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1. Introduction

In engineering design, the numerical simulation of very large multiscale models is becoming increasingly important be-
cause of the need to describe realistic scenarios and derive tools to facilitate the virtual design of new structures. In the con-
text of such huge calculations, multiscale approaches based on domain decomposition methods [1] or on model
superposition [2,3] are widely used. Another popular family of strategies is based on computational homogenization, i.e.



the definition of a homogenized model of the behavior of a heterogenous material by replacing the microscopic description
of a representative volume element by an equivalent volume filled with a homogenized material. A very common approach
in the case of linear periodic media consists in applying the homogenization theory initiated by Sanchez-Palencia [4,5]. Fur-
ther developments and related computational approaches can be found in [6–11]. Besides periodicity, the fundamental
assumption is that the ratio of the characteristic length of the small scale to that of the large scale is small. Boundary zones,
in which the material cannot be homogenized, require special treatment [6,12,13]. Other computational strategies using
homogenization techniques based on the Hill–Mandel conditions [14] have also been proposed [15,16]. The extension of
homogenization theory to nonlinear problems, such as viscoplasticity and damage, leads to what is called the FE2 method.
Among the main references, one can mention [6,17,18,7,9,10,19].

A general issue in computational homogenization is that the construction of the homogenized behavior requires the res-
olution of microscopic problems for each macroscopic state. This can lead to high CPU costs, especially in the case of time-
dependent nonlinear models. The objective of this paper is to propose a dedicated strategy for the reduction of the offline
computation cost of the homogenized behavior of nonlinear models by using reduced-order modeling (ROM) techniques.
Basically, ROM consists in seeking an approximate solution of the problem in a reduced space (of significantly smaller
dimension than the original) defined by what is known as a reduced-order basis (ROB). Model reduction methods can be
categorized according to the way the ROB is defined and constructed. In a first group of methods, the ROB is defined in
an offline phase, which can be CPU-intensive, by solving a slightly simplified version of the original problem (e.g. using a
coarser mesh or a smaller time interval) or the highly refined original problem itself, but with different sets of parameters.
Once the ROB has been defined, the original problem can be solved online at a lower cost which is expected to recoup the
cost of the offline phase [20–26]. The use of this type of techniques to address homogenization is discussed in [27]. A second
group of methods does not require the generation of a ROB up front because the ROB is calculated online progressively dur-
ing the resolution of the problem. Proper Generalized Decomposition (PGD), which is used in this paper, is an example of
such a method. Basically, PGD consists in a separated-variable representation of the unknowns. This technique, introduced
in [28] under the name ‘‘radial loading approximation’’, was originally limited to the separation of time and space variables
(see [29]). Subsequently, a number of extensions were proposed, such as the separation of coordinate variables in [30], the
separation of spatial and stochastic parameters in [31] or the separation of the time axis in a multidimensional time space
[32]. Another possibility offered by the PGD framework is to solve multiparametric models by introducing a model’s param-
eters (e.g. boundary conditions, initial conditions, material parameters or geometric parameters) as additional coordinates
[33,34]. The interested reader is referred to [35] for a review of these types of techniques. In these works, both the separated
representation of the solution and the relevant ROB are built using iterative algorithms. At each iteration, the previously cal-
culated ROB is used first, leading to a reduced-order model and a new approximation of the solution. If this approximation is
not good enough, the ROB is enriched by defining a new functional product using a greedy power algorithm [29].

The resolution method used in this work is the multiscale computational strategy based on a PGD technique described in
[36,37]. This approach relies on a mixed domain decomposition method whose solver is the LATIN iterative algorithm [28],
which provides a very convenient framework for the development of PGD-based algorithms. Some extensions of the LATIN
method coupled with the XFEM approach can be found in [38,39]. The generalization of domain decomposition to the
decomposition between physics in coupled problems has been investigated in [40,41]. The method has also shown promis-
ing performances to deal with parametrized problems [42]. The physical domain of the problem is divided into subdomains
and interfaces. The multiscale strategy involves two types of problems: a ‘‘coarse’’ problem (called the macroproblem), de-
fined on the interface level and built using a homogenization technique, whose purpose is to accelerate the convergence of
the iterative algorithm, and a series of problems (called the microproblems) defined within each subdomain. At each itera-
tion, in accordance with the LATIN method, the macroproblem and the microproblems are solved over the whole time–space
domain.

The strategy can be summarized as follows. Each interface quantity is split between two scales (a macroscale and a micro-
complement). The macroproblem, defined in terms of these macroscopic interface unknowns, leads to a reduced interface
problem. At each iteration, this solution scheme requires the resolution of a large number of microproblems defined within
each subdomain and over the time interval, which leads to high computation costs. Previous works have shown that the use
of both temporal and spatial PGD reduces the computation time and the storage cost of these microproblems significantly
[36,43,37,44]. The macroproblem is defined through a homogenized operator which is assembled from a set of homogenized
operators on the subdomain level which map the interface macrodisplacements to interface macroforces. In the nonlinear
case, updating this homogenized operator throughout the iterative process can result in huge computation costs. Even in
the academic example used in this paper to test the feasibility of the method, this process can take more than 30% of the
total computation time, but in more complex problems with many subdomains, such as that presented in [37], this cost
can account for most of the total computation time; so it is imperative to reduce it.

The novelty of this paper is that the reduction in the computation cost of this operator is achieved by extending the PGD
technique already used on the microscale. In order to do that, the problems on the subdomain level which are used to build
the homogenized operator are solved using a new PGD representation of the unknowns in which the separation of the un-
knowns is carried out not only in time and in space, but also in terms of the interface macroquantities. The technique which
is used herein is then particularly important to enhance the performances of the LATIN strategy but is not limited to this
method. The more general path which is followed in this paper is to solve the microproblems arising in the homogenization
for all the configurations that can be encountered in the calculation. A similar procedure has been described in [45], where
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the use of PGD to achieve computational homogenization was investigated for thermal problems with materials whose
microstructure can be described by a microscopic representative elementary volume (an assumption which is not required
in our work). The issue of the multiscale analysis of structures using the PGD technique has also been addressed in [46]
where the PGD method was used in a FE2 technique to solve the problems defined at the level of the RVE for any possible
sets of geometry, material properties and boundary conditions. This work has been developed in the case of linear elasticity,
which allowed to compute the homogenized behavior only once, in a preliminary phase that can be performed offline,
whereas the aim of the present paper is to address nonlinear behaviors.

