
HAL Id: hal-01403851
https://hal.science/hal-01403851v1

Submitted on 28 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Resonant non-linear normal modes. Part I: analytical
treatment for structural one-dimensional systems

Walter Lacarbonara, Giuseppe Rega, Ali Nayfeh

To cite this version:
Walter Lacarbonara, Giuseppe Rega, Ali Nayfeh. Resonant non-linear normal modes. Part I: analyti-
cal treatment for structural one-dimensional systems. International Journal of Non-Linear Mechanics,
2003, 38 (6), pp.851-872. �10.1016/S0020-7462(02)00033-1�. �hal-01403851�

https://hal.science/hal-01403851v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Resonant non-linear normal modes. Part I: analytical treatment
for structural one-dimensional systems

W. Lacarbonaraa;, G. Regaa; b, A.H. Nayfehc
aDipartimento di Ingegneria Strutturale e Geotecnica, Universit�a di Roma La Sapienza, via Eudossiana, 18, 00184 Roma, Italy
bDipartimento di Ingegneria Strutturale e Geotecnica, Universit�a di Roma La Sapienza, via A. Gramsci, 53, 00197 Roma, Italy

cDepartment of Engineering Science and Mechanics, MC 0219, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous
systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and
three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach
and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the
uniform expansions of the displacement 6eld and the normal forms governing the slow modulations of the amplitudes and
phases of the modes. The non-linear interaction coe7cients appearing in the normal forms are obtained in the form of in6nite
series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A
systematic discussion on the existence and stability of coupled=uncoupled non-linear normal modes is presented. Closed-form
conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation
of these conditions in terms of virtual works is also provided. 
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1. Introduction

Non-linear modal couplings due to internal reso-
nances are possible in distributed-parameter systems
depending on some geometrical and=or mechanical
control parameters. Non-linear interactions between
the modes are often also responsible for complex
dynamical behaviors [1,2].
On one hand, there is a theoretical interest in

exploring the bifurcation behavior of the non-linear

normal modes of continuous systems per se because
this leads to a deeper understanding of the forced
resonant dynamics when these modal interactions are
activated. On the other hand, there is a practical inter-
est in identifying a priori necessary and su7cient con-
ditions for the actual activation (or non-activation) of
non-linear modal interactions in continuous systems.
In fact, when a system is designed to operate under
dynamic loadings, often one of the designer’s goals
is to ascertain that the system will operate away from
internal resonances leading to undesirable resonant
multimode vibrations.
Starting with Rosenberg [3], the topic of non-

linear normal modes of conservative as well as
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non-conservative vibratory 6nite-degree-of-freedom
and spatially continuous systems, with either weak
or strong non-linearities, has been investigated quite
extensively. Since then a variety of approximate an-
alytical techniques has been proposed to construct
the non-linear normal modes of discrete as well as
continuous systems.
When treating spatially continuous systems, the

approximate techniques include treatments of a dis-
cretized version with perturbation methods and direct
reduction methods. With discretization methods, one
assumes the solution as an expansion in terms of basis
functions forming a complete set and then uses one
of the variants of the method of weighted residuals
(e.g., the Galerkin method) to obtain an in6nite set of
ordinary-diEerential equations usually truncated to a
6nite number of equations. Thereafter, the real-valued
or complex-valued form of the invariant-manifold
approach, the energy approach of King and Vakakis
[4], or a perturbation method are used to treat the
discretized equations.
On the other hand, direct analytical techniques

[4–11] are available to construct the non-linear nor-
mal modes of continuous systems without a priori as-
sumptions of the form of the solution. An exhaustive
review of these techniques can be found in [2].
In a few previous works, while exploring internal

resonances in some continuous systems, it was occa-
sionally found that certain modes, although possess-
ing frequencies in proper integer ratios with the poten-
tial for modal interaction activation, were not actually
coupled. For example, investigating non-linear nor-
mal modes in clamped–clamped buckled beams [10],
it was found that some modes could not interact at
all, in spite of proper integer ratios between the asso-
ciated frequencies, due to vanishing of the non-linear
interaction coe7cients in the normal forms.
Inspired by these results, we attempt to develop

a general and systematic approach to determine a
priori conditions for activation=non-activation of the
modes under speci6c internal resonance conditions.
The outcomes of these investigations are presented
and discussed in this paper which is organized in two
parts. The objective of Part I is twofold: (i) to study
the existence and stability of coupled=uncoupled
non-linear normal modes over variation of the inter-
nal resonance detuning in a general and systematic
fashion using a set of partial-diEerential equations

of motion and boundary conditions with general lin-
ear, quadratic, and cubic geometric operators; (ii) to
determine closed-form conditions for the non-linear
global and local orthogonality of the modes thereby
extending the linear orthogonality concept applicable
to self-adjoint systems entering the 6nite-amplitude
vibration regime. In Part II [11], the general condi-
tions are used for an in-depth analysis of non-linear
orthogonality of the modes in various structural sys-
tems possessing symmetric and antisymmetric modes
including buckled beams, shallow arches, and sus-
pended cables.
The stated objectives are pursued, in the present

paper, by constructing second-order uniform approx-
imations of the coupled=uncoupled non-linear nor-
mal modes in the cases of two-to-one, three-to-one,
and one-to-one internal resonances. The method
of multiple scales [2] is applied to the in6nite set
of ordinary-diEerential equations obtained via the
Galerkin method or directly to the partial-diEerential
equations of motion and boundary conditions. In the
6rst case, the full basis of the eigenfunctions of the
associated linearized system is used as trial func-
tions. The normal modes obtained with the full-basis
Galerkin approach are the same as those obtained with
direct application of the method of multiple scales to
the equations of motion and boundary conditions as
already shown in similar contexts [12–14]. However,
the full-basis approach yields interesting modal rep-
resentations of the coupled=uncoupled normal modes.
These spectral representations, besides shedding light
onto the structure of the non-linear modes, can be
useful for modal convergence investigations (and
reduced-order models selection). For a two-to-one
internal resonance, we also discuss the eEects of a
higher-order approximation on the non-linear orthog-
onality and, in the case of activation, on the relative
phase and amplitudes of the interacting modes.
Necessary and su7cient conditions for the local and

global non-linear orthogonality of the modes are ob-
tained in closed form. Two forms of non-linear or-
thogonality are illustrated: a local form and a global
form. In the 6rst case, uncoupling occurs in certain
regions of the detuning-amplitude space. Therein, the
modes cannot interact with periodic exchange of en-
ergy. In the second case, the orthogonality is global in
the sense that it is independent on the detuning, the am-
plitudes, and the relative phases. We show that these
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global conditions can be interpreted as an extension
of the linear orthogonality concept applicable to the
modes of self-adjoint systems to their weak non-linear
regime. Clearly, the obtained closed-form non-linear
orthogonality conditions can save an enormous com-
putational eEort when it is needed to ascertain a pri-
ori whether orthogonality=non-orthogonality occurs in
self-adjoint systems, the latter leading to modal inter-
actions.

2. A class of one-dimensional continuous systems

Non-linear undamped unforced vibrations of a fairly
general class of one-dimensional elastic continuous
systems around their initially curved static non-linear
con6gurations are governed, in non-dimensional form,
by

Hu + Lu =G2(u; u) +G3(u; u; u) (1)

subject to the linear homogeneous boundary condi-
tions

Bi(u) = 0; i = 1; 2 (2)

at both ends of the system. In (1), the overdot indi-
cates diEerentiation with respect to the dimensionless
time t; u(x; t) denotes the dynamic displacements
measured from the initially curved con6guration
and x indicates the coordinate along the horizontal
projection of the centerline of the system; L is a
linear, homogeneous, self-adjoint, positive-de6nite
integral-diEerential operator; G2 and G3 are quadratic
and cubic geometric operators. The non-linear oper-
ators are non-commutative; i.e., G2(v;w) �=G2(w; v).
The operator notation here used is suitable to deal
with general system-independent dynamics [14–17].
The eigenvalue problem governing the frequencies

and associated mode shapes is

LM− !2M= 0; Bi(M) = 0: (3)

By virtue of the self-adjoint nature of the lin-
ear unforced undamped problem, the mode shapes
Mm(x)—having in general in-plane and out-of-plane
components—are mutually orthogonal and we

assume they have been normalized such that∫ 1
0 Mm(x)TMn(x) dx = 〈MmMn〉 = 
mn and 〈MT

mLMn〉=
!2

n
mn, where 
mn is the Kronecker delta and T in-
dicates the transpose. It is worth observing that in
many practical three-dimensional applications (e.g.,
suspended cables), the in-plane and out-of-plane
eigenvalue problems are uncoupled. Therefore, there
are two sets of eigenvalues and eigenfunctions, one
associated with the in-plane problem and the other
associated with the out-of-plane problem. In this case,
it is easier to treat scalar diEerential equations rather
than their vectorial counterparts. However, when
we deal with coupled longitudinal and transverse
vibrations of arches and suspended cables or with
bending–torsional vibrations of beams, the kinematic
con6guration variables are coupled in the eigenvalue
problem. In this case, the vector notation is an eEec-
tive compact representation of the overally coupled
system dynamics.
We use two approaches to the analytical construc-

tion of the non-linear normal modes: the discretiza-
tion approach and the direct treatment, both based on
the method of multiple scales as reduction technique.
To avoid some drawbacks of the method of multi-
ple scales applied to the equations of motion cast in
second-order diEerential form (in time), we use the
state–space formulation and cast the equations of mo-
tion in 6rst-order diEerential form [2,18] as follows:

u̇ − v = 0;

v̇ + Lu =G2(u; u) +G3(u; u; u): (4)

