 z n 1 n s 1 1 . . . n sr r and H s 1 ,...,sr (N) := N ≥n 1 >...>nr>0 1 n s 1 1 . . . n sr r .

  ,

3 .

 3 The noncommutative generating series in their factorized forms, i.e. L := l∈LynX exp(Li S l P l ) and H := l∈LynY exp(H Σ l Π l ), Z ⊔⊔ := l∈LynX\X exp(ζ(S l )P l ) and Z := l∈LynY \{y 1 } exp(ζ(Σ l )Π l ),

2. 1 .

 1 Combinatorial background of the quasi-shuffle Hopf algebras Let Y 0 be totally ordered by y 0 > y 1 > . . .. We denote also Y + 0 = Y 0 Y * 0 and Y + = Y Y * , the free semigroups of non-empty words. The weight and length of w = y s 1 . . . y sr , are respectively the numbers (w) := s 1 + . . . + s r and |w| := r.

3. 1 .

 1 Combinatorial aspects of harmonic sums at non-positive multi-indices Definition 1 (Extended Bernoulli polynomials). Let {B w } w∈Y * 0 , {β w } w∈Y * be two families of polynomials defined, for anyr ≥ 1, z ∈ C, y n 1 . . . y nr ∈ Y * 0 by B ys 1 ...ys r (z + 1) = B ys 1 ...ys r (z) + s 1 z s 1 -1 B ys 2 ...ys r (z)and, for any y n 1 . . . y nr ∈ Y * we set β w (z) := B w (z) -B w (0). One defines also, for any w = y n 1 . . . y nr ∈ Y * 0 (with b w := B w (0)) and b ′ yn k := b yn k and b ′ yn k ...yn r := b yn k ...yn r -r-1-k j=0 b ny k+j+1 ...yn r b ′ yn k ...yn k+j . Note that, for any s 1 = 1, one has B ys 1 ...ys r (0) = B ys 1 ...ys r (1) = b ys 1 ...ys r and the polynomials {B w } w∈Y * 0 depend on the (arbitrary) choice of {b w } w∈Y * 0 . In here, by (1), we put b ys 1

  N). Thus, by Lemma 3, deg(H - ysw ) = deg(H - w ) + s + 1 = (y s w) + |y s w|. By the definition, for any w = y s 1 . . . y sr ∈ Y * , {0, . . . , r -1} are solutions of the equation H - w ≡ 0. There exists then a polynomial G w such that H - ys 1 ...ys r (N) = N(N -1) . . . (Nr + 1)G w (N). Now, for any s ≥ 1 and w ∈ Y * , we have H - ysw (N + 1) -H - ysw (N) = (N + 1) s H - w (N). So -1 is also solution of the equation H - w ≡ 0. Then the second result follows.

Definition 3 . 16 C

 316 Let us define the two following non commutative generating series (w))!t |w|+(w) w.

3 = 5 8

 35 18 0 ≤ n(P ) ≤ max u∈suppP {(u)+ | u |}. Let p max := max u∈suppP {(u) + |u|} < +∞. We are extending 19 C - • over Q Y 0 : • Step 1: Compute C 0 = (w)+|w|=pmax P | w C - w . If C 0 = 0 then C - P = C 0 else go to next step. Example 4. For P = 6y 4 y 2 + 12y 2 3 -9y 5 , (y 4 y 2 )+ | y 4 y 2 |= (y 2 3 )+ | y 2 3 |= 8 > 6 = (y 5 )+|y 5 |. Then p max = 8, C 0 = 6C - y 4 y 2 +12C - y 2 and C - P = C 0 = 5/8.

  Find the coefficient of (1z) -pmax+1 in Li - c∈J αcc , namely b pmax-1 , and compute B 1 = b pmax-1 + c∈J 1 α c B - c . If B 1 = 0 then B - P = B 1 else continue with smaller orders. 4. Structure of harmonic sums and polylogarithms 4.1. Structure of harmonic sums at non-positive multi-indices Proposition

closed by . Definition 5 .

 5 For any n ∈ N + , let P n := span R + {w ∈ Y * 0 |(w) + |w| = n} \ {0} ⊂ R + Y 0 be the blunt convex cone (i.e. without zero or see Appendix A.) generated by the set {w ∈ Y * 0 |(w) + |w| = n}. By definition, C - • is linear on the set P n . For any u, v ∈ Y * 0 , one has u v = u ⊔⊔ v + (w)+|w|<(u)+|u|+|v|+(v) x w w and the x w 's are positive. Moreover, for any w which belongs to the support of (w)+|w|<(u)+|u|+|v|+(v) x w w, one has (w) + |w| < (u) + (v) + |u| + |v|. Thus, by the definition of C - • , one obtains Corollary 1.

Firstly, let us

  compute φ(x⊤y) = φ(α(x⊤ 0 y)) = φ(x⊤ 0 y) = φ(x)φ(y). This proves[START_REF] Euler | Variae observationes circa series infinitas[END_REF]. On the other hand, x⊤y ∈ ker(φ) is equivalent to φ(x⊤y) = 0. Then 0 = φ(x⊤y) = φ(α(x⊤ 0 y)) = φ(x⊤ 0 y). Hence, x⊤ 0 y = 0 and, because ⊤ 0 satisfies[START_REF] Euler | Meditationes circa singulare serierum genus[END_REF], and then, x⊤y = α(x⊤ 0 y) = 0 which proves[START_REF] Euler | Meditationes circa singulare serierum genus[END_REF] for ⊤.

