
HAL Id: hal-01403810
https://hal.science/hal-01403810

Preprint submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster Chinese remaindering
Joris van der Hoeven

To cite this version:

Joris van der Hoeven. Faster Chinese remaindering. 2016. �hal-01403810�

https://hal.science/hal-01403810
https://hal.archives-ouvertes.fr

Faster Chinese remaindering
Joris van der Hoeven

Laboratoire d'informatique, UMR 7161 CNRS
Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau

November 27, 2016

The Chinese remainder theorem is a key tool for the design of e�cient multi-modular
algorithms. In this paper, we study the case when the moduli m1; :::; m` are �xed
and can even be chosen by the user. Through an appropriate use of the technique of
FFT-trading, we will show that this assumption allows for the gain of an asymptotic
factor O(log log `) in the complexity of �Chinese remaindering�. For small `, we will
also show how to choose �gentle moduli� that allow for further gains at the other end.
The multiplication of integer matrices is one typical application where we expect
practical gains for various common matrix dimensions and integer bitsizes.

Keywords: Chinese remainder theorem, algorithm, complexity, integer matrix mul-
tiplication

1. Introduction

Modular reduction is an important tool in computer algebra and elsewhere for speeding
up computations. The technique allows to reduce a problem that involves large integer or
polynomial coe�cients to one or more similar problems that only involve small modular
coe�cients. Depending on the application, the solution to the initial problem is recon-
structed via the Chinese remainder theorem or Hensel's lemma. We refer to [10, chapter 5]
for a gentle introduction to this topic.

In this paper, we will mainly be concerned with multi-modular algorithms over the
integers that rely on the Chinese remainder theorem. The archetype of such an algorithm
works as follows. We start with a polynomial function f :Zr!Zs. For any modulus m,
reduction of f modulo m yields a new function fm: (Z/mZ)r! (Z/mZ)s such that

f(x1; :::; xr)modm = fm(x1modm; :::; xrmodm)

for all x1; :::; xr 2Z. Given an algorithm to compute f that only uses ring operations on
integers, it su�ces to replace each ring operations by its reduction modulo m in order to
obtain an algorithm that computes fm. Now given integers x1; :::; xr2Z and (y1; :::; ys)=
f(x1; :::; xr), assume that we know a bound B 2N with jxij6B for i=1; :::; r and jyij6B
for i= 1; :::; s. Then the following multi-modular algorithm provides with an alternative
way to compute f(x1; :::; xr):

0. Select moduli m1; :::;m` with m1 ���m`> 2B that are mutually coprime.

1. For i=1; :::; r, compute xi;j :=ximodmj for j=1; :::; `.

2. For j=1; :::; `, compute (y1;j ; :::; ys;j) := fmj(x1;j ; :::; xr;j).

1

3. For i=1; :::; s, reconstruct yi from the values yi;j := yimodmj with j=1; :::; `.

Step 1 consists of r multi-modular reductions (�nding the xi;j as a function of xi) and
step 3 of s multi-modular reconstructions (�nding yi as a function the yi;j); this is where
the Chinese remainder theorem comes in. For a more detailed example with an application
to integer matrix multiplication, we refer to section 4.5.

In favourable cases, the cost of steps 0, 1 and 3 is negligible with respect to the cost
of step 2. In such situations, the multi-modular algorithm to compute f is usually much
faster than the original algorithm. In less favourable cases, the cost of steps 1 and 3 can
no longer be neglected. This raises the question whether it is possible to reduce the cost
of these steps as much as possible.

Two observations are crucial here. First of all, the moduli m1; :::; m` are the same for
all r multi-modular reductions and s multi-modular reconstructions. If r+ s is large, then
this means that we can essentially assume that m1; :::; m` were �xed once and for all.
Secondly, we are free to choose m1; :::; m` in any way that suits us. By making each mi

�t into a machine word, one may ensure that every modular operation only takes a few
cycles. Special �FFT-moduli� are often used as well for speeding up polynomial arithmetic.

In this paper, we will show how to exploit both of the above observations. For �xed
moduli, we will show in section 3 how to make Chinese remaindering asymptotically more
e�cient by a factor O(log log `) when ` gets large. In section 4, we show that it is possible
to construct �gentle modulo� that allow for speed-ups when ` is small (l.64). Both results
can be combined in order to accelerate Chinese remaindering for all possible values of `.