Once the algorithm has converged, the homogenized operator can be viewed as the homogenized tangent operator which,
over the time interval and for each subdomain, links a small macrodisplacement perturbation to a small macroforce pertur-
bation. In the case of viscoelastic materials, this operator characterizes the local macroscopic behavior of the structure.

The paper is organized as follows. Section 2 introduces the reference problem. The main features of the LATIN multiscale
technique, including a brief description of the PGD method, are presented in Section 3. Section 4 focuses on the new algo-
rithm and the determination of the PGD representation of the homogenized operator. Finally, Section 5 presents a numerical
example which shows that the use of PGD in the macroproblem does not affect the convergence rate of the approach and
leads to a reduction in the total computation time.
2. Description of the reference problem

Let us consider, under the assumption of small perturbations, the quasi-static and isothermal evolution of a structure de-
fined in time–space domain I �X, where I ¼ ½0; T� and X 2 RD (D ¼ 2;3 being the spatial dimension). Boundary @X is as-
sumed to be divided into two non-overlapping parts @1X and @2X such that @1X [ @2X ¼ @X and @1X \ @2X ¼ ;. Surface
forces Fd are applied over boundary @2X and a displacement ud is prescribed over @1X. The structure is also subjected to
a body force f d (see Fig. 1).

Let e be the strain associated with displacement u and let r be the Cauchy stress. The strain can be divided into an elastic
strain ee and an inelastic strain ep so that e ¼ ee þ ep. The elastic strain ee is related to the stress through the state law:
r ¼ Kee ð1Þ
where K is Hooke’s tensor. The inelastic strain is related to the stress through the evolution law:
_ep ¼ BðrÞ ð2Þ
where B is a differential operator which can be time-dependent and nonlinear. In the numerical examples of Section 5, two
behaviors will be investigated: a linear viscoelastic behavior _ep ¼ K�1=gr and a nonlinear time-dependent behavior
_ep ¼ K�1=ðEgðtÞÞTrðrÞr. All these quantities are defined at each time–space point ðt; xÞ 2 I �X and assigned initial values
at time t ¼ 0. Thus, the state of the structure is defined by the set s ¼ ð _ep;rÞ.

Such a representation of a material’s behavior is typical of a viscoelastic constitutive law expressed using what is called a
‘‘normal formulation’’ [28]. Other types of constitutive laws, such as elastic-viscoplastic behavior, which requires the intro-
duction of internal variables, can be found in [47,48]. Dealing with such laws does not require any change in the strategy
which will be developed in this paper.
3. The LATIN multiscale method

In this section, only the main characteristics of the LATIN multiscale method are reviewed. Additional details can be found
in A. The interested reader can also refer to [37].
∂2Ω

∂1Ω

Ω

Fd

Ud

fd

Fig. 1. The reference problem.
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3.1. Decomposition of the domain

The domain X which is occupied by the structure is divided into subdomains and interfaces (see Fig. 2). Each subdomain
XE has its own variables ( _epE and rE) and is subjected, over its boundary @XE, to the action of its environment (the neighbor-
ing interfaces) defined by a displacement distribution WE and a force distribution FE. Thus, the state of subdomain XE is de-
scribed by the set sE ¼ ð _epE; _WE; rE; FEÞ. In order to formulate the reference problem, we need to introduce some functional
subspaces. Hereafter, XH will denote the vector space associated with a given affine space X .

Over boundary @XE, displacement uE must be equal to the interface displacement WE and must satisfy the initial condi-
tion at t ¼ 0:
uEj@XE ¼WE and uEjt¼0 ¼ uE0 ð3Þ
The corresponding space of the kinematically admissible displacement fields ðuE;WEÞ is denoted UE. On every element XE the
weak form of the equilibrium equation must be enforced: the stress field rE must balance interface forces FE over @XE and
body forces f d in XE : 8 u�E;W

�
E

� �
2 U�E,
Z
XE�I

rE : e�ð _uEÞdXdt ¼
Z

XE�I
f d � _u�E dXdt þ

Z
@XE�I

FE � _W
�
E dSdt ð4Þ
Condition (4) defines the space SE of the statically admissible fields ðrE; FEÞ. Let S denote the extension of SE to the entire
problem: S ¼ �XE�XSE.

The strain rate _eE should derive directly from the symmetric part of the gradient of an admissible displacements
ðuE;WEÞ 2 UE : 8 r�E; F

�
E

� �
2 S�E,
Z
XE�I

r�E : _eE dXdt ¼
Z
@XE�I

F�E � _WE dSdt ð5Þ
Condition (5) defines the space EE of the kinematically admissible fields ( _eE; _WE).
Finally, one introduces the space AdE of the sE in which ðrE; FEÞ is statically admissible, rE and _epE satisfy the state law (2)

and ð _eE; _WEÞ is kinematically admissible. These conditions read:
ðrE; FEÞ 2 SE; ðK�1 _rE þ _eE; _WEÞ 2 EE ð6Þ
Concerning the interfaces, in the set N E of the interfaces between subdomain XE and other subdomains, let UEE0 denote
the interface between XE and subdomain XE0 . This interface is characterized by the restrictions ðWEE0 ;WE0EÞ of displacement
field ðWE;WE0 Þ and ðFEE0 ; FE0EÞ of force field ðFE; FE0 Þ to UEE0 . A constitutive relation for every interface UEE0 must also be intro-
duced in the form:
bEE0 ð _WEE0 ;
_WE0E; FEE0 ; FE0EÞ ¼ 0 ð7Þ
For instance, a perfect interface can be described by _WEE0 ¼ _WE0E and FEE0 þ FE0E ¼ 0. Other possible types of behavior (con-
tact, contact with friction . . .) can be found in [37].
ΩE ΩE'ΦEE'

Fig. 2. Decomposition of the domain.