In view of the analysis of the transverse dynamics
of shallow systems which is tackled in Part II, lon-
gitudinal inertia can be neglected because the longi-
tudinal modes are widely spaced from the transverse
modes of vibration. This allows to use the classical
condensation procedure for eliminating the longitudi-
nal displacement component as a kinematic unknown.
Consequently, to investigate modal interactions in
the planar dynamics described by the transverse dis-
placement component u(x; t) only, we perform a
full-basis discretization of (4) by letting u(x; t) =∑∞

k=1 qk(t)�k(x) and v(x; t)=
∑∞

k=1 zk(t)�k(x). Sub-
sequently, we employ the Galerkin method leading
to the following in6nite set of non-linearly coupled
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ordinary-diEerential equations for planar interactions:

q̇k − zk = 0;

żk + !2
kqk

=
∞∑
i=1

∞∑
j=1

�kijqiqj +
∞∑
i=1

∞∑
j=1

∞∑
h=1

�kijhqiqjqh;

k = 1; 2; : : : ;∞ (5)

where

�kij = 〈�kG2(�i; �j)〉 and

�kijh = 〈�kG3(�i; �j; �h)〉: (6)

On the other hand, when studying modal inter-
actions in the non-planar dynamics of cables de-
scribed by two displacement components (in-plane
and out-of-plane), the full-basis Galerkin dis-
cretization leads to two sets of coupled non-linear
ordinary-diEerential equations, as documented in [11].

3. Discretization approach

In the present and following sections, we use the
method of multiple scales [2] to construct uniform
asymptotic expansions of the solutions of (4) and the
associated boundary conditions in the case of small but
6nite (moderately large) dynamic displacements, and
the expansions of the solutions of (5), when bimodal
two-to-one, three-to-one, and one-to-one internal res-
onances may be activated. We use the discretization
approach, 6rst, and, successively, the direct treatment.
We assume that the generalized coordinates for the

displacement and the velocity qk(t; �) and zk(t; �) can
be expanded, respectively, as

qk(t; �) = �qk1(T0; T1; T2) + �2qk2(T0; T1; T2)

+�3qk3(T0; T1; T2) + · · · ; (7)

zk(t; �) = �zk1(T0; T1; T2) + �2zk2(T0; T1; T2)

+�3zk3(T0; T1; T2) + · · · ; (8)

where qk and zk are O(�) and qki and zki are O(1), with
� denoting a small non-dimensional parameter of the
order of the amplitude of the solution and the symbol
O standing, as typical in asymptotic analyses, for “of
the asymptotic order of” [19].

The time scales Tk are de6ned as T0 = t; T1 = �t,
and T2 = �2t and the 6rst derivative with respect to
time is de6ned as @=@t=D0+�D1+�2D2+ · · · ; where
Dn = @=@Tn.
Substituting (7), (8) and the time-derivative ex-

pansion into (5), and equating coe7cients of equal
powers of � yields
Order �:

D0qk1 − zk1 = 0; (9)

D0zk1 + !2
kqk1 = 0: (10)

Order �2:

D0qk2 − zk2 =−D1qk1; (11)

D0zk2 + !2
kqk2 =−D1zk1 +

∞∑
j=1

∞∑
h=1

�kjhqj1qh1: (12)

Order �3:

D0qk3 − zk3 =−D1qk2 − D2qk1; (13)

D0zk3 + !2
kqk3

=− D1zk2 − D2zk1 +
∞∑
j=1

∞∑
h=1

�kjh(qj1qh2 + qj2qh1)

+
∞∑
j=1

∞∑
h=1

∞∑
l=1

�kjhlqj1qh1ql1: (14)

For bimodal interactions between the mth and nth
modes, the preliminary steps of the analysis are com-
mon to all of the internal resonances being investi-
gated. Because the mth and nth modes are the only
modes involved in the internal resonance, we express
the solutions of (9) and (10) as

qk1 = Ak(T1; T2)ei!kT0 (
km + 
kn) + cc; (15)

zk1 = i!kAk(T1; T2)ei!kT0 (
km + 
kn) + cc; (16)

where Ak denotes the complex-valued amplitude of
the kth mode and cc indicates the complex conjugate
of the preceding terms.
Substituting (15) and (16) into (11) and (12) yields

D0qk2 − zk2 =−(D1Ak)ei!kT0 (
km + 
kn) + cc; (17)

D0zk2 + !2
kqk2

=− i!k(D1Ak)ei!kT0 (
km + 
kn)

+�kmm[A2
me

2i!mT0 + Am QAm]
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+�knn[A2
ne

2i!nT0 + An QAn]

+ (�kmn + �knm)AmAnei(!m+!n)T0

+ (�kmn + �knm)An QAmei(!n−!m)T0 + cc: (18)

In the next sections, we treat separately the cases
of two-to-one, three-to-one, and one-to-one inter-
nal resonances and we construct systematically their
second-order expansions.

3.1. Two-to-one internal resonances !n ≈ 2!m

Non-linear resonant terms due to a two-to-one in-
ternal resonance are associated with the quadratic
non-linearities. They appear at second order. Hence, a
second-order expansion corresponds to a higher-order
approximation of the investigated interaction. Our
interest in seeking a higher-order approximation of
the non-linear normal modes due to a two-to-one
internal resonance is twofold. First, we aim at a pre-
liminary estimation of the inRuence of higher-order
eEects, in general, on the expansion and, more specif-
ically, on the non-linear modal orthogonality in such
a relatively simple case. Furthermore, by doing so,
we attempt to establish a systematic approach to
construct second-order expansions of the non-linear
normal modes under various internal resonance
conditions.
The nearness of the internal resonance is expressed

as !n = 2!m + ��, where � is a detuning parameter
of order O(1). We note that, in force of the internal
resonance condition, resonant terms appear in (17)
and (18) when k = m or n. That is,

D0qm2 − zm2 =−(D1Am)ei!mT0 + cc; (19)

D0zm2 + !2
mqm2 =−i!m(D1Am)ei!mT0

+ (�mmn + �mnm)An QAmei!mT0ei�T1

+ cc + NST (20)

and

D0qn2 − zn2 =−(D1An)ei!nT0 + cc (21)

D0zn2 + !2
nqn2 =−i!n(D1An)ei!nT0

+�nmmA2
me

i!nT0e−i�T1

+cc + NST; (22)

where NST denotes non-resonant terms.
Therefore, to render the problems solvable, we im-

pose the orthogonality of the right-hand sides of the
inhomogeneous equations (19) and (20) and those
of (21) and (22) to every solution of the associated
adjoint homogeneous problem. The solutions of the
adjoint problems are [i!k; 1] exp(−i!kT0); k = m; n.
Imposing the orthogonality yields

2i!mD1Am = (�mmn + �mnm)An QAmei�T1 ; (23)

2i!nD1An = �nmmA2
me

−i�T1 : (24)

Solving (23) and (24) for D1Am and D1An and substi-
tuting the results into the second-order equations (17)
and (18), we obtain

D0qk2 − zk2

=
i

2!m
(�mmn + �mnm)An QAmei!mT0ei�T1
km

+
i

2!n
�nmmA2

me
i!nT0e−i�T1
kn + cc; (25)

D0zk2 + !2
kqk2

=− 1
2 (�mmn + �mnm)An QAmei!mT0ei�T1
km

− 1
2 �nmmA2

me
i!nT0e−i�T1
kn

+�kmm[A2
me

2i!mT0 + Am QAm]

+�knn[A2
ne

2i!nT0 + An QAn]

+ (�kmn + �knm)AmAnei(!m+!n)T0

+ (�kmn + �knm)An QAmei(!n−!m)T0 + cc: (26)

The solution of the inhomogeneous equations (25)
and (26) is unique and straightforward when k �=m
and n; on the contrary, when k = m or n, the cou-
pled ordinary-diEerential equations (25) and (26)
exhibit resonant terms in their right-hand sides as
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already pointed out. However, because these equations
have been rendered solvable, their solutions can be
determined within an arbitrary constant. To determine
the solutions of (25) and (26) when k =m and n, we
let

q(R)m2 = Qm2An QAmei!mT0ei�T1 ;

z(R)m2 = Zm2An QAmei!mT0ei�T1 ; (27)

q(R)n2 = Qn2A2
me

i!nT0e−i�T1 ;

z(R)n2 = Zn2A2
me

i!nT0e−i�T1 ; (28)

where the superscript R indicates the resonant part
of the second-order solution associated with the mth
and nth coordinates, respectively, and Qj2 and Zj2 are
constants. Substituting the assumed forms of the so-
lutions, (27) and (28), into (25) or (26) when k = m
and n, we obtain linear relationships between Qj2 and
Zj2 in the form

Zm2 = i!mQm2 − i
2!m

(�mmn + �mnm);

Zn2 = i!nQn2 − i
2!n

�nmm: (29)

To remove the indeterminacy, we require that the so-
lutions [Qj2; Zj2] be orthogonal to the adjoints [i!j; 1],
for j=m and n. That is, [Qj2; Zj2] · [i!j; 1]T =0 where
(:) indicates the dot product. The result is

Qm2 =
�mmn + �mnm

4!2
m

and Qn2 =
�nmm

4!2
n
; (30)

Zj2 =−i!jQj2; for j = m; n: (31)

Then, we can express the second-order solutions as 1

qk2 =
�mmn + �mnm

4!2
m

An QAmei(!n−!m)T0
km

+
�nmm

4!2
n

A2
me

2i!mT0
kn

1 When the term (1 − 
kj) is zero in these expressions, it is
tacitly intended that the corresponding multiplicative function must
be removed (in spite of its vanishing denominator).