The new asymptotic complexity bounds make heavy use of discrete Fourier transforms.
For our purposes, it is crucial to avoid �synthetic� FFT schemes that require the adjunction
of arti�cial roots of unity as in Schönhage�Strassen multiplication [24]. Instead, one should
use �inborn� FFT schemes that work with approximate roots of unity in C or roots of
unity with high smooth orders in �nite �elds; see [24, section 3] and [23, 15]. Basic com-
plexity properties of integer multiplication and division based on fast Fourier techniques
are recalled in section 2.

Let I(n) be the bit complexity for multiplying two n-bit numbers. Given pairwise
comprime modulim1; :::;m` of bit-size n, it is well known that multi-modular reduction and
reconstruction can be carried out in time O(I(n `) log `) using so called remainder trees [8,
20, 3]. Recent improvements of this technique can be found in [4, 2]. The main goal of
section 3 is to show that this complexity essentially drops down to O(I(n `) log `/ log log `)
in the case when all moduli m1; :::; m` are �xed; see Theorems 6 and 10 for more precise
statements. The main idea is to increase the arities of nodes in the remainder tree, while
performing the bulk of the computations at each node using Fourier representations. This
technique of trading faster algorithms against faster representations was also used in [16],
where we called it FFT-trading ; see also [1]. The same approach can also be applied to
the problem of base conversion (see section 3.8) and for univariate polynomials instead of
integers (see section 3.9).

Having obtained a non trivial asymptotic speed-up for large `, we next turn our atten-
tion to the case when ` is small (say `. 64). The main goal of section 4 there is to exhibit
the existence of gentle moduli m1; :::; m` for which Chinese remaindering becomes more
e�cient than usual. The �rst idea is to pick moduli mi of the form 2sw ¡ "i

2, where w is
somewhat smaller than the hardware word size, s is even, and "i

2< 2w. In section 4.1, we
will show that multi-modular reduction and reconstruction both become a lot simpler for
such moduli. Secondly, each mi can be factored as mi=(2sw/2¡ "i) (2sw/2+ "i) and, if we
are lucky, then both 2sw/2¡ "i and 2sw/2+ "i can be factored into s/2 moduli that �t into

2 Faster Chinese remaindering

machine words. If we are very lucky, then this allows us to obtain w ` modulimi;j of bitsize
�w that are mutually coprime and for which Chinese remaindering can be implemented
e�ciently. Gentle moduli can be regarded as the integer analogue of �special sets of points�
that allowed for speed-ups of multi-point evaluation and interpolation in [5].

Acknowledgments. We would like to thank Grégoire Lecerf for pointing us to Bern-
stein's work [2] on the topic of this paper.

2. Preliminaries

2.1. Integer multiplication

Throughout this paper we will assuming the deterministic multitape Turing model [21] in
order to analyze the �bit complexity� of our algorithms. We will denote by I(n) the cost
of n-bit integer multiplication. The best current bound [15] for I(n) is

I(n) = O(n logn 8log
�n);

where log�n :=min
�
k 2N:

¡
log � :::k� � log

�
(n)6 1

	
is called the iterator of the logarithm.

For large n, it is well known that the fastest algorithms for integer multiplication [23,
24, 9, 15] are all based on the discrete Fourier transform [7]: denoting by F(2 n) the
cost of a �suitable Fourier transform� of bitsize 2 n and by N(2 n) the cost of the �inner
multiplications� for this bitsize, one has

I(n) = 3 F(2n)+N(2n): (1)

For the best current algorithm from [15], we have

F(2n) = O(n logn 8log
�n) (2)

N (2n) = O(n 4log
�n): (3)

One always has N(2 n) = o(F(2 n)). The actual size of Fourier transforms is usually
somewhat restricted: for e�ciency reasons, it should be the product of powers of small
prime numbers only, such as 2, 3 and 5. Fortunately, for large numbers n, it is always
possible to �nd n02 2N3N5N with n0>n and n0/n=1+ o(1).