4



3.2. Multiscale description of the interface unknowns

Two different descriptions of the interface unknowns (displacements and forces) are introduced: a macroscale description
(denoted with superscript M) and a microcomplement (denoted with superscript m). Over an interface UEE0 between subdo-
mains XE and XE0 , one has:
_WEE0 ¼ _W
M

EE0 þ _W
m

EE0 FEE0 ¼ FM
EE0 þ Fm

EE0 ð8Þ
The choice of the spaces of the macrodisplacements and macroforces, denoted respectivelyWM
EE0 and FM

EE0 , is arbitrary, but
has a strong influence on the scalability of the method. A major point of the strategy, which grants it its multiscale character,
is that the set of the macroforces is required to verify the transmission conditions at the interfaces a priori at each iteration.
This assumption is called the ‘‘admissibility of the macroforces’’ and is detailed in Appendix A.1.

3.3. The LATIN solver

The governing equations of the problem are divided into two groups: the linear equations and the local equations. First,
let Ad be the space of the solutions of the linear equations (defined globally in the spatial domain) whose elements
s ¼ ðsEÞXE�X verify:

	 the admissibility condition (6) for every XE � X : sE 2 AdE

	 the admissibility of the macroforces (see (A.4) and (A.5) for details)

Then, let C be the space of the solutions ŝ ¼ ðsEÞXE�X of the local (possibly nonlinear) equations whose elements satisfy:

	 the evolution law (2) for every XE � X : 8ðt; xÞ 2 I �XE, _epE ¼ BðrEÞ
	 the interface behavior (7) over every interface UEE0

The solution of the problem sref ¼ Ad \ C is built by using the LATIN method. This method is an iterative scheme between two
stages called the ‘‘local stage’’ and the ‘‘linear stage’’, repeated alternatively until convergence. At Iteration nþ 1, in the local
stage detailed in Appendix A.2, one seeks a solution ŝnþ1=2 of the local nonlinear equations in space C; in the linear stage
detailed in Appendix A.3, one seeks a solution snþ1 of the global linear equations in space Ad. The introduction of search direc-
tions enables one to switch back and forth between space C and space Ad. The convergence of the algorithm is checked using
the criterion described in Appendix A.4. This two-search-direction algorithm is quite similar to that described in [49] for
non-overlapping domain decomposition methods in linear elasticity.

3.4. The linear stage: a series of microproblems and a macroproblem

The linear stage detailed in Appendix A.3 leads to a series of microproblems defined in each time–space subdomain I �XE

along with a macroproblem defined over the entire time interval I and for the whole set of interfaces. These problems are
defined in the following.

3.4.1. The series of microproblems
Introducing the weak form of search direction (A.8) and (A.10) into Eq. (A.12), one gets the following microproblem for

each subdomain XE:
Find rE; FEð Þ 2 SE such that 8 r�E; F
�
E

� �
2 S�E

Z
XE�I

K�1 _rE þHrE

� �
: r�E dXdt þ

Z
@XE�I

hFE � F�E dSdt

¼
Z

XE�I
Hr̂E � _̂epE

� �
: r�E dXdt þ

Z
@XE�I

hF̂E þ _̂WE þ
_~W

M

E

� �
� F�E dSdt ð9Þ
Problem (9) is linear and depends on the hat quantities (ŝE), which are known from the previous local stage, and on Lagrange
multiplier _~W

M

E , which is a new unknown of the problem. Therefore, the solution can be divided into two parts:
sE ¼ ^̂sE þ ��sE
_~W

M

E

� �
ð10Þ
where ^̂sE is the solution of Problem (9) when _~W
M

E is equal to zero, and ��sE
_~W

M

E

� �
depends linearly on Lagrange multiplier _~W

M

E

through a linear operator. Relation (10) can also be written in terms of the macroforces:
FM
E ¼

^̂F
M

E þ
��F

M

E with ��F
M

E ¼ LF
E

_~W
M

E

� �
ð11Þ
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where ^̂F
M

E represents the macroforces corresponding to ^̂sE, and LF
E is a homogenized operator defined over the space–time

domain XE � I. The details of the calculation of the homogenized operator in both the linear case and the nonlinear case will
be given in Section 4.

3.4.2. The macroproblem
In order to obtain the value of Lagrange multiplier _~W

M

E 2 WM
ad, homogenized operator (11) is introduced into the admis-

sibility condition of the macroquantities (A.11), leading to a problem defined on the macroscale: 8 _~W
M�

E 2 WM�
ad ,
X
XE�X

Z
@XE�I

_~W
M�

E � LF
Eð

_~W
M

E Þ þ
^̂F

M

E

� �
dSdt ¼

X
XE�X

Z
@XE\@2X

_~W
M�

E � Fd dCdt ð12Þ
This macroproblem boils down to a linear homogenized problem in space and time defined over the whole set of inter-
faces and the entire time interval.

3.4.3. Resolution of the linear stage
The linear stage consists in solving a series of microproblems (9) defined in each time–space subdomain I �XE along with

macroproblem (12) defined over the entire time interval I and for the whole set of interfaces, leading to Lagrange multiplier
_~W

M

E . One can note that parallel resolution of these microproblems is possible, which reduces the computation cost.

3.5. Proper Generalized Decomposition

As described in Appendix A.3, many microproblems defined on the subdomain level must be solved during the linear
stage. This stage can be very time-consuming and requires a significant amount of storage. This difficulty is addressed thanks
to the introduction of the Proper Generalized Decomposition (PGD) technique. PGD was originally introduced into the LATIN
method as part of the solver under the name ‘‘radial approximation’’ [28]. It has been shown in previous works that PGD
leads to a significant reduction in computation time [36,37,44].

The main idea consists in representing a generic function of time and space q ¼ qðt; xÞ using separated variables:
8ðt; xÞ 2 I �XE qðt; xÞ ’
Xm

k¼1

kkðtÞKkðxÞ ð13Þ
where kkðtÞ are functions of time alone and KkðxÞ are functions of space alone. The PGD representation is introduced into the
LATIN scheme in order to describe the unknowns of microproblems (9). At the beginning of an iteration, if a reduced-order
basis (ROB) is known, it is used to build a first reduced-order model to solve the new microproblem. If the quality of the
solution is insufficient, the ROB is enriched by adding new PGD functions using a greedy power algorithm based on the min-
imization of a functional built from the verification of the search direction (A.8) and (A.10). Further details on the introduc-
tion of PGD into the microproblems and examples showing the ability of the method to reduce the computation cost of the
microproblems can be found in [37,44,48].

The novelty of the present work lies in the reduction of the computation and storage cost of the homogenized operator by
extending the use of the PGD technique to its construction.