+
�kmm

!2
k − 4!2

m
A2
me

2i!mT0 (1− 
kn)

+
�kmn + �knm

!2
k − (!n − !m)2

An QAm

×ei(!n−!m)T0 (1− 
km) +
�kmm

!2
k

Am QAm

+
�knn

!2
k − 4!2

n
A2
ne

2i!nT0

+
�knn

!2
k

An QAn +
�kmn + �knm

!2
k − (!m + !n)2

×AmAnei(!m+!n)T0 + cc; (32)

zk2 =−i
�mmn + �mnm

4!m
An QAmei(!n−!m)T0
km

−i
�nmm

4!n
A2
me

2i!mT0
kn

+2i!m
�kmm

!2
k − 4!2

m
A2
me

2i!mT0 (1− 
kn)

+2i!n
�knn

!2
k − 4!2

n
A2
ne

2i!nT0

+i(!n − !m)
�kmn + �knm

!2
k − (!n − !m)2

×An QAmei(!n−!m)T0 (1− 
km)

+i(!m + !n)
�kmn + �knm

!2
k − (!m + !n)2

×AmAnei(!m+!n)T0 + cc: (33)

Substituting the second-order solutions, (32) and
(33), into the third-order problem, (13) and (14), and
imposing again solvability conditions yields the mod-
ulation equations governing the dependence of the
complex-valued amplitudes Am and An on the scale T2

in the form

2i!mD2Am = KmmA2
m
QAm + KmnAmAn QAn; (34)

2i!nD2An = KnnA2
n
QAn + KnmAnAm QAm; (35)
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where the coe7cients Khh and Kmn are given by the
following in6nite series:

Kmm =
∞∑

j=1; j �=n

[
(�mmj + �mjm)

×
(
2�jmm

!2
j

+
�jmm

!2
j − 4!2

m

)]

+
9

4!2
n
�nmm(�mmn + �mnm) + 3�mmmm; (36)

Knn =
∞∑
j=1

[
(�nnj + �njn)

(
2�jnn

!2
j

+
�jnn

!2
j − 4!2

n

)]

+3�nnnn; (37)

Kmn =
∞∑

j=1; j �=m

[
(�mjn + �mnj)(�jmn + �jnm)

×
(

1
!2

j − 9!2
m
+

1
!2

j − !2
m

)

+
2�jnn

!2
j

(�mmj + �mjm)

]

+
(�mmn + �mnm)2

8!2
m

+
4
!2

m
(�mnn�mmm)

+2(�mnnm + �mnmn + �mmnn): (38)

Using the method of reconstitution [2], we can ex-
press the derivative of A with respect to time t as
Ȧ= �D1A+ �2D2A+ · · · : Therefore, substituting (23),
(24), (34), and (35) into this equation, we obtain the
modulation equations up to third order as

2i!mȦm = (�mmn + �mnm)An QAmei�t + KmmA2
m
QAm

+KmnAmAn QAn; (39)

2i!nȦn =�nmmA2
me

−i�t + KnnA2
n
QAn

+KnmAnAm QAm; (40)

where � was, for convenience, set equal to unity (this
is admissible for the bookkeeping function of �).

By virtue of the conservative nature of the problem,
(39) and (40) must be derivable from the Lagrangian

L= T − (V (N ) + V (�)); (41)

where

T = i!n(An Q̇An − QAnȦn) + i!m(Am Q̇Am − QAmȦm) (42)

is the system kinetic energy associated with the inter-
action;

V (N ) =− 1
2 (KnnA2

n
QA
2
n + KmmA2

m
QA
2
m

+2KmnAn QAnAm QAm) (43)

is part of the Lagrangian associated with the
resonance-independent non-linear elastic potential
energy (the superscript N indicates the non-resonant
part of the Lagrangian); and

V (�) =− 1
2 (SAn QA

2
me

i�t + cc) (44)

is part of the Lagrangian associated with the resonance
detuning-dependent elastic potential energy.
Consequently, imposing that (39) and (40) sat-

isfy the Euler–Lagrange equations [20] based on the
Lagrangian (41) yields

S = Sm = 2Sn; (45)

Kmn = Knm; (46)

where Sm = �mmn + �mnm and Sn = �nmm.
Letting Ak(t) = (1=2)ak(t) exp(i'(t)), we can ex-

press the 6rst- and second-order generalized coordi-
nates as

qk1 = ak cos(!kt + 'k)(
km + 
kn); (47)

qk2 =
1
2
a2m

�nmm

4!2
n
cos 2(!mt + 'm)
kn

+
1
2
(�mmn + �mnm)

4!2
m

aman

×cos((!n − !m)t + 'n − 'm)
km

+
1
2
a2m

�kmm

!2
k

+
1
2
a2n

×
[

�knn

!2
k − 4!2

n
cos 2(!nt + 'n) +

�knn

!2
k

]
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+
1
2
aman

(�kmn + �knm)
!2

k − (!m + !n)2

×cos((!m + !n)t + 'm + 'n)

+
1
2
a2m

�kmm

!2
k − 4!2

m
cos 2(!mt + 'm)(1− 
kn)

+
1
2
aman

(�kmn + �knm)
!2

k − (!n − !m)2

×cos((!n − !m)t + 'n − 'm)(1− 
km): (48)

Using the assumed full-basis modal expansion for
the displacement u(x; t)=

∑∞
k=1 qk(t)�k(x), the latter

can be expressed, up to second order, as

u(x; t) = an cos(!nt + 'n)�n(x)

+am cos(!mt + 'm)�m(x)

+1
2{a2n[cos 2(!nt + 'n) nn(x) + )nn(x)]

+a2m[cos 2(!mt + 'm) mm(x) + )mm(x)]

+anam[cos((!n + !m)t + 'n + 'm) mn(x)

+cos((!n − !m)t + 'n − 'm))mn(x)]}; (49)

where � was reabsorbed in the amplitude expres-
sions and the second-order shape functions are given
by

 mm(x) =
∞∑

k=1; k �=n

�kmm

!2
k − 4!2

m
�k(x)

+
�nmm

4!2
n

�n(x); (50)

)mn(x) =
∞∑

k=1; k �=m

�kmn + �knm

!2
k − (!n − !m)2

�k(x)

+
�mmn + �mnm

4!2
m

�m(x); (51)

 nn(x) =
∞∑
k=1

�knn

!2
k − 4!2

n
�k(x);

 mn(x) =
∞∑
k=1

�kmn + �knm

!2
k − (!m + !n)2

�k(x); (52)

)mm(x) =
∞∑
k=1

�kmm

!2
k

�k(x);

)nn(x) =
∞∑
k=1

�knn

!2
k

�k(x): (53)

In (49), the amplitudes and phases are governed
by (39) and (40). We also observe that the func-
tions )mm and )nn are associated with zero frequency;
hence, they govern the new equilibrium con6gura-
tion produced by the quadratic non-linearities around
which the system periodically oscillates. Clearly,
the displacement 6eld (49) depends, in principle,
on all of the eigenmodes, directly, through (50)–
(53) denoting second-order spatial corrections and,
indirectly, through the amplitudes and phases which
are solutions of the modulation equations gov-
erned by the coe7cients Kij and S. In these coe7-
cients, the quadratic non-linearities produce contri-
butions from all of the modes as also documented
in [14]. On the contrary, the eEects of the cubic
non-linearities, for second-order expansions, are ac-
counted for solely by the mode shapes involved in the
resonance.
It is also clear that high-frequency modal contribu-

tions are less signi6cant either in the spatial functions
or in the amplitudes and phases through the interaction
coe7cients, because the associated frequencies appear
(in the denominators of the shape functions  ij ()ij)
or in those of the coe7cients) squared or as the dif-
ference of the square of the frequency and the square
of the dominant frequencies. The modal convergence
of the non-linear normal modes depends on the rate
of convergence of the series expressing the interaction
coe7cients.