  ), we have 0 = e 0 ⊤(e 0e 0 ⊤e 0 ) = e 0 ⊤e 0e 0 ⊤e 0 ⊤e 0 . Now e⊤e = (e 0 ⊤e 0 )⊤(e 0 ⊤e 0 ) = e 0 ⊤(e 0 ⊤e 0 ⊤e 0 ) = e 0 ⊤(e 0 ⊤e 0 ) = e 0 ⊤e 0 = e and φ(e) = φ(e 0 ⊤e 0 ) = 1 A 1 A = 1 A . Now, let y ∈ A. It is easy to check that the values x⊤e are independant from the choice of x, preimage of y. Set s(y) = x⊤e. For y = φ(x), we have s(y) = s(φ(x)) = x⊤e.

3 .

 3 , for any n, N ∈ N + , N n = H - y n 0 (N) then, by the definition of M as[START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF] and by Lemma 4, the expression of the matrix X follows.2. For anyw ∈ Y + 0 , there is a rational sequence {α w,k } k H - y k (N) z N = (w)+|w|-1 k=0 α w,k N ≥0 H - y k (N) z Nthen Theorems 1, 2 and the previous point implies that these families are bases. Let us define, for any w ∈ Y * 0 , h - w := H -

  1, H - w is a polynomial function of degree (w)+ | w | then such C - w exists. By induction, it is immediate that C - , i.e. the result holds for |w| ≤ 1. Suppose that it holds up to |w| = k and for the next, let y s ∈ Y 0 and w ∈ Y * 0 such that |w| = k. Since H - ysw is solution of f (N + 1)f (N) = (N + 1) s H - w (N), with initial condition H - w (0) = 0, then we get the leading term of H - w . Remark that (N + 1) s H - w (N) ≡ 0 is polynomial with C - w N s+(w)+|w| as leading term. Hence, by Lemma 3, the leading term of H - ysw is C - w N (ysw)+|ysw| /((y s w) + |y s w|). It follows from this the expression of C - w . The second result is immediate by Theorem 2.

	1 Y * 0 ys = (s + 1) -1 Example 3 (of C -= 1 and C -

w and B - w ).

  2 4 , (y 4 1 y 2 )+ | y 4 1 y 2 |= (y 2 y 2 3 )+ | y 2 y 2 3 |= 11 > 10 = (y 2 4 )+ | y 2 4 |. Thus, p max = 11, C 0 = 12C -

	step. One has				y 2 y 4 1	-C -y 2 y 2 3	= 0. Next
	H -y 2 y 4 1 H -y 2 y 2 3	(N) = -(N) = -	1 4224 1087 N 11 -57600 N 6 + 1 352 N 11 -2240 181 134400 47 3840 N 5 + N 10 + 323 31 80640 16128 N 4 -N 9 + 1 126 5376 43 N 3 -N 8 -787 1 168 100800 N 2 + N 7 9 N 10 -95 4032 N 9 + 11 448 N 8 + 13 168 N 7 -149 2880 37 320 N 5 + 173 4032 N 4 + 71 1008 N 3 -59 5040 N 2 -53 4620 N.	19 18480 N 6	N,
	Hence, C 1 = -	2172 134400	+	9 2240	-9C -y 2 4

Nielsen wished to establish an identity analogous to the one given in (1) for ζ(2p + 1) but he did not succeed. We have explained in[27, 

30] these difficulties and impossibility[START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF].[START_REF] Bernstein | Some canonical sequences of integers[END_REF] which is actually the domain of absolute convergence of this univariate series.

For m ≥ 2, the domain of absolute convergence of ζ(s 1 , . . . , s r ) contains the domain H r[START_REF] Matsumoto | On the analytic continuation of various multiple zetafunctions, in Number Theory for the Millennium II[END_REF].

By definition, in Z ⊔⊔ and Z , only convergent polyzetas arise and and we do not need any regularization process, studied earlier in[START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF] and constructed in[START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] (see also other processes developped in[START_REF] Boutet De Monvel | Remarques sur les séries logarithmiques divergentes, lecture at the workshop Polylogarithmes et conjecture de Deligne-Ihara[END_REF][START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF]).

The graded core of a subspace W is the largest graded subspace contained in W . It is conjectured that this core is all the kernel. One of us proposed a tentative demonstration of this statement in[START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]. If this holds, then this kernel would be generated by homogenous polynomials and the quotient be automatically N-graded.

From now on, without contrary mention, it will be supposed that the indices of harmonic sums and polylogarithms are taken as non-positive multi-indices.

or module, K is currently a ring.

in fact, this is the adjoint of the law.

This word was introduced by Borwein and al.. The sticky shuffle product Hopf algebras were introduced independently by physicists due to their rôle in stochastic analysis.