4. Construction of the homogenized operator

4.1. The classical procedure for building the homogenized operator

As mentioned in Section 3.4.1, the homogenized operator LF
E of subdomain XE maps _~W

M

E to FM
E through the relation:
FM
E ¼

^̂F
M

E þ
��F

M

E with ��F
M

E ¼ LF
Eð

_~W
M

E Þ ð14Þ
Classically in the multiscale LATIN method (see, e.g., [43,37]), LF
E is obtained by solving the following microproblem:

8 r�E; F
�
E

� �
2 S�E,
Z

XE�I
K�1 _rE þHrE

� �
: r�E dXdt þ

Z
@XE�I

hFE � F�E dSdt ¼
Z
@XE�I

_~W
M

E � F�E dSdt ð15Þ
which corresponds to (9) in which the hat quantities ðŝEÞ have been zeroed.
In this paper, as mentioned previously, the separation of the macroscale from the microscale is carried out only in space,

but one should note that a coarse discretization of I ¼ ½0; T� can also be used (see [50]). Then, Lagrange multiplier _~W
M

E

becomes:
_~W
M

E ðt; xÞ ¼
Xd

i¼1

_aiðtÞbiðxÞ ð16Þ
6



translation

tension

rotation

Fig. 3. Macrobasis fbiðxÞgi¼1;...;d
for the extraction of the linear part of a plane interface (d ¼ 9).
where fbiðxÞgi¼1;...;d
is the spatial macrobasis for each of the r interfaces of the subdomain (see [37] and Fig. 3 for a macrobasis

which extracts the linear part; other choices can be found in [51].) faiðtÞgi¼1;...;d are the time functions, which are unknown
when building the homogenized operator. Each of these time functions can be written using, for example, a finite element
basis with shape functions fujðtÞgi¼1;...;Nþ1 (where N denotes the number of time steps in the discretization of I):
aiðtÞ ¼

PNþ1
j¼1 ujðtÞcj

i, leading to:
_~W
M

E ðt; xÞ ¼
Xd

i¼1

_aiðtÞbiðxÞ ¼
Xd

i¼1

XNþ1

j¼1

cj
i

_ujðtÞbiðxÞ
� �

ð17Þ
which can be rewritten as:
_~W
M

E ðt; xÞ ¼
Xd

i¼1

XNþ1

j¼1

cj
i wj

iðt; xÞ ð18Þ
where the dðN þ 1Þ vectors wj
iðt; xÞ ¼ _ujðtÞbiðxÞ represent the time–space macrobasis associated with each of the r interfaces

of the problem, and coefficients cj
i are unknown at this stage (they will be determined later by solving macroproblem (12)

once the homogenized operator has been built.)
In our previous works, the homogenized operator was obtained by solving rdðN þ 1Þ equations similar to (15) in which

_~W
M

E was taken to be equal to vectors wj
iðt; xÞ for each of the r interfaces successively. Each of these resolutions was carried

out using a PGD representation of stress tensor rE with separated time and space:
rE ¼ rEðt; xÞ ’
XM

k¼1

AkðtÞBkðxÞ ð19Þ
The details of this technique can be found in [43,37]. The corresponding computation effort is discussed in Section 4.3.

4.2. A new algorithm for building the homogenized operator

The novelty of the present work is that the computation cost is reduced by avoiding the treatment of rdðN þ 1Þ Eq. (15)
thanks to an extension of the PGD representation. In order to do that, (18) is rewritten as:
_~W
M

E ðt; xÞ ¼
Xd

i¼1

XNþ1

j¼1

cj
i wj

iðt; xÞ ¼
Xd

i¼1

w1
i ðt; xÞ � � �wNþ1

i ðt; xÞ
� 	

ci ð20Þ
where ci are the vectors which collect the quantities of interest over time. In a more compact form and using obvious nota-
tions, this equation reads:
_~W
M

E ðt; xÞ ¼ _wM
E ðt; xÞcE ð21Þ
where cE ¼ ½c1 . . . cd�T concatenates all the values which are unknown in the definition of _~W
M

E ðt; xÞ, and _wM
E ðt; xÞ is fixed

through the choice of the macrobasis. Expression (21) of the Lagrange multiplier is introduced into Microproblem (15), lead-
ing to: 8 r�E; F

�
E

� �
2 S�E,
Z

XE�I
K�1 _rE þHrE

� �
: r�E dXdt þ

Z
@XE�I

hFE � F�E dSdt ¼
Z
@XE�I

_wM
E cE � F�E dSdt ð22Þ
7



whose solution is now sought using a PGD representation of stress tensor rE in which not only time and space, but also the
variable which defines the Lagrange multiplier are separated:
rE ¼ rEðt; x; cEÞ ’
XM

k¼1

AkðtÞBkðxÞCkðcEÞ ð23Þ
The objective of this choice is to build the homogenized operator at each time t, at each point x and for each value of the
Lagrange multiplier defined by cE. The triplets fAk;Bk;Ckg of PGD representation (23) are obtained by means of Power Algo-
rithm 1, which is based on the rewriting of Problem (22) as the minimization of the error:
e2 ¼ kK�1 _rE þHrEk2
M þ khFE � _wM

E cEk2
m ð24Þ
with the introduction of the norms:
k�k2
M ¼

Z
XE�I�C

� : M�dXdt dC and k�k2
m ¼

Z
@XE�I�C

� : m�dSdt dC ð25Þ
M and m are symmetric, positive definite operators (which, in the following numerical example, will be chosen as M ¼ H�1

and m ¼ h�1) and C is the space of parameters cE. The calculation of norms (25) requires the evaluation of integrals over the
space C of definition of parameters cE. The bounds of this space are a priori unknown and, at this stage in our development,
are chosen to be large enough for rE to be known for a range of cE which is sufficient to satisfy Macroproblem (12). The opti-
mization of this choice will be the subject of future developments, but it has little impact on the global computation cost.