3.2. Three-to-one internal resonances !n ≈ 3!m

The analysis up to (18) holds for a three-to-one as
well as a one-to-one internal resonance. The diEerence
is that these internal resonances are associated with
third-order eEects; hence, the solutions do not depend
on the time scale T1. Consequently, the solutions of
(5) are assumed in the form of (7) and (8) neglecting
the dependence on T1.
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We can express the solutions of (17) and (18) with
D1 ≡ 0 as

qk2(T0; T2)

=
�kmm

!2
k − 4!2

m
A2
me

2i!mT0 +
�kmm

!2
k

Am QAm

+
�knn

!2
k − 4!2

n
A2
ne

2i!nT0 +
�knn

!2
k

An QAn

+
�kmn + �knm

!2
k − (!m + !n)2

AmAnei(!m+!n)T0

+
�kmn + �knm

!2
k − (!n − !m)2

An QAmei(!n−!m)T0 + cc;

(54)

zk2 = D0qk2: (55)

Substituting (54) and (55) into (13) and (14) yields
resonant terms in themth and nth third-order equations
depending on the type of internal resonance. Express-
ing the nearness of the three-to-one internal resonance
as !n = 3!m + �2� and imposing the solvability con-
ditions yields the following modulation equations:

2i!mD2Am =KmmA2
m
QAm + KmnAmAn QAn

+�mAn QA
2
me

i�T2 ; (56)

2i!nD2An =KnnA2
n
QAn + KnmAnAm QAm

+�nA3
me

−i�T2 : (57)

The coe7cients Khh; Kmn, and �n are obtained as

Khh =
∞∑
j=1

[
(�hhj + �hjh)

(
2�jhh

!2
j

+
�jhh

!2
j − 4!2

h

)]

+3�hhhh; h= m; n; (58)

Kmn =
∞∑
j=1

[
(�mmj + �mjm)

2�jnn

!2
j

+(�mnj + �mjn)(�jmn + �jnm)

×
(

1
!2

j − (!n + !m)2
+

1
!2

j − (!n − !m)2

)]

+2(�mnnm + �mnmn + �mmnn); (59)

�n =
∞∑
j=1

[
(�nmj + �njm)

�jmm

!2
j − 4!2

m

]
+ �nmmm: (60)

Again, exploiting the conservative nature of the
problem, we impose that (56) and (57) be derivable
from the Lagrangian expressed by (41)–(43) with the
coe7cients given by (58) and (59)

V (�) =−�
3
(An QA

3
me

i�t + cc): (61)

In addition to the resonance-independent symmetry
condition (46) (i.e., Kmn = Knm), we obtain the fol-
lowing resonance-dependent condition:

�= �m = 3�n: (62)

The displacement 6eld is expressed again by (49)
with  nn;  mn; )mm, and )nn given by (52) and (53),
whereas  mm and )mn are replaced, respectively, with

 mm(x) =
∞∑
k=1

�kmm

!2
k − 4!2

m
�k(x); (63)

)mn(x) =
∞∑
k=1

�kmn + �knm

!2
k − (!n − !m)2

�k(x): (64)

3.3. One-to-one internal resonances !n ≈ !m

One-to-one internal resonances may occur in two
cases: at crossover points (where the frequencies of
two or more modes coalesce by transversal intersec-
tion over variation of a system parameter [21] or at
veering points (where the frequencies of two or more
modes coalesce by tangential intersection [22]). For
example, in the case of suspended cables with sup-
ports at diEerent levels, it was found [23] that the
eigenfunctions are a mixture of symmetric and anti-
symmetric components. In this case, the curve veering
phenomenon occurs between the frequencies of the
lowest two modes upon variation of a modi6ed cable
parameter accounting for its elasto-geometric proper-
ties including the inclined geometry.
For a one-to-one internal resonance, we express

its detuning as !n = !m + �2�. For a one-to-one in-
ternal resonance at a crossover point, the detuning
parameter can be either positive or negative whereas
for a one-to-one internal resonance at a veering
point, the detuning parameter does not change sign.
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Nevertheless, the theoretical analysis performed here
holds also for the veering case.
Substituting (15) and (16), (54), and (55) into (13)

and (14), and imposing that the inhomogeneous equa-
tions be solvable leads to the following modulation
equations:

2i!mD2Am =KmmA2
m
QAm + KmnAmAn QAn + R5A2

n
QAnei�T2

+R6AnAm QAmei�T2 + R7A2
m
QAne−i�T2

+R8A2
n
QAme2i�T2 (65)

2i!nD2An =KnnA2
n
QAn + KnmAnAm QAm + R1A2

m
QAme−i�T2

+R2AmAn QAne−i�T2 + R3A2
m
QAne−2i�T2

+R4A2
n
QAmei�T2 : (66)

We exploit the conservative nature of the problem
by imposing that (65) and (66) be derivable from the
Lagrangian expressed by (41)–(43) and

V (�) =−(K1A2
n
QAn QAmei�T2 + K2 QA

2
mAmAnei�T2

+K3A2
n
QA
2
me

2i�T2 ) + cc: (67)

In addition to the resonance-independent symme-
try condition (46) (Kmn = Knm), we obtain the
resonance-dependent conditions

2K1 = R2 = 2R4 = 2R5; 2K2 = R6 = 2R1 = 2R7;

and 2K3 = R3 = R8: (68)

The coe7cients Khh are given by (58), Kmn is given
by (59) and the resonance-dependent interaction co-
e7cients are expressed as

K1 =
∞∑
j=1

[
(�nmj + �njm)

�jnn

!2
j − 4!2

n

+ (�nnj + �njn)
�jmn + �jnm

!2
j

]

+�nnnm + �nnmn + �nmnn (69)

K2 =
∞∑
j=1

[
(�nmj + �njm)

(
2
!2

j
+

1
!2

j − 4!2
m

)
�jmm

]

+3�nmmm; (70)

2K3 =
∞∑
j=1

[
(�nnj + �njn)

�jmm

!2
j − 4!2

m

+ (�nmj + �njm)
�jmn + �jnm

!2
j

]

+�nmmn + �nmnm + �nnmm: (71)

The displacement 6eld is given by (49) with the
same second-order functions governing the displace-
ment in the case of a three-to-one internal resonance.

4. Direct approach

In this section, we attack directly the equations of
motion and boundary conditions with the method of
multiple scales. We seek uniform expansions of u and
v in the form

u(x; t) =
3∑

k=1

�kuk(x; T0; T1; T2) + · · ·

v(x; t) =
3∑

k=1

�kvk(x; T0; T1; T2) + · · · (72)

with � possessing the samemeaning as in the preceding
sections.
Substituting (72) into the scalar form of the equa-

tions of motion (4) and boundary conditions (2), us-
ing the independence of the time scales, and equating
coe7cients of like powers of � yields
Order �:

D0u1 − v1 = 0; (73)

D0v1 + Lu1 = 0; (74)

Order �2:

D0u2 − v2 =−D1u1; (75)

D0v2 + Lu2 =−D1v1 + G2(u1; u1); (76)

Order �3:

D0u3 − v3 =−D2u1 − D1u2; (77)

D0v3 + Lu3 =−D2v1 − D1v2 + G2(u1; u2)

+G2(u2; u1) + G3(u1; u1; u1): (78)

The boundary conditions are given by (2) at all orders.
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Because the mth and nth modes are the only modes
involved in the internal resonances, we express the
solution of (73) and (74) as

u1 = Am(T1; T2)ei!mT0�m(x)

+An(T1; T2)ei!nT0�n(x) + cc (79)

and

v1 = i!mAm(T1; T2)ei!mT0�m(x)

+i!nAn(T1; T2)ei!nT0�n(x) + cc: (80)

Substituting (79) and (80) into (75) and (76) yields

D0u2 − v2 =−(D1Am)ei!mT0�m

−(D1An)ei!nT0�n + cc; (81)

D0v2 + Lu2

=− i!m(D1Am)ei!mT0�m

− i!n(D1An)ei!nT0�n

+[A2
me

2i!mT0 + Am QAm]G2(�m; �m)

+ [AmAnei(!m+!n)T0 + An QAmei(!n−!m)T0 ]

×[G2(�m; �n) + G2(�n; �m)]

+ [A2
ne

2i!nT0 + An QAn]G2(�n; �n) + cc: (82)

The analysis here performed is common to the con-
sidered internal resonances. In the next sections, we
treat separately the cases of two-to-one, three-to-one,
and one-to-one internal resonances.

4.1. Two-to-one internal resonances

Due to the two-to-one ratio between the frequencies
of the mth and nth modes, resonant terms may arise
at second order; namely,

D0u2 − v2

=− (D1Am)ei!mT0�m − (D1An)ei!nT0�n + cc;

(83)

D0v2 + Lu2

=− i!m(D1Am)ei!mT0�m − i!n(D1An)ei!nT0�n

+A2
me

i!nT0e−i�T1G2(�m; �m) + An QAmei!mT0ei�T1

×[G2(�m; �n) + G2(�n; �m)] + cc + NST:
(84)

Because the associated homogeneous problem ad-
mits non-trivial solutions (i.e., the eigensolutions), the
second-order problem is solvable only if solvability
conditions are satis6ed. To this end, the right-hand
sides of (83) and (84) are required to be orthogonal to
every solution of the homogeneous adjoint problem.
That is, we impose the orthogonality of the resonant
inhomogeneous terms to [i!m; 1] exp(−i!mT0)�m and
to [i!n; 1] exp(−i!nT0)�n.
Imposing these conditions and accounting for the

de6nition of �kij provided in (6), we obtain the same
solvability conditions as those obtained with the dis-
cretization approach; namely (23) and (24). There-
after, solving these equations for D1Am and D1An and
substituting the results into the second-order equations
(81) and (82), we obtain

D0u2 − v2 = i
(�mmn + �mnm)

2!m
An QAmei(!n−!m)T0�m

+i
�nmm

2!n
A2
me

2i!mT0�n + cc; (85)

D0v2 + Lu2

=A2
me

2i!mT0 [G2(�m; �m)− 1
2 �nmm�n]

+A2
ne

2i!nT0G2(�n; �n)

+AmAnei(!m+!n)T0 [G2(�m; �n)

+G2(�n; �m)] + An QAmei(!n−!m)T0

×[G2(�m; �n) + G2(�n; �m)

− 1
2 (�mmn + �mnm)�m] + Am QAmG2(�m; �m)

+An QAnG2(�n; �n) + cc: (86)

Based on the right-hand sides of (85) and (86), the
second-order solution can be assumed in the form

u2 = A2
me

2i!mT0*mm(x) + Am QAm+mm(x)

+A2
ne

2i!nT0*nn(x) + An QAn+nn(x)

+AnAmei(!n+!m)T0*mn(x)

+An QAmei(!n−!m)T0+mn(x) + cc; (87)
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v2 = A2
me