It is also well known that fast Fourier transforms allow for several tricks. For instance,
if one of the multiplicands of an n-bit integer product is �xed, then its Fourier transform
can be precomputed. This means that the cost of the multiplication drops down to

I�xed(n) = 2 F(2n)+N(2n) � /2 3 I(n):

In particular, the complexity I(N;n) of multiplying an N -bit integer with an n-bit one (for
N >n) satis�es

I(N;n) =
�
/2 3
N
n
+ /1 3+ o(1)

�
I(n):

Squares of n-bit numbers can be computed in time (2+ o(1)) F(2n)� /2 3 I(n) for the same
reason. Yet another example is the multiplication of two 2� 2 matrices with (n ¡ 1)-bit
integer entries: such multiplications can be done in time (12 + o(1)) F(2 n) � 4 I(n) by
transforming the input matrices, multiplying the transformed matrices in the �Fourier
model�, and then transforming the result back.

Joris van der Hoeven 3

In the remainder of this paper, we will systematically assume that asymptotically fast
integer multiplication is based on fast Fourier transforms. In particular, we have (1) for
certain functions F and N. We will also assume that the functions F(n)/(N(n) log n) and
N(n) /n are (not necessarily strictly) increasing and that F(n) = o(N(n) log n log log n).
These additional conditions are satis�ed for (2) and (3). The �rst condition is violated
whenever the FFT scheme requires the adjunction of arti�cial roots of unity. This happens
for Schönhage�Strassen multiplication, in which case we have F(2n)=O(n logn log logn)
and N(2 n) = O(n log n)). We will say that an FFT-scheme is inborn if it satis�es our
additional requirements.

For a hypothetical integer multiplication that runs in time I(n)= o(n logn 8log
�n), but

for which I(n) / (n log n) is (not necessarily strictly) increasing, we also notice that it is
possible to design an inborn FFT-based integer multiplication method that runs in time
O(I(n)); this is for instance used in [13].

2.2. Euclidean division of integers
Let D(N; n) denote the cost of euclidean division with remainder of an N -bit integer by
an n-bit one. In [16, section 3.2], we gave an algorithm divide for the euclidean division
of a polynomial of degree <2 n by another polynomial of degree <n. This algorithm is
based on FFT trading , a technique that consists of doing as much work as possible in the
FFT-model even at the expense of using naive, suboptimal algorithms in the FFT-model.

The straightforward adaptation of this division to integer arithmetic yields the asymp-
totic bound

D(2n; n) 6 (/5 3+ o(1)) I(n):

Furthermore, the discrete Fourier transforms for the dividend make up for roughly one �fth
of the total amount of transforms. For N > 2n, the cost of the transforms for the dividend
does not grow with N , which leads to the re�nement

D(N;n) 6
�
/4 3
N
n
¡ 1+ o(1)

�
I(n) (N > 2n):

Similarly, if n= o(N), then

D(N;N ¡n) 6 (/2 3+ o(1))
N
n

I(n) (n= o(N));

since the bulk of the computation consists of multiplying the approximate n-bit quotient
with the (N ¡n)-bit dividend. If the dividend is �xed, then we even get

D�xed(N;N ¡n) 6 (/1 3+ o(1))
N
n

I(n) (n= o(N));

since the Fourier transforms for the dividend can be precomputed.

2.3. Approximate products modulo one
Let us start with a few de�nitions and notations. Given n2N and e2Z, we de�ne

Dn;e = fk 2e¡n: 06 k < 2ng

be the set of dyadic �xed point numbers of bitsize n and with exponent e. Given x 2R
and m2R>, we denote by

x remm = x¡
j
x
m

k
m 2 [0;m)

4 Faster Chinese remaindering

the remainder of the euclidean division of x by m. Given x 2 R and " 2 R>, we say
that x~ 2 R is an "-approximation of x if jx~ ¡ xj < ". We also say that x~ is a circular
"-approximation of x if jx~¡xj�<". Here jx~¡xj� :=mink2Z jx~¡x¡k j denotes the circular
distance between x~ and x.

Let x=k 2¡2n2D2n;¡2n, y= l 202Dn;0 and z=x y rem12D2n;¡2n. Mutatis mutandis,
Bernstein observed in [2] that we may compute a circular 2¡n-approximation z~2Dn;¡n for
z as follows. We �rst compute the product m=k l rem (22n¡ 1) of k and l modulo 22n¡ 1
and then take z~= b2¡nmc 2¡n.