Algorithm 1. To find a new triplet fAM;BM;CMg given fAk;Bk;Ckgk¼1;...;M�1

initialization: A0
MðtÞ ¼ AM�1ðtÞ and C0

MðcEÞ ¼ CM�1ðcEÞ
for ‘ ¼ 1; . . . ; ‘max do

spatial problem: given functions A‘�1
M and C‘�1

M , calculate B‘
M which minimizes e2

temporal problem: given functions B‘
M and C‘�1

M , calculate A‘M which minimizes e2

problem of the macroquantities: given functions A‘M and B‘
M , calculate C‘M which minimizes e2

end for

Finally, the procedure enables one to build the homogenized operator LF
E which maps _~W

M

E onto macroforces FM
E ¼

^̂F
M

E þ
��F

M

E ,
where ��F

M

E ¼ LF
Eð

_~W
M

E Þ. The corresponding operation can be written formally as:
LF
E :

WM
E ! FM

E

_~W
M

E ðt; xÞ ¼ _wM
E ðt; xÞcE # ��F

M

E ¼
XM

k¼1

akðtÞbkðxÞckðcEÞ








 ð26Þ
where triplets ðak; bk; ckÞ are deduced easily from triplets ðAk;Bk;CkÞ by using the fact that ��F
M

E is the macropart of rEnE at the
boundary of XE (with nE being the outer unit normal to boundary @XE). Let us note that, due to the linearity of (22) with
respect to cE, functions ck are also linear in cE.

4.3. Discussion of the computation and storage costs

At enrichment step M of Algorithm 1, the construction of a new triplet fAM;BM ;CMg given fAk;Bk;Ckgk¼1;...;M�1 requires the
minimization of a problem which couples time, space and macroquantities. This problem is solved using a fixed-point algo-
rithm with ‘max iterations. Thus, step M involves ‘max resolutions of D-dimensional spatial problems (D ¼ 2;3) for function
BM ; ‘max resolutions of 1-dimensional ODEs for function AM , and ‘max resolutions of 1-dimensional problems for function
CM . The complexity of this procedure lies almost entirely in the ‘max D-dimensional steady-state problems (compared to
which the cost of the 1-dimensional problems is negligible). In our numerical tests, the initialization of A0ðtÞ and C0ðcEÞ
did not affect the convergence of the algorithm significantly and, in practice, only a few iterations of the algorithm were nec-
essary to converge. Therefore, the calculation of a new triplet was linked to the resolution of rd‘max spatial microproblems
and the global computation cost of the homogenized operator was in the order of that of Mrd‘max spatial microproblems.

In the examples presented in the next section, following [37], the number of iterations was arbitrarily set to a small value
(‘max ¼ 2). Even if the convergence of the fixed-point algorithm is not reached, the quality of the decomposition is enhanced
by the next triplets. It is known that the convergence can be slower than in the case of two variables decompositions but, in
the numerical examples investigated in the paper, this issue does affect the global convergence rate of the strategy. Further
investigations should be necessary for other material behaviors. The number M of triplets required to describe the homog-
enized operator was small. In the case of linear behavior, such as in viscoelasticity, the tangent search direction H ¼ @B=@rjr̂
is constant. Therefore, fixed search directions H and h were used throughout the iterations and the homogenized operator
needed to be calculated only once at the beginning of the iterative process. Usually, in that case, M ¼ 2 triplets are enough.
8



Conversely, in the case of nonlinear behavior, parameters H and h are recalculated throughout the iterations and the homog-
enized operator must be updated [48]. In practice, the search directions are recalculated only for the first iterations, then
remain fixed when their variations become negligible. However, we did not use this technique in our work in order to sim-
plify the discussion about the computation cost in the general case. Therefore, M was set to be equal to the number of iter-
ations of the LATIN method which were necessary to reach a given error. This number can also be decreased significantly if
one reuses the already known triplets as a reduced-order basis when performing a given iteration: then, the values of Bk and
Ck are fixed and the recalculation of time function Ak alone suffices to find a better representation of the operator without
solving any D-dimensional problem. Then, one introduces a criterion in order to add a new triplet if, and only if, the given
reduced-order basis turns out to be insufficient.

The global cost of the Mrd‘max spatial problems required to build the homogenized operator must be compared to the cost
of the classical procedure described in Section 4.1. Let us recall that this procedure consists in solving rdðN þ 1Þ Eq. (15) using
a time–space PGD-separated form of the unknowns. Such a resolution is very close to that described in Algorithm 1 and the
same computation cost evaluation applies. This cost is in the order of that of M‘max spatial problems for each of the rdðN þ 1Þ
equations, which corresponds to the global cost of MrdðN þ 1Þ‘max D-dimensional spatial problems. Therefore, the advantage
of our procedure is obvious because its cost is independent of the number of time steps. In terms of storage cost, our pro-
cedure requires the storage of only the M triplets (whose cost is associated mainly with the spatial functions) compared to
the storage of N þ 1 spatial operators (one for each of the times considered) with the classical procedure.

4.4. The macroproblem

The macroproblem is solved at each linear stage to obtain the Lagrange multiplier. The introduction of the PGD represen-
tation of the homogenized operator leads to the problem: 8 _~W

M�

E 2 WM�
ad ,
X
XE�X

Z
@XE�I

_~W
M�

E �
^̂F

M

E þ
XM

k¼1

akðtÞbkðxÞckðcEÞ
 !

dSdt ¼
X
XE�X

Z
@XE\@2X

_~W
M�

E � Fd dCdt ð27Þ
where the only unknown is cE, the vector of the parameters. Due to the linearity of functions ck in cE, the resolution of (27) is
straightforward and very inexpensive. Let us recall that once coefficients cE have been calculated, Lagrange multiplier _~W

M

E is
completely known.

4.5. Step-by step summary

The complete solution process can be summarized as follows:

1. Initialization of the homogenized operator: calculate operator LF
E ¼ LF

Eðt; x; cEÞ using PGD-based Algorithm 1;
2. Local stage: defined in Appendix A.2;
3. Linear stage:

(a) MicroProblem 1: resolution of Eq. (9) with _~W
M

E ¼ 0 using PGD (see [37] for details);
(b) MicroProblem 2: resolution of Eq. (22) for each value of _~W

M

E , if necessary by updating homogenized operator
LF

E ¼ LF
Eðt; x; cEÞ (if H and h have changed) using PGD-based Algorithm 1;

(c) Macroproblem: resolution of Eq. (27) to obtain coefficients cE, leading to Lagrange multiplier _~W
M

E ;
(d) Completion of the whole solution at this stage by summing up the solutions of (a) and (b), the latter being evaluated

with the known values of coefficients cE.
4. Check convergence using error indicator (A.13);
5. Repeat steps 2, 3 and 4 until convergence.