2i!mT0,mm(x) + Am QAm-mm(x)

+A2
ne

2i!nT0,nn(x) + An QAn-nn(x)

+AnAmei(!n+!m)T0,mn(x)

+An QAmei(!n−!m)T0-mn(x) + cc: (88)

Substituting (87) and (88) into (85) and (86), we
obtain a set of coupled boundary-value problems in
the unknown functions *kk (+kk) and ,kk (-kk) which,
in turn, can be decoupled yielding

L*mm − !2
n*mm = G2(�m; �m)− �nmm�n; (89)

L+mn − !2
m+mn =G2(�m; �n) + G2(�n; �m)

−(�mmn + �mnm)�m; (90)

L*nn − 4!2
n*nn = G2(�n; �n); (91)

L*mn − (!m + !n)2*mn

=G2(�m; �n) + G2(�n; �m); (92)

L+mm = G2(�m; �m); L+nn = G2(�n; �n); (93)

with all of the functions satisfying the boundary con-
ditions (2). On the other hand, the functions associ-
ated with the second-order velocity 6eld are given by

,mm = 2i!m*mm − i
�nmm

2!n
�n; (94)

-mn = i(!n − !m)+mn − i
�mmn + �mnm

2!m
�m; (95)

,nn = 2i!n*nn; ,mn = i(!m + !n)*mn;

-nn = -mm = 0: (96)

The solutions of the boundary-value problems (91)
–(93) are uniquely determined; however, because the
homogeneous problems associated with (89) and (90)
admit non-trivial solutions (�n and �m, respectively),
their solutions are uniquely determined by imposing
the orthogonality of [*mm; ,mm] to the adjoint solution
[i!n; 1]�n and that of [+mn; -mn] to the adjoint solution
[i!m; 1]�m, respectively. Using the modal expansion

method, we can express the sought solutions as

*mm =
∞∑

k=1; k �=n

�kmm

!2
k − !2

n
�k(x) +

�nmm

4!2
n

�n(x); (97)

,mm = i!n

∞∑
k=1; k �=n

�kmm

!2
k − !2

n
�k(x)

−i!n

[
�nmm

4!2
n

�n(x)
]
; (98)

+mn =
∞∑

k=1; k �=m

�kmn + �knm

!2
k − !2

m
�k(x)

+
�mmn + �mnm

4!2
m

�m(x); (99)

,mn = i!m

∞∑
k=1; k �=m

�kmn + �knm

!2
k − !2

m
�k(x)

−i!m

[
�mmn + �mnm

4!2
m

�m(x)
]
: (100)

Comparing (50) with (97) and (51) with (99), we
conclude that the functions *mm and +mn obtained
with the direct approach are the same as  mm and )mn

obtained with the full-basis discretization approach.
It can also be proved, using a technique similar
to that used in [14], that the remaining functions
*nn; *mn; +nn, and +mm, obtained with the direct ap-
proach, are, respectively, the same as  nn;  mn; )nn,
and )mm, obtained with the discretization approach,
respectively.
Substituting (79), (80), (87), and (88) into the

third-order problem yields

D0u3 − v3

=− (D2Am)ei!mT0�m − (D2An)ei!nT0�n

−D1(A2
me

−i�T1 )ei!nT0*mm

−D1(An QAmei�T1 )ei!mT0+mn + cc + NST; (101)

D0v3 + Lu3

=− i!m(D2Am)ei!mT0�m − i!n(D2An)ei!nT0�n

−D1(A2
me

−i�T1 )ei!nT0,mm

−D1(An QAmei�T1 )ei!mT0-mn
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+A2
m
QAmei!mT0 [G2(*mm; �m) + G2(�m;*mm)

+2G2(�m; +mm) + 2G2(+mm; �m)

+3G3(�m; �m; �m)]

+AmAn QAnei!mT0 [G2(*mn; �n)

+G2(�n;*mn) + G2(+mn; �n)

+G2(�n; +mn) + 2G2(+nn; �m) + 2G2(�m; +nn)

+2G3(�m; �n; �n) + 2G3(�n; �m; �n)

+2G3(�n; �n; �m)]

+A2
n
QAnei!nT0 [G2(*nn; �n) + G2(�n;*nn)

+2G2(�n; +nn) + 2G2(+nn; �n)

+3G3(�n; �n; �n)]

+AnAm QAmei!nT0 [G2(*mn; �m) + G2(�m;*mn)

+G2(+mn; �m) + G2(�m; +mn) + 2G2(+mm; �n)

+2G2(�n; +mm) + 2G3(�m; �m; �n)

+2G3(�m; �n; �m) + 2G3(�n; �m; �m)]

+ cc + NST: (102)

Because the associated homogeneous problem ad-
mits non-trivial solutions, the third-order problem is
solvable only if the right-hand sides of (101) and (102)
are orthogonal to every solution of the adjoint homo-
geneous problem. The solvability conditions are for-
mally the same as (34) and (35), obtained with the
discretization approach, except for the fact that the
coe7cients are now expressed as

Khh = 〈�hG2(�h;*hh)〉+ 〈�hG2(*hh; �h)〉
+2〈�hG2(�h; +hh)〉+ 2〈�hG2(+hh; �h)〉
+3〈�hG3(�h; �h; �h)〉; h= m; n; (103)

Kmn = 〈�mG2(�n;*mn)〉+ 〈�mG2(*mn; �n)〉
+〈�mG2(�n; +mn)〉+ 〈�mG2(+mn; �n)〉
+2〈�mG2(�m; +nn)〉+ 2〈�mG2(+nn; �m)〉
+2〈�mG3(�n; �n; �m)〉+ 2〈�mG3(�n; �m; �n)〉
+2〈�mG3(�m; �n; �n)〉: (104)

These coe7cients can be shown to be the same as
those obtained with the discretization approach [14].
The displacement 6eld can be expressed as in (49)

with all the *’s and the +’s substituting the  ’s and
the )’s, respectively. Therefore, having established the
equivalence of the functions *’s and +’s with  ’s and
)’s, respectively; having established the equivalence
of the modulation equations obtained with both ap-
proaches, we conclude that the approximation of the
resonant non-linear normal modes obtained with the
direct approach is the same as that obtained with the
full-basis discretization approach. This result is gen-
eral and holds also for a three-to-one and a one-to-one
internal resonance.

4.2. Three-to-one internal resonances

Because resonant terms do not arise at second order,
the solvability conditions for the second-order prob-
lem, (75) and (76), require thatD1Am=0 andD1An=0.
Therefore, as expected, the amplitudes and phases of
the interacting modes do not depend on the scale T1.
Then, the solutions of (75) and (76) can be expressed
as

u2 = A2
me

2i!mT0*mm(x) + Am QAm+mm(x)

+A2
ne

2i!nT0*nn(x) + An QAn+nn(x)

+AnAmei(!n+!m)T0*mn(x)

+An QAmei(!n−!m)T0+mn(x) + cc; (105)

v2 = A2
me

2i!mT0,mm(x) + Am QAm-mm(x)

+A2
ne

2i!nT0,nn(x) + An QAn-nn(x)

+AnAmei(!n+!m)T0,mn(x)

+An QAmei(!n−!m)T0-mn(x) + cc: (106)

The second-order shape functions *nn; *mn; +mm,
and +nn are solutions of the boundary-value prob-
lems (91)–(93). On the other hand, *mm and +mn are
now obtained as solutions of the following modi6ed
boundary-value problems:

L*mm − 4!2
m*mm = G2(�m; �m);

L+mn − (!n − !m)2+mn

=G2(�m; �n) + G2(�n; �m); (107)
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with *mm and +mn satisfying the boundary conditions
(2).
Substituting (79), (80), (105), and (106) into

(77) and (78), resonant terms arise depending on
the type of internal resonance. Imposing solvability
conditions, we obtain the modulation equations with
the same structure as (56) and (57). The pertinent
resonance-independent coe7cients have the expres-
sions given by (103) and (104) and must be evaluated
using the newly de6ned functions. On the other hand,
the interaction coe7cients �m and �n are given by

�m = 〈�mG2(�n;*mm)〉+ 〈�mG2(*mm; �n)〉
+〈�mG2(�m; +mn)〉+ 〈�mG2(+mn; �m)〉
+〈�mG3(�n; �m; �m)〉+ 〈�mG3(�m; �n; �m)〉
+〈�mG3(�m; �m; �n)〉; (108)

�n = 〈�nG2(�m;*mm)〉+ 〈�nG2(*mm; �m)〉
+〈�nG3(�m; �m; �m)〉: (109)

4.3. One-to-one internal resonances

The analysis performed for the three-to-one in-
ternal resonance holds for the one-to-one internal
resonance up to second order. The solvability con-
ditions at third-order yield the modulation equa-
tions with the same structure as (65) and (66).
The resonance-independent coe7cients have the ex-
pressions given by (103) and (104) whereas the
resonance-dependent interaction coe7cients are now
expressed as

K1 = 〈�nG2(�m;*nn)〉+ 〈�nG2(*nn; �m)〉
+〈�nG2(�n; +mn)〉+ 〈�nG2(+mn; �n)〉
+〈�nG3(�n; �n; �m)〉+ 〈�nG3(�n; �m; �n)〉
+〈�nG3(�m; �n; �n)〉; (110)

K2 = 〈�nG2(�m;*mm)〉+ 〈�nG2(*mm; �m)〉
+2〈�nG2(�m; +mm)〉+ 2〈�nG2(+mm; �m)〉
+3〈�nG3(�m; �m; �m)〉; (111)