Let us show that z~ indeed satis�es the required property. By construction, there exists
an a2N with a< 2n such that m= k l¡ a (22n¡ 1). Therefore, 06m 2¡2n¡ z~< 2¡n and
x y¡m 2¡2n= a (22n¡ 1) 2¡2n= a¡ a 2¡2n, whence a¡ 2¡n<xy¡ z~<a+2¡n.

More generally, if we only have a circular [� 2¡n]-approximation x~= k 2¡2n2D2n;¡2n
of a number x2R (instead of a number x2k 2¡n2D2n;¡2n as above), then the algorithm
computes a circular [(1+ y 2¡n �) 2¡n]-approximation z~ of x y rem 1.

Bernstein's trick is illustrated in Figure 1: we are only interested in the highlighted
portion of the product. We notice that these kinds of truncated products are reminiscent
of the �middle product� in the case of polynomials [12]; in our setting, we also have to
cope with carries and rounding errors. When using FFT-multiplication, products modulo
22n¡1 can be computed using three discrete Fourier transforms of bitsize 2 n, so the cost is
essentially the same as the cost of an n-bit integer multiplication. If one of the arguments
is �xed, then the cost becomes asymptotic to /2 3 I(n).

¡2n ¡n

n

0

0

x

y

Figure 1. Product modulo one of x2D2n;¡2n and y 2Dn;0 with n signi�cant bits.

More generally, for `2f1; 2; :::g, let x~2D`n;¡`n be a circular � 2¡`n-approximation of
a number x 2 R and let y 2 D(`¡1)n;0. Then we may compute a circular approximation
z~2Dn;¡n of z=x y rem 1 as follows. Consider the expansions

x~ =
X
i=¡`

¡1

x~i 2
in; y =

X
i=0

`¡2

yi 2
in; (4)

with x~¡`; :::; x~¡1; y0; :::; y`¡22Dn;0; see Figure 2. By what precedes, for i=0; :::; `¡ 2, we
may compute circular 2¡n-approximations u~i for

ui = [(x~¡i¡1 2
¡2n+ x~¡i 2

¡n) yi] rem 1:

Setting

vi = [(x~¡` 2
¡(`+1¡i)n+ ���+ x~¡i 2

¡n) yi] rem 1;

it follows that ju~i¡ vij�< 2 � 2¡n, whereas v := x~ y rem 1 = (v0+ ���+ v`¡2) rem 1. Taking
z~= (u0+ ���+ u`¡2) rem1, it follows that jz~¡ v j�< (2 `¡ 2) 2¡n and

jz~¡ z j� < (2 `¡ 2+ y 2¡(`¡1)n �) 2¡n:

Joris van der Hoeven 5

When using FFT-multiplication, we notice that the sum v0+ ���+v`¡2 can be computed in
the FFT-model, before being transformed back. In that way, we only need 2 `+1 instead
of 3 ` transforms of size 2n, for a total cost of (/2 3 `+ /1 3+ o(1)) I(n).

¡2n ¡n

n

0

0

x¡` n ���

(`¡ 1)n

y

���

Figure 2. Product modulo one of x2D`n;¡`n and y 2D(`¡1)n;0 with n signi�cant bits.

2.4. Machine arithmetic

For actual machine implementations of large integer arithmetic, it is customary to choose
a base of the form 2w and to perform all computations with respect to that base. We will
call w the soft word size. For processors that have good hardware support for integer
arithmetic, taking w= 32 or w= 64 is usually most e�cient. The GMP package [11] uses
this approach.

However, modern processors are often better at �oating point arithmetic. General
purpose processors generally provide double precision IEEE-768 compliant instructions,
whereas GPUs are frequently limited to single precision. The respective choices w � 50
and w � 22 are most adequate in these cases. It is good to pick w slightly below the
maximum bitsize of the mantissa in order to accelerate carry handling. We refer to [17]
for more details on the implementation of multiple precision arithmetic based on �oating
point arithmetic.