For linear problems, the best possible approximation of the homogenized operator is calculated in the first step of this
solution scheme. Usually, two triplets are sufficient to guarantee the same convergence rate as the standard technique. Con-
versely, if the problem is nonlinear, only one triplet is calculated in the first step, then other triplets are added automatically
in Step 3(b).

4.6. Interpretation of the homogenized operator

If H is the tangent search direction (i.e. H ¼ @B=@rjr̂), a physical interpretation can be given to the homogenized operator.
Let us recall that homogenized operator LF

E maps Lagrange multiplier _~W
M

E to macroforce ��F
M

E ¼ LF
Eð

_~W
M

E Þ in subdomain XE, so
that:
FM
E ¼

^̂F
M

E þ LF
Eð

_~W
M

E Þ ð28Þ
This relation can be rewritten in terms of macroforce FM
E and macrodisplacement WM

E at the interface, leading to a linear
relation between the small perturbations of these quantities in the form:
9



DFM
E ¼ LW

E D _W
M

E ð29Þ
Relation (29) means that once the algorithm has converged LW
E can be viewed as the local macrobehavior near the calcu-

lated solution, defined over I ¼ ½0; T� and in each subdomain XE. This behavior establishes a relation between a small pertur-
bation in terms of macrodisplacements and a small perturbation in terms of macroforces.

In the particular case of a linear problems, such as in viscoelasticity, the tangent search direction is independent of the
solution being sought. Therefore, it is calculated only once at the beginning of the algorithm and then remains constant
throughout the iterations. Thus, the previous interpretation is valid throughout the iterations.

If search direction H is not tangent to subspace C, the algorithm bears some similarities to a quasi-Newton scheme and no
obvious physical interpretation can be given to the homogenized operator.

5. Numerical examples

Now, the strategy presented in the previous sections will be validated by introducing some numerical tests in order to
show that the PGD representation of the homogenized operator guarantees the same order of convergence as the standard
technique while leading to a significant reduction in the computation time when the operator needs to be updated.

Under the assumption of plane strain, we considered the evolution over I ¼ ½0; T� (T ¼ 2 s) of a two-dimensional L-shaped
structure made of 12 heterogenous cells (see Fig. 4). Each cell was a 0.5 m � 0.5 m square with an inclusion of radius 0.15 m.
The matrix and the inclusion were made of two different materials denoted respectively Material 1 (shown in light gray) and
Material 2 (shown in dark gray). The structure was clamped at the bottom and subjected along its right side to a prescribed
pressure FdðtÞ ¼ F0 sin 2pt=T x with F0 ¼ 100 MPa. The domain was divided into 12 subdomains, each corresponding to a cell.
In two dimensions, the spatial macrobasis consists of d ¼ 4 vectors. The number of interfaces to be taken into account for the
construction of the homogenized operator was r ¼ 16. Each subdomain was discretized into linear triangular finite elements,
leading to a total of 3675 DOFs (see Fig. 5(a)). The time interval I was discretized into N time steps. A Euler implicit integra-
tion scheme was used. We studied the influence of N on the cost of the resolution assuming that the convergence of the algo-
rithm is achieved when the error indicator g defined in Appendix A.4 becomes less than 10�5. Since our example is relatively
simple, it was possible to build a reference solution using a direct incremental approach and to plot the actual error gref de-
fined in Appendix A.4.

5.1. Linear viscoelastic behavior

First, we assumed for Material 1 and Material 2 linear viscoelastic behavior, such that:
_ep ¼
K�1

i

gi
r ð30Þ
where Ki denotes the Hooke’s tensor of Material i. The Poisson’s ratio was the same for both materials (m1 ¼ m2 ¼ 0:3) but the
Young’s moduli and the viscosity parameters were different: E1 ¼ 50 GPa, E2 ¼ 200 GPa and g1 ¼ 10 s, g2 ¼ 1000 s.

Fig. 5(b)–(d) shows the stress components at time t ¼ 3T=4. In order to validate these results, a first comparison with a
classical direct incremental scheme is given by Fig. 6, which shows the horizontal displacement of interface point P (see
Fig. 4). One can observe that the solution obtained with the direct incremental method (dotted line) and the solution ob-
tained using our new strategy (continuous line) match perfectly.

Figs. 7 and 8 enable one to study the convergence of the procedure. The continuous line represents the convergence curve
of our approach (LATIN method + PGD representation of the homogenized operator). The convergence of the standard
approach (LATIN method + standard homogenized operator [37]) is represented by circles. The two convergence curves
Fd

P

x

y

Fig. 4. The L-shaped heterogenous structure.
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Fig. 5. The finite element mesh and the components of the stress tensor at t ¼ 3T=4.
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Fig. 6. The displacement of point P as a function of time.
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Fig. 7. Comparison of the convergence curves of error indicator g without and with the PGD representation of the homogenized operator.
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Fig. 8. Comparison of the convergence curves of error gref , without and with the PGD representation of the homogenized operator.
match perfectly, which shows that the introduction of PGD into the representation of the homogenized operator did not
affect the convergence of the approach. If not enough triplets had been used in the PGD description, a bad representation
of the homogenized operator would have been obtained, leading to a poor convergence rate.

Now, in order to compare the two approaches in terms of their performance, we will consider the computation cost of
generating the homogenized operator. Let us observe that, due to the linearity of the problem in this example, the search
direction operators ðH;hÞ are independent of time and remain constant throughout the iterations, which enabled the homog-
enized operator to be calculated only once at the beginning of the analysis. The CPU costs were compared in terms of the
number of linear spatial microproblems (defined on the subdomain scale) which had to be solved to build the homogenized
operator. In our example, the 12 subdomains were identical and had the same number of DOFs. Thus, all the spatial micro-
problems had the same computation cost, denoted t:u. (time unit).

The following study focuses on the influence of the number N of time steps in the discretization. For the sake of generality,
we assumed the temporal discretization to be non-uniform, thus requiring the resolution of a linear system at each time
step. (In the particular case of a uniform discretization, the linear system would have been factorized only once at the
beginning.)

The results are summarized in Table 1, which shows that the number of linear systems to be solved is independent of the
number of time steps when using our technique, but increases proportionately to N þ 1 when using the standard method.
The gain achieved with the new method is significant, especially when the number N of time steps increases.