2K3 = 〈�nG2(�n;*mm)〉+ 〈�nG2(*mm; �n)〉
+〈�nG2(�m; +mn)〉+ 〈�nG2(+mn; �m)〉
+〈�nG3(�m; �m; �n)〉+ 〈�nG3(�m; �n; �m)〉
+〈�nG3(�n; �m; �m)〉: (112)

5. Coupled=uncoupled non-linear normal modes.
Non-linear orthogonality

In the next sections, we discuss conditions for the
existence of coupled=uncoupled non-linear normal
modes and the associated stability for each internal
resonance condition. Moreover, we discuss neces-
sary and su7cient conditions for the occurrence of
non-linear orthogonality between the modes. To this
end, we use the modulation equations governing the
amplitudes and phases of the interacting modes. There
are two forms of non-linear orthogonality: a local
form and a global form. In the local case, there are
regions in the frequency-detuning-amplitude space
where coupled non-linear normal modes (multimodal
periodic motions with a constant relative phase) ei-
ther do not exist or they are unstable. Hence, there
cannot occur periodic exchanges of energy between
the modes. Of course, this circumstance does not
necessarily imply absence of other forms of inter-
action between the modes such as quasiperiodic or
non-periodic interactions. In the global form, the or-
thogonality is independent of the detuning, the ampli-
tudes, and the relative phases. We show that the global
conditions are an extension of the linear orthogonal-
ity concept applicable to the modes of self-adjoint
systems when they enter their weak non-linear
regime.
In addition, we express the displacement 6eld of the

coupled or uncoupled non-linear normal modes by in-
corporating the solutions of the modulation equations
for each resonance condition.

5.1. Two-to-one internal resonances

We express Aj in the polar form Aj = (1=2)aj exp
(i'j), separate real and imaginary parts in the
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modulation equations (39) and (40), and obtain their
real-valued form as

ȧm =
S

4!m
aman sin .; (113)

am'̇m =− S
4!m

aman cos .− Kmm

8!m
a3m

− Kmn

8!m
ama2n; (114)

ȧn =− S
8!n

a2m sin .; (115)

an'̇n =− S
8!n

a2m cos .− Knn

8!n
a3n −

Kmn

8!n
ana2m; (116)

where the relative phase between the interacting
modes is given by .= �t − 2'm + 'n.
There are two possible sets of solutions: (i) cou-

pled resonant modes (am �=0 and an �=0) and (ii) the
high-frequency uncoupled mode (am =0 and an �=0).

In the case of coupled resonant modes, because
am �=0 and an �=0, we can solve for '̇m and '̇n and
substitute the result into the equation governing the
relative phase, thereby obtaining

.̇= � +
1

16!m

[
S cos .

(
8− a2m

a2n

)
an

+(4Kmn − Knn)a2n + (4Kmm − Kmn)a2m

]
: (117)

Consequently, (113), (115), and (117) govern the
slow amplitude- and phase-modulations of the coupled
non-linear normal modes. The 6xed points of these
equations (i.e., ȧm= ȧn= .̇=0) correspond to periodic
motions of the original system. These solutions are
given by

.= n/; (4Kmm − Kmn)a2m + (4Kmn − Knn)a2n

+S cos .
(
8− a2m

a2n

)
an + (16!m)� = 0: (118)

We note that, when the approximation of the
two-to-one internally resonant non-linear normal
modes is truncated to second order, (113) and (115)
are the same as in the 6rst-order approximation and

yield the same relative phase . = n/. Consequently,
the relative phase is not aEected by the order of the
approximation. On the contrary, (117) is aEected by
higher-order terms. At the same time, we note that
these higher-order terms are not associated with the ef-
fects of the two-to-one internal resonance. Therefore,
higher-order terms do not in?uence the activation of
the resonance but only the detuning-amplitude rela-
tionship and the stability bounds of the ensuing solu-
tions. Hence, to analyze conditions for the resonance
activation or the dual problem of orthogonality, we
consider the phase equation neglecting higher-order
terms; that is,

.̇= � +
S cos .
16!m

(
8− a2m

a2n

)
an (119)

and the associated detuning-amplitude equation

S cos .
(
am

an

)2

−8
[
S cos .+ 2!m

(
�
an

)]
= 0: (120)

Eq. (120), when S �=0, possesses the following real
solutions:

(a): c =±2
√
2
[
1 +

�̂
�̂s

]1=2
; .= 2n/; (121)

(b): c =±2
√
2
[
1− �̂

�̂s

]1=2
; .= (2n+ 1)/; (122)

where c = am=an; �̂ = �=an; �̂s = S=(2!m), and n is
an arbitrary integer number. The coupled mode (a)
exists for �̂? ∓|�̂s| if S ? 0. On the other hand, the
coupled mode (b) exists for �̂7 ±|�̂s| if S ? 0.

We compute the eigenvalues of the Jacobian matrix
of the right-hand sides of (113), (115), and (119). One
of the eigenvalues is zero (the system is undamped)
and the other two eigenvalues are

2=±i
|�̂s|
8

am[c2 + 16]1=2: (123)

Therefore, the coupled non-linear normal modes are
marginally stable (centers) [24] for any value of the
internal detuning.
The displacement 6eld, to second order, on

account of the solutions for 'm and 'n, can be
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expressed as

u(x; t)

=am cos(!mN t + 'm0)�m(x)

+ an cos[2(!mN t + 'm0) + .]�n(x)

+ 1
2{a2m[cos[2(!mN t + 'm0)]*mm(x) + +mm(x)]

+ a2n[cos[4(!mN t + 'm0) + 2.]*nn(x) + +nn(x)]

+ anam[cos[3(!mN t + 'm0) + .]*mn(x)

+ cos(!mN t + 'm0)+mn(x)]}; (124)

where

!mN =!m −
[

S
4!m

cos .an

]

−Kmm

8!m
a2m − Kmn

8!m
a2n (125)

is the non-linear frequency expansion of themth mode,
am=an is given (when considering the 6rst-order so-
lution) by (121) when . = 2n/ or by (122) when
.=(2n+1)/ and 'm0 is a constant. Clearly, if the ex-
pansion is truncated to 6rst order, we capture neither
the second-order frequency corrections nor the space–
time corrections to the 6rst-order displacement 6eld.
Furthermore, inspecting the displacement 6eld (124)
and the non-linear frequency (125) truncated to 6rst
order, and the structure of the solutions, (121) and
(122), we conclude that the branches of the two so-
lutions described by (121) and (122) which are anti-
symmetric with respect to the origin in the c–�̂ plane
(i.e., putting c → −c and . → . + /) correspond to
the same coupled mode.
In the case of the uncoupled high-frequency mode

(am = 0 and an �=0), putting am = 0 in (116), we
solve for 'n and obtain 'n=−Knn=(8!n)a2nt+'n0. We
compute the eigenvalues of the uncoupled mode us-
ing the low-order expansion. To this end, we express
the complex-valued amplitudes Am and An in diEerent
coordinates [10]; that is, Am=(1=2)(pm− iqm) exp(is)
and An = (1=2)an exp(i'n). We substitute these trans-
formations into (39), determine s such that the re-
sulting equations are autonomous, linearize them, and
substitute for '̇n. The eigenvalues of the resulting
equations are

2=±i
an

2
[�̂2 − �̂2

s ]
1=2: (126)

(i)

(ii)

0

(a)

|ˆ| sσ|ˆ| sσ− σ /anˆ

modenth

modenth

(b)

(a)

(b)

(a)

Fig. 1. Regions of existence and stability of the non-linear normal
modes of type (a) and (b) due to a 2:1 internal resonance when
(i) S ¡ 0 and (ii) S ¿ 0. Dashed lines indicate the unstable region
of the uncoupled mode.

Therefore, the uncoupled mode is marginally stable
(center) when |�̂|¿ |�̂s|; it is unstable (saddle) when
|�̂|¡ |�̂s|; and it is degenerate (center-saddle) when
|�̂|= |�̂s|.
The approximate displacement 6eld of the uncou-

pled high-frequency mode is readily expressed as

u(x; t) = an cos(!nN t + 'n0)�n(x)

+1
2 a

2
n[cos 2(!nN t + 'n0)*nn(x)

++nn(x)]; (127)

where

!nN = !n − Knn

8!n
a2n (128)

is the expansion of the non-linear frequency of the nth
mode.
In Fig. 1, we show the ranges of existence and sta-

bility of the normal modes based on the truncated ap-
proximation. Therefore, the system possesses either
three modes (two coupled stable modes and one unsta-
ble uncoupled mode when −|�̂s|¡�̂¡ |�̂s|) or two
modes (one coupled stable mode and one stable un-
coupled mode, outside of the previous range). Hence,
local orthogonality between the modes never occurs
for a two-to-one internal resonance.
Thus far, we have discussed the case S �=0. Next,

we concentrate on the occurrence of the global
non-linear orthogonality condition for the modes.
The non-linear interaction coe7cient governing the
two-to-one interaction is S = 2�nmm. Therefore, it is
easy to prove the following.

16



Proposition Ia. A necessary and suAcient condition
for orthogonality of the non-linear normal modes due
to a two-to-one internal resonance is S = 0.