Another particularity of recent processors is the availability of ever wider SIMD (Single
Instruction Multiple Data) instructions. For modern implementations of large integer arith-
metic, we therefore recommend to focus on the problem of multiplying several (1;2;4;8; :::)
large integers of a given bitsize instead of a single one. We again refer to [17] for more
details.

In what follows, when using integer arithmetic, we will denote byW the maximal bitsize
such that we have a hardware instruction to multiply two integers of W bits (e.g. W = 32
orW =64). When using �oating point arithmetic, we letW be the bitsize of a mantissa (i.e.
W =23 orW =53). We will callW themachine word size. For implementations of multiple
precision arithmetic, we always have w6W , but it can be interesting to take w<W .

For moduli m that �t into a machine word, arithmetic modulo m can be implemented
e�ciently using hardware instructions. In this case, the available algorithms again tend
to be somewhat faster if the size of m is a few bit smaller than W . We refer to [19] for
a survey of the best currently available algorithms in various cases and how to exploit
SIMD instructions.

6 Faster Chinese remaindering

When using arithmetic modulom, it is often possible to delay the reductions modulom
as much as possible. One typical example is modular matrix multiplication. Assume that
we have two r� r matrices with coe�cients modulo m (represented by integers between 0
andm¡1, say). If rm2 �ts into a machine word, then we may multiply the matrices using
integer or �oating point arithmetic and reduce the result modulom. This has the advantage
that we may use standard, highly optimized implementations of matrix multiplication. One
drawback is that the intermediate results before reduction require at least twice as much
space. Also, the bitsize of the modulus is at least twice as small as W .

3. Asymptotically fast Chinese remaindering

3.1. The Chinese remainder theorem
For any integer m> 1, we will write Rm= f0; :::;m¡ 1g. We recall:

Chinese Remainder Theorem. Let m1; :::; m` be positive integers that are mutually
coprime and denote M =m1 ���mm. Given a1 2 Rm1; :::; a` 2 Rm`, there exists a unique
x2RM with x� ai (modmi) for i=1; :::; `.

We will prove the following more constructive version of this theorem.

Theorem 1. Let m1; :::; m` be positive integers that are mutually coprime and denote
M =m1 ���mm. There exist c1; :::; c` 2 RM such that for any a1 2 Rm1; :::; a` 2 Rm`, the
number

x = (c1 a1+ ���+ c` a`) remM

satis�es x� ai (modmi) for i=1; :::; `.

Notation. We call c1; :::;c` the cofactors form1; :::;m` inM and also denote these numbers
by cm1;M = c1; :::; cm`;M = c`.

Proof. If ` = 1, then it su�ces to take c1 = 1. If ` = 2, then the extended Euclidean
algorithm allows us to compute a Bezout relation

k1m1+ k2m2 = 1; (5)

where k12Rm2 and k22Rm1. Let us show that we may take

c1 = k2m2 2 Rm1m2

c2 = k1m1 2 Rm1m2:

Indeed, given a12Rm1 and a22Rm2, we have

k1m1x+ k2m2x� x� c1 a1+ c2 a2� k1m1 a2+ k2m2 a1 (modm1m2):

In particular,m2 divides k1m1 (x¡a2). Since (5) implies gcd(k1m1;m2)=1, it follows that
x� a2 (modm2). Similarly, x� a1 (modm1).

For ` > 2, we will use induction. Let h= b`/2c, M1=m1 ���mh and M2=mh+1 ���ml.
By induction, we may compute cM1;M, cM2;M , cm1;M1; :::; cmh;M1 and cmh+1;M2; :::; cm`;M2.
We claim that we may take

cmi = cmi;M1 cM1;M (i=1; :::; h)

cmi = cmi;M2 cM2;M (i=h+1; :::; `):

Joris van der Hoeven 7

Indeed, for i=1; :::; h, we get

x � cM1;M (cm1;M1 a1+ ���+ cmh;M1 ah)+ cM2;M (cmh+1;M2ah+1+ ���+ cm`;M2 a`)

� cm1;M1 a1+ ���+ cmh;M1 ah (modM1);

whence x� ai (modmi). For i=h+1; :::; ` we obtain x� ai (modmi) in a similar way. �

3.2. Naive multi-modular reduction and reconstruction
Let m1; :::; m`, M =m1 ���m`, a1 2 Rm1; :::; a` 2 Rm` and x 2 RM be as in the Chinese
remainder theorem. We will refer to the computation of a1; :::; a` as a function of x
as the problem of multi-modular reduction. The inverse problem is called multi-modular
reconstruction. In what follows, we assume that m1; :::;m` have been �xed once and for all.