5.2. Nonlinear time-dependent behavior

Now, in order to study the behavior of the new procedure in the case of a nonlinear problem, let us consider that the
behavior of Material 1 and Material 2 is described as:
12



Table 1
Comparison of the computation costs in terms of the number of spatial microproblems (t.u.) solved to build the homogenized operator.

Number N of time steps 10 20 30 40

LATIN + standard homogenization (t.u.) 1408 2688 3968 5248
LATIN + PGD homogenization (t.u.) 256 256 256 256
Gain 5.5 10.5 15.5 20.5
_ep ¼
K�1

i

EigiðtÞ
TrðrÞr ð31Þ
where Ki and Ei are the same as before, but the viscosity parameters are time-dependent: g1 ¼ g2 ¼ g0 sin t=2p with
g0 ¼ 100 s.

The search direction operators ðH;hÞ could have been considered to be independent of time and constant throughout the
iterations (using, for example, time-averaged pseudo-tangent operators), leading to a unique homogenized operator, but this
would have potentially resulted in a poor convergence rate due to the nonlinearity of the problem. In order to guarantee
rapid convergence, the search direction operators needed to be updated to recalculate the tangent search direction. As men-
tioned earlier, practical criteria could be set up in order to avoid updating the operators when their variations are small, but
this feature was not introduced in this study so the discussion on the computation cost would be simpler. Therefore, we as-
sumed that the time-dependent homogenized operator had to be recalculated at each iteration.

Two variants of the strategy were considered: the first variant, hereafter labeled ‘(constant)’, consisted in calculating the
homogenized operator only once at the beginning; the second variant, hereafter labeled ‘(tangent)’, consisted in updating the
operator at each iteration.

The results are shown in Figs. 9 and 10. Fig. 9 shows the comparison of the convergence rates of these two variants with-
out and with the new PGD-based construction of the homogenized operator. As expected, the use of an updated tangent
search direction improved the convergence rate of the method and, like in the linear behavior case, the PGD representation
did not affect the convergence of the strategy. However, the more interesting point concerns the performance of the ap-
proach in terms of the computation cost of the homogenized operator. Using the same notations as in Table 1, Tables 2
and 3 demonstrate the gain obtained using our strategy with either a constant or a tangent (updated at each iteration) search
direction.

Concerning Table 2, one can observe that the computation cost of the standard technique is the same as in the linear case.
Indeed, since the homogenized operator is calculated only once at the beginning of the algorithm, its computation time de-
pends only on the number of time steps. When the PGD representation is introduced, the computation cost is higher than in
the linear case because a few more triplets are necessary to describe the operator due to this complex behavior. However, the
gain is still significant and goes up to about 7 in the case of 40 time steps.

Conversely, in Table 3, one can see that in the case of a tangent search direction the operator is recalculated at each iter-
ation and, therefore, the number of iterations needed to reach convergence affects the computation cost. The gain can go up
to about 18 in the case of 40 time steps. Fig. 11 summarizes these results by showing the evolution of the gain afforded by
the PGD-based homogenization technique compared to the standard approach as a function of the number of time steps. The
continuous line corresponds to a fixed homogenized operator and the dashed line corresponds to a variable tangent search
direction.
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Table 2
Comparison of the computation costs in terms of the number of spatial microproblems (t.u.) to be solved in order to build the homogenized operator (using a
constant operator).

Number N of time steps 10 20 30 40

LATIN + standard homogenization (t.u.) 1408 2688 3968 5248
LATIN + PGD homogenization (t.u.) 576 576 768 768
Gain 2.44 4.66 5.17 6.84

Table 3
Comparison of the computation costs in terms of the number of spatial microproblems (t.u.) to be solved in order to build the homogenized operator (using a
tangent operator).

Number N of time steps 10 20 30 40

LATIN + standard homogenization (t.u.) 233,728 478,464 730,112 981,376
LATIN + PGD homogenization (t.u.) 47,808 46,603 54,350 55,236
Gain 4.88 10.26 13.44 17.76

 0

 4

 8

 12

 16

 20

 24

 10  15  20  25  30  35  40

G
ai

n

Number of time steps

Constant homogenized operator
Tangent updated homogenized operator

Fig. 11. Evolution of the gain as a function of the number N of time steps.
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Let us recall that the objective of this numerical example was to evaluate the PGD-based construction of the homogenized
operator. That is the reason why the performance comparison has been presented only in terms of the number of global res-
olutions (spatial microproblems) which are necessary to build the operator. In our example, the number of subdomains was
small and the construction of the homogenized operator represented only 30% of the total computation time. In more com-
plex situations, such as in the problems addressed in [37] in which the number of subdomains is large, the computation cost
of the homogenized operator can account for most of the total computation time. In that case, a gain of 18 in the calculation
of the homogenized operator would be all the more significant in terms of the overall cost of the analysis.

6. Conclusions

This paper is based on the LATIN multiscale computational strategy, which enables one to use the PGD model order reduc-
tion technique to reduce the computation cost. The multiscale nature of the strategy is based on the separation of the inter-
face unknowns according to a macroscale and a microscale. The macroscale is used to represent the homogenized behavior
of the structure and to accelerate the convergence of the iterative algorithm. In previous works based on this strategy, the
PGD technique was used to reduce the computation cost of the problems defined on the microscale and to build a reduced-
order model of the microscopic behavior.

The novelty of this paper is that it extends the use of the PGD representation to the construction of the homogenized
operator. The numerical example shows that the convergence rate of the approach is unaffected by this new PGD represen-
tation, but a significant reduction in computation cost can be achieved, especially in the case of nonlinear behavior. The pro-
posed strategy enables a reduced-order model of the homogenized behavior of structures made of nonlinear materials to be
calculated offline and at reasonable cost. This homogenized behavior, which characterizes the local macroscopic behavior of
the structure and is defined over the whole time interval and in each subdomain, establishes a relation between a small per-
turbation in terms of macrodisplacements and a small perturbation in terms of macroforces. Once this homogenized behav-
ior has been calculated and stored, it can be used online to calculate the response of the structure rapidly for new loading
cases.
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Appendix A. The LATIN multiscale solver in details