To show the su7cient condition, we note that when
S = 0, the potential energy V (�) resulting from the
postulated interaction, given by (44), is identically
zero; hence, the interaction is not activated. To show
the necessary condition, we note that if the modes
are orthogonal=uncoupled, no potential energy can be
stored into the system as a result of an inactive inter-
action. Therefore, setting V (�) to zero yields S =0. In
conclusion, if the modes are orthogonal, necessarily
S = 0.
Amechanical interpretation of this global non-linear

orthogonality condition can be sought by consid-
ering the mechanical meaning of the coe7cient
�nmm=〈�nG2(�m; �m)〉=S=2. The latter can be inter-
preted as the virtual work performed by the quadratic
elastic forces associated with the low-frequency mode
in the displacement of the high-frequency mode. On
the other hand, the linear orthogonality condition
(〈�mL�n〉 = 0) implies that the elastic forces associ-
ated with one mode do not perform virtual work in the
displacement associated with the other mode. Hence,

Proposition Ib. A necessary and suAcient condition
for orthogonality of the non-linear normal modes due
to a two-to-one internal resonance is that the virtual
work performed by the quadratic elastic forces asso-
ciated with the low-frequency mode in the displace-
ment of the high-frequency mode be zero.

5.2. Three-to-one internal resonances

In this section, we follow the same line of analysis
as that of the two-to-one internal resonance. Express-
ing Aj in polar form, and separating real and imagi-
nary parts in (56) and (57), we obtain

ȧm =
�

8!m
ana2m sin .; (129)

am'̇m =−Kmm

8!m
a3m − Kmn

8!m
ama2n

− �
8!m

ana2m cos .; (130)

ȧn =−�
3

1
8!n

a3m sin .; (131)

an'̇n =− Knn

8!n
a3n −

Kmn

8!n
ana2m − �

24!n
a3m cos .;

(132)

where the relative phase between the modes is given
by .= �t − 3'm + 'n.
There are two possibilities: (i) am = 0 and an �=0

and (ii) am �=0 and an �=0. The 6rst case corresponds
to an uncoupled non-linear normal mode whose dis-
placement is in the form of (127). To determine the
stability of this mode, we substitute the polar form for
An and the Cartesian form for Am in (56), determine
s such that the resulting equations are autonomous,
separate the outcome into real and imaginary parts,
linearize the obtained equations inpm and qm, and sub-
stitute '̇n =−Knn=(8!n)a2n in it. The eigenvalues are

21;2 =±1
3
ia2n

(
�
a2n

+
9Kmn − Knn

24!m

)
:

Consequently, the uncoupled mode is always
marginally stable except when �̂= �=a2n =−(9Kmn −
Knn)=(24!m). At this level of detuning-to-squared-
amplitude ratio, the two eigenvalues coalesce to zero
and the uncoupled mode becomes degenerate.
On the other hand, for the coupled modes am �=0

and an �=0, we can solve for '̇m and '̇n and substitute
the result into .̇= � − 3'̇m + '̇n thereby yielding

.̇= � +
1

8!m

(
3Kmm − Kmn

3

)
a2m

+
1

8!m

(
3Kmn − Knn

3

)
a2n

+
�

8!m
cos .

(
3
am

an
− 1

9
a3m
a3n

)
a2n: (133)

Therefore, (129), (131), and (133) govern the
amplitude- and phase-modulations of the coupled
non-linear normal modes. Letting c = am=an and as-
suming � �=0, the 6xed points of these equations are
given by

63c3 + 62c2 + 61c + 60 = 0;

.= n/; n= 0; 1; 2; : : : (134)

where

63 = � cos .; 62 = 3(Kmn − 9Kmm); 61 =−2763;

60 = 3(Knn − 9Kmn)− 72!m�̂: (135)
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(i)

(ii)

modenth

modenth

1 coupled mode 3 coupled modes

1 coupled mode

1σ̂ 2σ̂

σ̂/a2
n

Fig. 2. Regions of existence of the non-linear normal modes due
to a 3:1 internal resonance when (i) 7¿ 0 and (ii) 7¡ 0.

Because (134) is a cubic equation with real coe7-
cients, it admits one or three real roots. Changing the
phase by / (i.e., . → .+/) the coe7cients of the odd
powers of c change sign; hence, the solutions experi-
ence a sign change (this property holds for a polyno-
mial equation of arbitrary order). However, the overall
solution—coupled mode—is invariant under the trans-
formation . → .+ / and c → −c. Therefore, we can
consider only the solutions associated with the phase
.= 2n/.
Consequently, the system possesses either two

(one uncoupled and one coupled) or four (one un-
coupled and three coupled) non-linear normal modes
(Fig. 2). Clearly, local orthogonality never occurs
also for three-to-one internal resonance.
The multivalued-range (three coupled non-linear

normal modes) is �̂1 ¡�̂¡ �̂2 when 7¿ 0, where

�̂1;2 = (g∓ 2
√
7)=(72�2!m);

g=−270�2Kmm − 1458K3
mm + 27�2Kmn

+486K2
mmKmn − 54KmmK2

mn

+2K3
mn + 3�2Knn;

7= (9�2 + 81K2
mm − 18KmmKmn + K2

mn)
3:

On the other hand, when 7¡ 0, there is only one
coupled non-linear normal mode. This holds for .=n/
with arbitrary integer n.
The stability of these modes can be determined

by investigating the stability of the corresponding
6xed points of (129), (131), and (133). One of the

eigenvalues is zero and the other two are given by

21;2 =±72
aman

!m

√
72;

where

72 =�2
[
−c4 − 54c2 +

cos .
�

× (432Kmm − 54Kmn + 6Knn)c + 243
]
:

Evidently, the modes are marginally stable (centers)
when 72 ¡ 0; are unstable (saddles) when 72 ¿ 0;
and are degenerate when 72 = 0 as they undergo a
saddle-center bifurcation as documented in [10]. We
note that also 72 is invariant under the transformation
c → −c and . → .+ /.

The displacement 6eld, to second order, incorporat-
ing the solutions for 'm and 'n, can be expressed as

u(x; t)

=am cos(!mN t + 'm0)�m(x)

+ an cos[3(!mN t + 'm0) + .]�n(x)

+ 1
2{a2m[cos 2(!mN t + 'm0)*mm(x) + +mm(x)]

+ a2n[cos[6(!mN t + 'm0)+2.]*nn(x)++nn(x)]

+ anam[cos[4(!mN t + 'm0) + .]*mn(x)

+ cos[2(!mN t + 'm0) + .]+mn(x)]}; (136)

where

!mN =!m −
[

�
8!m

cos .aman

]

−Kmm

8!m
a2m − Kmn

8!m
a2n (137)

is the non-linear frequency expansion of themth mode.
Next, we discuss the condition for the global or-

thogonality of the normal modes.

Proposition IIa. A necessary and suAcient condition
for orthogonality of the non-linear normal modes due
to a three-to-one internal resonance is �= 0.

Using the same line of proof employed for the
two-to-one internal resonance, accounting for the ex-
pression (61) of V (�) associated with this interaction,
it can be easily ascertained that the proposition holds
true.
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Also for this interaction, an interesting mechani-
cal interpretation of the obtained non-linear orthog-
onality condition can be pursued. In fact, the terms
G2(�k;*kk) and G2(*kk ; �k) are the third-order ef-
fects of the quadratic elastic forces associated with
twice the frequency of the kth mode. On the other
hand, the term G3(�k; �k ; �k) represents the cubic
elastic force associated with the kth mode. Therefore,
the non-linear interaction coe7cient �n = �=3 (see
(109)) can be interpreted as the virtual work per-
formed by the total third-order elastic forces associ-
ated with the low-frequency mode—G2(�m;*mm) +
G2(*mm; �m)+G3(�m; �m; �m)—in the displacement
of the high-frequency mode. Therefore,

Proposition IIb. A necessary and suAcient con-
dition for orthogonality of the non-linear normal
modes due to a three-to-one internal resonance is that
the virtual work performed by the total third-order
low-frequency elastic forces in the displacement of
the high-frequency mode be zero.

The non-linear interaction coe7cient obtained with
the discretization approach, (60), is a spectral repre-
sentation of the above-mentioned virtual work in the
eigenmode space. In particular, the part of it associ-
ated with the cubic forces is the same. The component
associated with the third-order eEect of the quadratic
forces captures, in principle, contributions from all of
the modes of the system. To conclude this section,
it is worth noting the signi6cant computational cost
saved when ascertaining the non-linear orthogonality
as illustrated here in contrast with performing the per-
turbation expansion up to third order. To check for
non-linear orthogonality, it is simply required to com-
pute: (i) the boundary-value problem yielding *mm

and (ii) the integrals in �n.

5.3. One-to-one internal resonances

Separating real and imaginary parts in the modula-
tion equations (65) and (66) yields their real-valued
form as

ȧm =
(

K1

8!m
a3n +

K2

8!m
a2man

+
K3

2!m
ama2n cos .

)
sin .; (138)

am'̇m =−Kmm

8!m
a3m − Kmn

8!m
ama2n −

K1

8!m
a3n cos .

− 3K2

8!m
a2man cos .− K3

4!m
a2nam cos 2.; (139)

ȧn =−
(

K2

8!n
a3m +

K1

8!n
ama2n

+
K3

2!n
a2man cos .

)
sin .; (140)

an'̇n =− Knn

8!n
a3n −

Kmn

8!n
ana2m − K2

8!n
a3m cos .