The simplest way to perform multi-modular reduction is to simply take

ai := x remmi (i=1; :::; `): (6)

Inversely, Theorem 1 provides us with a formula for multi-modular reconstruction:

x := (cm1;M a1+ ���+ cm`;M a`) remM: (7)

Since m1; :::; m` are �xed, the computation of the cofactors cm1;M can be regarded as
a pre-computation.

Let us analyze the cost of the above methods in terms of the complexity I(n) of n-bit
integer multiplication. Assume that mi< 2n for i=1; :::; `. Then multi-modular reduction
can clearly be done in time `D(` n; n)= (/4 3 `¡ 1+ o(1)) ` I(n).

As to multi-modular reconstruction, assume that mi < 2n
0
for i = 1; :::; `, where

n0 := n ¡ dlog2 `e is such that ` 2n
0 6 2n. Cutting the cofactors in chunks of n bits as

in (4), we precompute the Fourier transform of all obtained chunks. The Fourier transforms
of a1; :::; a` can be computed in time 6` F(2 n). The sum S = cm1;M a1 + ��� + cm`;M a`
can be computed in the Fourier model in time N(2 n) `2 and transformed back in time
F(2n) `+O(n `). Our assumption that `mi< 2n for i=1; :::; ` ensures that the computed
sum is correct. The remainder S rem M can be computed in time D�xed((` + 1) n;
` n)6 F(2 n) `+ 5 F(2 n) +O(N(2 n) `). The total time of the reconstruction is therefore
bounded by

Cn0;naive
� (`) = (N(2n) `2+2 F(2n) `+5 F(2n)+O(N(2n) `)): (8)

If we only assume that mi < 2n, then we need to increase the bitsize n by dlog2 `e. If
` log ` = O(n), then this means that we have to multiply the right-hand side of (8) by
1+O(log `/n)=1+O(`¡1).

3.3. Scaled remainders
The above complexity analysis shows that naive multi-modular recomposition can be done
faster than naive multi-modular reduction. In order to make the latter operation more
e�cient, one may work with scaled remainders that were introduced in [2]. The idea is that
each remainder of the form u remP is replaced by u

P
rem 1. The quotient u

P
is regarded as

a real number and its remainder modulo 1 as a number in the interval [0; 1).
If we allow ourselves to compute with exact real numbers, then this leads us to replace

the relation (6) by

x
mi

rem 1 =

�
M
mi

�
x
M

rem1
��

rem 1 (i=1; :::; `) (9)

8 Faster Chinese remaindering

and (7) by

x
M

rem 1 =

�
cm1;Mm1

M

�
a1
m1

rem1

�
+ ���+ cm`;Mm`

M

�
a`
m`

rem 1

��
rem1: (10)

For actual machine computations, we rather work with �xed point approximations of the
scaled remainders. In order to retrieve the actual remainder u remP from the scaled one
u

P
rem1, we need a circular (2P)¡1-approximation of u

P
rem 1.

Now assume that m1; :::;mk2R2n
0 with

n0 6 n¡dlog2 (4 `)e:

Given a circular [� 2¡`n]-approximation of x

M
rem1 in D`n;¡`n with

� 6 2(n¡n
0)(`¡1);

the algorithm at the end of section 2.3 allows us to compute a circular [2 ` 2¡n]-approxi-
mation modulo 1 of x

mi
rem1, by applying the formula (9). Since 2 ` 2¡n6 2¡n0¡1, we may

then recover the number x remmi using one �nal n-bit multiplication. Moreover, in the
FFT-model, the transforms for x

M
rem1 need to be computed only once and the transforms

for the numbers M

mi
can be precomputed. In summary, given an approximation for the

scaled remainder x

M
rem1, we may thus compute approximations for the scaled remainders

x

mi
rem 1 in time

Cn0;scaled(`) = N(2n) `2+2 F(2n) `+O(N(2n) `): (11)

From this, we may recover the actual remainders x remmi in time ` I(n).
Scaled remainders can also be used for multi-modular reconstruction, but carry han-

dling requires more care and the overall payo� is less when compared to the algorithm from
the previous subsection.