Out of these four bialgebras, only the third one does not admit an antipode due to the presence of the group-like element g = (1 + y 0 ) which admits no inverse.

This can be made precise, remarking that C{Li w } w∈X * = C ⊗ C C{Li w } w∈X * and then study the integral on the basis z k (1-z) l ⊗ Li w .

Putting K w (1/z) := A - w (z)/z (w) , one gets Li w w (z) = λ (w)+|w| (z)K w (1/z).

k-associative algebra (not necessarily with unit); k-AAU being for the category of kassociative algebra with unit.

For any m, n, k ∈ N such that 0 ≤ k ≤ m + n -2, we denote A m,n,k = k t=0 A n,t A m,k-t .Here, for any m, n ∈ N, A m,n,-1 = A m,n,-2 = 0.

+y 0 y 2 y 3 y 1 + y 2 y 3 y 0 y 1 +y 2 y 0 y 1 y 3 + y 2 y 0 y 3 y 1 + y 0 y 2 y 4 +y 0 y 2 3 + y 2 y 3 y 1 + y 2 y 1 y 3 +y 2 y 0 y 4 + y 2 y 3 y 1 + y 2 y 4 y a y b • is linear on P n . For example, let u = y 1 and v = y 2 y 5 . Then u ⊔⊔ v = y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 . Hence, we get

Note that y 1 y 2 y 5 , y 2 y 1 y 5 , y 2 y 5 y 1 ∈ P 11 . But we have also u v = y 1 y 2 y 5 + y 2 y 1 y 5 + y 2 y 5 y 1 + y 3 y 5 + y 2 y 6 . It is clearly seen that

However, as y 3 y 5 , y 2 y 6 ∈ P 10 , we can conclude that

y 2 y 5 = C - y 1 y 2 y 5 +y 2 y 1 y 5 +y 2 y 5 y 1 +y 3 y 5 +y 2 y 6 = C - y 1 y 2 y 5 +y 2 y 1 y 5 +y 2 y 5 y 1 = 1/108 = C - y 1 C - y 2 y 5 .

Structure of polylogarithms at non-positive multi-indices

We are constructing a new product on Q Y 0 which is associated with polylogarithms at non-positive multi-indices as an algebra. This construction will rest on the following very general lemma which gives a way to find a preimage of the given law.

Lemma 2. Let k be a field, V a k-vector space, A a k-AAU and φ : V ։ A be an onto (linear) mapping. We consider the k-AA 20 laws on V such that, for all x, y ∈ V φ(x⊤y) = φ(x)φ(y).

(

Then the following clauses hold 1. There is at least a solution ⊤ 0 of ( 16) and [START_REF] Euler | Meditationes circa singulare serierum genus[END_REF].

2. Let G φ be the group of (linear) automorphisms (subgroup of GL(V )) stabilizing φ on the right, i.e. G φ := {α ∈ GL(V )|φ • α = φ}. Then any other law ⊤ satisfying ( 16) and ( 17) is of the form ⊤ = α • ⊤ 0 (one orbit under G φ ).

This statement holds with G

(1)

Proof -By Theorem 2 and since (1z) -1 = Li - y 0 (z) -1 C then we obtain successively

where γ m,n,k := m+n-2 j=m+n-k A m,n,j j+2 m+n+2-t (-1) m+n-k . For example, y 5 ⊤y 4 = - 1. For any

i y i ⊤y s 1 +s 2 -i y s 3 . . . y sr . 4. The map of ( 6) is onto and ker H -

Note that (1-z) |u|+(u)+|v|+(v) Li - ys (z) vanishes at z = 0, for any s = 1, . . . , |u|+

contradicting with the assumptions. Hence, u = 1 Y * 0 . Similarly, we also obtain v = 1 Y * 0 , then the expected result follows. 3. The formulas ( 8)-( 9) lead to Li -

Hence, Li - y 0 u⊤v = Li - y 0 Li - u⊤v , i.e. y 0 u⊤v = y 0 ⊤(u⊤v). The next result is a consequence of the definition of ⊤ and of Theorem 2.

4. It is immediate by Corollary 5.

Natural bases for harmonic sums and polylogarithms at non-positive multiindices

We are building a map allowing to represent {H - w } w∈Y * 0 in terms of the basis

where P is a polynomial with coefficients in the Q-algebra A and f : N -→ A is an unknown function. Then Lemma 4. For any n, N ∈ N + , one has

Moreover, for any i ≥ j ∈ N + , one has

Proof -In this paper, for any i, j ∈ N such that 0 ≤ i < j, it follows from the definitions that S 1 (i, j) = S 2 (i, j) = 0, and we can write the above formula in the matrix form

Thus, by matrix inversion and the Stirling transform [START_REF] Bernstein | Some canonical sequences of integers[END_REF], we get the first result :

N k t k≥1 . The inverse matrix of S 1 (i, j) i,j≥1 , is well-known and leads also to the last result. Theorem 6.

1. Let X = (j!S 2 (i, j)) i≥1 j≥1 . One has ). Moreover, by Theorems 1 and 2, one has

where, for any 0 ≤ k ≤ (w) + |w|, n k = (w)+|w| j=k m j t j,k .