−3K1

8!n
ama2n cos .−

K3

4!n
a2man cos 2.; (141)

where .= �t + 'n − 'm.
When either both K1 �=0 and K2 �=0 or, simulta-

neously, K1 �=0, K2 �=0, and K3 �=0, the system pos-
sesses only coupled modes; that is, am �=0 and an �=0.
In this case, solving for '̇m and '̇n and substituting
into the phase equation yields

.̇= � +
1

8!m
(Kmm − Kmn − 2K3 cos 2.)a2m

+
1

8!m
(Kmn − Knn + 2K3 cos 2 .)a2n

+
cos .
8!m

[
3(K2 − K1)

am

an
+ K1

an

am
− K2

a3m
a3n

]
a2n:

(142)

Inspecting (138) and (140), we conclude that there are
two possible sets of coupled solutions: (a) sin .=0 or
.=n/; n=0; 1; 2; : : : and (b) sin . �=0. In case (a), the
6xed points are solutions of the following equation:

a4c4 + a3c3 + a2c2 + a1c + a0 = 0; (143)

where

a4 = K2 cos .; a3 = (Kmn − Kmm + 2K3);

a2 = 3(K1 − K2) cos .;

a1 =−(Kmn − Knn + 2K3)− 8!m�̂; a0 =−K1 cos .;

where �̂ = �=a2n; cos . = ±1 and use of the fact that
cos 2.= 1 has been made.
Because (143) is a quartic equation with real coef-

6cients, it possesses either four real solutions, or two
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real and two complex conjugate, or two pairs of com-
plex conjugate solutions corresponding to cos .=1 and
cos .=−1. Also in this case, the roots are subject to a
sign change under the transformation . → . + / and
they correspond to the same coupled modes. In this
case, the coe7cients of the even powers of c change
sign when the relative phase is shifted by /. Hence,
there may be either four or two coupled non-linear
normal modes corresponding to sin .= 0 (.= n/).
In case (b) (sin . �=0), the coupled modes are solu-

tions of

b2c2 − b1 + 8!m�̂ = 0; (144)

where

b2 =
(K1K2 − K2

2 )
2K3

+ Kmm − Kmn + 2K3;

b1 =
(K1K2 − K2

1 )
2K3

+ Knn − Kmn + 2K3:

The relative phase is given by

.= cos−1
[
−K2c2 + K1

4K3c

]
+ 2n/: (145)

The quadratic equation (144) admits two real solu-
tions:

c =±
(
b1 − 8!m�̂

b2

)1=2
(146)

provided that b2 �=0 and the argument of the square
root is positive. Therefore, considering the coupled
normal modes corresponding to cases (a) and (b), we
may have either six, four or two coupled non-linear
normal modes. Discussion of the stability of the cou-
pled modes in closed form is not a trivial task for this
resonance condition and is not pursued here.
Instead, we analyze a simple case which often oc-

curs in symmetric structural systems with a symmetric
initial non-linear static con6guration. As it is shown
in Part II, for these systems, one-to-one internal res-
onances often occur due to crossovers between sym-
metric and antisymmetric modes. The result is that K1

and K2 are identically zero (in this case, the system
would possess uncoupled modes as well, herein not
considered); however, K3 �=0. Therefore, the coupled
modes of cases (a) and (b) are given, respectively,

(i)

(ii)

(a)
(b)

(b)
(a)

(a)

(b)

(a)
(b)

1Q 2Q σ̂

(iii)

(iv)

Fig. 3. Regions of existence of the non-linear normal modes of type
(a) and (b) due to a 1:1 internal resonance when K1 =K2 =0 and
(i) P1; P2 ¿ 0, (ii) P2 ¿ 0 and P1 ¡ 0, (iii) P2 ¡ 0 and P1 ¿ 0,
and (iv) P1; P2 ¡ 0.

by

(a): c =±
(
8!m�̂ + Kmn − Knn + 2K3

Kmn − Kmm + 2K3

)1=2
;

.= n/; (147)

(b): c =±
(
8!m�̂ + Kmn − Knn − 2K3

Kmn − Kmm − 2K3

)1=2
;

.= (2n+ 1)
/
2
: (148)

In case (a), there are two real solutions when �̂? Q1

if P2 ? 0; in case (b), there are two real solutions
when �̂? Q2 if P1 ? 0, where Q1;2 = (Knn −Kmn ∓
2K3)=(8!m) and P1;2 = (Kmn − Kmm ∓ 2K3). These
ranges of existence of the normal modes are illustrated
in Fig. 3.
For sake of discussion, let us assume that P1 ¿ 0

and P2 ¡ 0; then, the system possesses the coupled
mode (a) when �̂¡Q1 and the coupled mode (b)
when �̂¿Q2 (Fig. 3). Therefore, whenQ1 ¡�̂¡Q2,
there are no solutions; hence, there are no resonant
coupled modes. This is a region of local uncoupling
in the detuning-amplitude plane. In this region, the
modes cannot interact in a periodic fashion. Similar
regions occur in cases (i) and (iv) but not in case (ii)
in Fig. 3.
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Coming back to the general case, the displacement
6eld of the resonant normal modes can be expressed,
to second order, as

u(x; t) = am cos(!mN t + 'm0)�m(x)

+an cos[(!mN t + 'm0) + .]�n(x)

+1
2 {a2m[cos 2(!mN t+'m0)*mm(x)++mm(x)]

+a2n[cos 2[(!mN t + 'm0)+.]*nn(x)++nn(x)]

+anam[cos[2(!mN t + 'm0) + .]*mn(x)

+cos .+mn(x)]}; (149)

where the non-linear frequency expansion of the mth
mode is given by

!mN =!m−
[

K1

8!m

a3n
am

+3
K2

8!m
aman +

K3

2!m
a2n sin .

]

×cos .− Kmm

8!m
a2m − Kmn

8!m
a2n: (150)

Next, the condition for the global orthogonality of
the normal modes in the presence of a one-to-one in-
ternal resonance is discussed.

Proposition III. Necessary and suAcient conditions
for orthogonality of the non-linear normal modes due
to a one-to-one internal resonance are K1=0; K2=0;
and K3 = 0.

The arguments leading to this proposition are
the same as those provided for two-to-one and
three-to-one interactions. These non-linear orthogo-
nality conditions do not lend themselves to straight-
forward mechanical interpretations as for the cases of
two-to-one and three-to-one internal resonances. Here,
they represent some more complex forms of virtual
works (mixed virtual works). However, we empha-
size the relatively low computational cost required
for ascertaining the non-linear orthogonality. To this
end, it is needed to compute (i) four boundary-value
problems yielding *mm; *nn; +mm, and +mn, respec-
tively, and (ii) the integrals expressing K1; K2, and
K3 (see (110)–(112)).

6. Conclusions

Coupled=uncoupled resonant non-linear nor-
mal modes have been constructed in the cases of
two-to-one, three-to-one, and one-to-one internal res-
onances. The method of multiple scales has been
applied to the full-basis Galerkin-reduced model or
directly to the equations of motion and boundary
conditions of a general class of one-dimensional con-
tinuous systems. These systems are non-linear with
weak quadratic and cubic non-linearities. The objec-
tive of this work is twofold: (i) to study the existence
and stability of coupled=uncoupled non-linear normal
modes using a general and systematic approach; (ii)
to determine closed-form conditions for the non-linear
global and local orthogonality of the modes.
Regarding the 6rst issue, we determined the num-

ber of coupled=uncoupled non-linear normal modes
and the associated stability in the detuning-amplitude
space. In the case of a two-to-one internal resonance,
it was also established that a higher-order approxi-
mation (i) does not aEect the activation of the in-
ternal resonance; (ii) does not inRuence the relative
phase of the interacting modes; and (iii) does aEect
the detuning-amplitude relationship of the modes and
the associated stability bounds.
The normal modes obtained with the full-basis

discretization approach are the same as those ob-
tained with direct application of the method of mul-
tiple scales to the equations of motion and boundary
conditions. Exploiting the equivalence of the re-
sults obtained with the two analytical treatments is
important because the direct approach only yields
closed-form expressions of the interaction coe7-
cients in actual computations. In turn, the full-basis
approach yields interesting modal representations of
the coupled=uncoupled normal modes. These spectral
representations, besides shedding light onto the struc-
ture of these non-linear modes, may be useful for
modal convergence investigations and reduced-order
models selection.
Necessary and su7cient conditions for non-linear

orthogonality of the modes, in a local and global sense,
have been determined and discussed. In the cases of
two-to-one and three-to-one interactions, based on the
results of the direct approach, these conditions can
be interpreted as vanishing of pertinent virtual works
thereby extending the mechanical concept of linear
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orthogonality to the weakly non-linear vibration
regime of self-adjoint systems. The obtained orthogo-
nality conditions may save signi6cant computational
costs. In fact, to ascertain the occurrence of global
non-linear orthogonality between two modes, it is
needed to: (i) compute some integrals involving the
modes and their derivatives for two-to-one interac-
tions; (ii) solve one diEerential boundary-value prob-
lem (yielding *mm) and perform some integrations to
evaluate the virtual work de6ned for three-to-one in-
teractions; (iii) solve four diEerential boundary-value
problems (yielding *mm; *nn; +mm, and +mn) and
evaluate a number of integrals leading to three inde-
pendent interaction coe7cients for one-to-one internal
resonances.
These relatively simple computations (solutions of

boundary-value problems and straightforward integra-
tions) save the eEort of constructing approximations
to the sought normal modes using an asymptotic tech-
nique up to the resonant non-linear order. The pre-
sented closed-form conditions allow to conclude a
priori on orthogonality or non-orthogonality of the
modes. While the latter leads to non-linear modal in-
teractions, the former, in its global form, prevents the
internal resonance from being activated.
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