3.4. Remainder trees
It is well-known that Chinese remaindering can be accelerated using a similar dichotomic
technique as in the proof of Theorem 1. This time, we subdivide M = fm1; :::; m`g into
k parts M1 = fm`0+1; :::; m`1g; :::;Mk = fm`k¡1+1 + 1; :::; m`kg with `j = b(j `)/kc for
j=0; :::; k. We denote Mj=m`j¡1+1 ���m`j and assume that `>k (if `<k, then we apply
the native algorithms from the previous subsections).

Fast multi-modular reduction proceeds as follows. We �rst compute

Xj = x remMj (j=1; :::; k) (12)

using the algorithm from the previous subsection. Next, we recursively apply fast multi-
modular reduction to obtain

ai = Xj remmi (i= `j¡1+1; :::; `j): (13)

The computation process can be represented in the form of a so called remainder tree;
see Figure 3. The root of the tree is labeled by xmodM . The children of the root are the
remainder trees for Xj modulo Mj, where j = 1; :::; k. If needed, then the arity k can be
adjusted as a function of the bitsize of the moduli and `.

Fast multi-modular reconstruction is done in a similar way, following the opposite
direction. We �rst reconstruct

Xj =
¡
cm`j¡1+1;Mja`j¡1+1+ ���+ cm`j

;Mj a`j
�
remMj (j=1; :::; k); (14)

followed by

x = (cM1;MX1+ ���+ cMk;MXk) remM: (15)

Joris van der Hoeven 9

The computation �ow can again be represented using a tree, but this time the computations
are done in a bottom-up way.

Following the approach from subsection 3.3, it is also possible to systematically work
with �xed point approximations of scaled remainders u

P
rem1 instead of usual remainders

u remP . In that case, the computation process gives rise to a scaled remainder tree as in
Figure 4. Of course, the precision of the approximations has to be chosen with care. Before
we come to this, let us �rst show how to choose k.

123456 rem255255

333 rem1001

4 rem 7 3 rem11 8 rem13

36 rem255

0 rem 3 1 rem5 2 rem17
Figure 3. Example of a remainder tree with arities k=2 and k=3 at the two recursion levels. In
the case of a reduction, the remainders are computed top-down. In the case of a reconstruction,
they are reconstructed in a bottom-up fashion.

4057213 � 2¡23

10901 � 2¡15

293 � 2¡9 140 � 2¡9 315 � 2¡9

4626 � 2¡15

0 � 2¡9 102 � 2¡9 60 � 2¡9

Figure 4. The scaled remainder tree corresponding to Example 3, while using �xed point approx-
imations for the scaled remainders.

3.5. Speci�cation of the arities of nodes in the remainder tree
Let us �rst focus on multi-modular reconstruction. In order to make this process as e�cient
as possible, the arity k should be selected as a function of n and ` so as to make N(2n) `2

as large as possible in (8), while remaining negligible with respect to F(2n) `. Let

�n(`) =
F(2 ` n)

N(2 ` n) log2 log (2 ` n)
= o

�
F(2 ` n)
N(2 ` n)

�
:

For inborn FFT schemes, we notice that

�n(`) = o

�
log (2 ` n)

log log (2 ` n)

�
�n(`)

¡1 = O

�
log2 log (2 ` n)
log (2 ` n)

�
= O

�
log2 logn
logn

�
:

For the root of the remainder tree, we take

k = 	n(`) =

8><>:
` if `6�n(`)�

`
p �

if `2/36�n(`)<`

�n(`) otherwise

Using the same formula recursively for the other levels of the remainder tree, it is natural
to de�ne the sequences `1; :::; `r+1 and k1; :::; kr by `1= `, ki=	n(`i) and `i+1= d`i/kie
for i=1; :::; r; the construction stops as soon as `r+1 = 1. Notice that we always have
	`(n)6�`(n). The precise choice of k=	n(`) is motivated by the following lemmas.