A.1. Multiscale description of the interface unknowns

Two different descriptions of the interface unknowns (displacements and forces) are introduced: a macroscale description
(denoted with superscript M) and a microcomplement (denoted with superscript m). Over an interface UEE0 between subdo-
mains XE and XE0 , one has:
_WEE0 ¼ _W
M

EE0 þ _W
m

EE0 FEE0 ¼ FM
EE0 þ Fm

EE0 ðA:1Þ
The choice of the spaces of the macrodisplacements and macroforces, denoted respectivelyWM
EE0 and FM

EE0 , is arbitrary, but
has a strong influence on the scalability of the method. In practice, in the spatial domain, the macropart is chosen to be the
linear part of the forces and displacements, which guarantees the scalability of the domain decomposition method in space,
but other possible choices are discussed in [51]. Scalability in time is more difficult to achieve and requires an adaptive gen-
eration of the temporal macrobasis. A detailed analysis of this question was presented in [50]. Here, the separation of the
macroscale from the microscale is carried out only in space, which means that the temporal microscale and macroscale
are identical. The extension to the multiscale temporal case is straightforward.

Once spaces WM
EE0 and FM

EE0 have been defined, the macropart of the displacement field can be defined as:
8F� 2 FM
EE0 ;

Z
UEE0 �I

ð _W
M

EE0 � _WEE0 Þ � F� dSdt ¼ 0 ðA:2Þ
and the macropart of the force field can be defined as:
8 _W� 2 WM
EE0 ;

Z
UEE0 �I

ðFM
EE0 � FEE0 Þ � _W� dSdt ¼ 0 ðA:3Þ
The spaces of the interface quantities can be extended to the other interfaces N E of subdomain XE as:WM
E ¼ �UEE0 2N EW

M
EE0 .

FM
E ¼ �UEE0 2N EF

M
EE0 . The extension to the whole set of the subdomains of X leads toWM and FM . The micropart of the displace-

ments and forces can be derived from (8).
Over the interfaces, the macroforces are assumed to verify the transmission conditions:
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FM
EE0 þ FM

E0E ¼ 0 over UEE0 ðA:4Þ

FM
E þ FM

d ¼ 0 over @XE \ @2X ðA:5Þ
This assumption is called the ‘‘admissibility of the macroquantities’’.
The corresponding subspace is defined as FM

ad. Now let us introduce the space WM
ad of the displacements which are con-

tinuous at the interfaces and equal to the macropart of prescribed displacement ud over @1X. The spaces whose elements
have their macroparts in WM

ad and FM
ad are denoted Wad and F ad.

A.2. The local stage

At iteration n + 1, given sn 2 Ad, the local stage leads to an approximation of the solution ŝnþ1=2 in space C such that
ðŝnþ1=2 � snÞ belongs to search direction Eþ. Skipping the subscripts for the sake of clarity, in each subdomain XE � X;Eþ

is defined by:
Hðr̂E � rEÞ þ ð _̂epE � _epEÞ ¼ 0 ðA:6Þ

hðF̂E � FEÞ � ð _̂WE � _WEÞ ¼ 0 ðA:7Þ
where H and h are symmetric, positive definite operators which have an influence on the convergence rate of the algorithm,
but do not affect the solution. The solution ŝ of the local stage is the ‘‘intersection’’ of spaces Eþ and C. This leads to a set of
equations which are defined locally in space.

A.3. The linear stage

The linear stage consists, given the solution ŝnþ1=2 2 C of the local stage, in finding a solution sn 2 Ad such that
ðsnþ1 � ŝnþ1=2Þ belongs to search direction E�. Skipping the subscripts, E� is defined by:
8r� 2 S;
X
XE�X

Z
XE�I
ðHðrE � r̂EÞ � ð _epE � _̂epEÞÞ : r� dXdt ¼ 0 ðA:8Þ

8F� 2 F ad;
X
XE�X

Z
@XE�I
ðhðFE � F̂EÞ þ ð _WE � _̂WEÞÞ � F� dSdt ¼ 0 ðA:9Þ
which is written in a weak sense in order to take into account the admissibility of the macroforces (A.4) and (A.5).
In [28], it was shown that an optimal choice of H in terms of the convergence rate consists in defining the manifold E� as

the vector space which is tangent to C in ŝ. This requires the calculation of H ¼ @B=@rjr̂ at each iteration (or, at least, every
few iterations) as in a classical Newton algorithm. h can be viewed as a ‘‘viscosity’’ effect at the interface. The choice of this
parameter is discussed in [37].

The admissibility of the macroforces F� 2 F ad in (A.9), which expresses that macropart FM� belongs to FM
ad, is enforced by

introducing a Lagrange multiplier _~W
M

E 2 WM
ad. Then, (A.9) is defined locally in each subdomain XE as:
8F� 2 F
Z
@XE�I
ðhðFE � F̂EÞ þ ð _WE � _̂WEÞ �

_~W
M

E Þ � F� dSdt ¼ 0 ðA:10Þ
Conversely, the problem of the admissibility of the macroquantities is defined on the global interface level by:
8 _~W
M�

E 2 WM�
ad

X
XE�X

Z
@XE�I

_~W
M�

E � FE dSdt �
Z
@XE\@X2�I

_~W
M�

E � Fd dSdt ¼ 0 ðA:11Þ
Moreover, kinematic admissibility and the state law lead to the following condition for each subdomain:
8 r�E; F
�
E

� �
2 S�E

Z
XE�I

K�1 _rE þ _epE

� �
: r�E dXdt ¼

Z
@XE�I

_WE � F�E dSdt ðA:12Þ
A.4. Convergence of the algorithm

Under the assumption of perfect interfaces and a monotonous operator B for the description of the constitutive law, the
algorithm presented above converges toward the reference solution sref (see [28] for proof of the convergence). In order to
check the convergence of the iterative scheme, one introduces the following error indicator:
g ¼ ksnþ1 � ŝnþ1=2k
1
2 ksnþ1 þ ŝnþ1=2k

ðA:13Þ
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where the norm is defined as:
ksk2 ¼
X
XE�X

Z
XE�I
ðrE : HrE þ _epE : H�1 _epEÞdXdt þ

Z
@XE�I
ðFE � hFE þ _WE � h

�1 _WEÞdSdt ðA:14Þ
Let us note that if the reference solution sref is available one can also introduce the actual relative error gref :
gref ¼
ksnþ1 � sref k
ksref k

ðA:15Þ
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