Lemma 2. If r > 1, then `r
¡1=O((logn)¡1/3).

10 Faster Chinese remaindering

Proof. We clearly cannot have `r¡16�n(`r¡1), since otherwise `r=1. If `r¡1
2/3 6�n(`r¡1)<

`r¡1, then

`r
¡1=

�
`r¡1/

�
`r¡1

p ��¡1=O
¡
`r¡1
¡1/2�6O(�n(`r¡1)¡1/2)=O((logn)¡1/3):

If �n(`r¡1)<`r¡1
2/3 , then

`r
¡1= d`r¡1/�n(`r¡1)e¡1<`r¡1

¡1/3
<�n(`r¡1)

¡1/2=O((logn)¡1/3):

This proves the result in all cases. �

Lemma 3. If r > 1, then we have k1 ��� ki¡1 `i� ` for i=1; :::; r+1.

Proof. For i=1; :::; r¡ 1, we have `i¡1<�n(`i)¡1=O(log2 logn/ logn), so that ki>3 and
`i+1<`i/2 whenever n is su�ciently large. By construction, we also have

ki `i+1 6
�
1+

1

`i

�
`i:

By induction, it follows that

k1 ��� ki¡1 `i 6
�
1+

1

`i

�
���

�
1+

1

`1

�
`1

6 exp
�
1

`r
+ ���+ 1

`1

�
`1

6 exp
�
2

`r

�
`1

� `;

for i=1; :::; r. We also have k1 ��� kr `r+1= k1 ��� kr¡1 `r� `. �

Lemma 4. We have r6 (1+ o(1))
log `

log log (` n) .

Proof. Let � > 0 and let s be smallest such that log�n(`s)< (1¡ �) log log (n `)¡ 1. For
all i < s, we have log `i> (1¡ �) log log (n `)+ log `i+1, whence

s 6 log `
(1¡ �) log log (` n) : (16)

Let c> 0 be a constant such that �n(`)>c
log (` n)

log2 log (` n)
for all `. We also have

log
�
c

log (`sn)
log2 log (`sn)

�
< log�n(`s)< (1¡ �) log log (n `);

so that

log(`sn) = O(log2 log (`sn) (log (` n))1¡�)
= O(log2 log (` n) (log (` n))1¡�):

Since `i> 2 `i+1 for all i < r, it follows that

r¡ s 6 log `s
log 2

=O(log2 log (` n) (log (` n))1¡�): (17)

Adding up (16) and (17) while letting � tend to zero, the result follows. �

Lemma 5. We have `r=O(logn).

Proof. By construction, `r6�n(`r) =O(log (`r n)). For large n, this means that `r<n,
since otherwise `r = O(log(`r2)) = O(log `r), which is impossible. Consequently, `r =
O(log(n2))=O(logn). �

Joris van der Hoeven 11

3.6. Complexity analysis of multi-modular reconstruction
Let Cn�(`) be the complexity multi-modular reconstruction for �xed moduli m1; :::;m` with
mi< 2n for i=1; :::; `.

Theorem 6. If integer multiplication is based on an inborn FFT scheme, then

Cn�(`) 6 (/2 3+ o(1)) I(` n)max
�

log `
log log (n `)

; 1+O(`¡1)

�
: (18)

This bound holds uniformly in ` for n!1.

Proof. In the special case when r=1, the bound (8) yields

Cn
�(`) 6 (1+O(`¡1)) (N(2n) `2+2 F(2n) `+5 F(2n))+O(N(2n) `)

= (2+O(`¡1)) F(2n) `+(1+O(`¡1))N(2n) `2

6 (2+O(`¡1)) F(2n) `+(1+O(`¡1))N(2n) �n(`) `

= (2+O(`¡1)+ o(1)) F(2n) `

= (/2 3+ o(1)) I(n) `+O(I(n));

and we are done. If r > 1, then (8) implies

Cn�(`i) 6 (2+O(ki
¡1)) F(2n `i+1) ki+(1+O(ki

¡1))N(2n `i+1) ki
2+Cn�(`i+1) ki

6 (2+ o(1)) F(2n `i+1) ki+Cn�(`i+1) ki;

for i=1; :::; r. By induction, and using the fact that Cn�(1)=0, we get

Cn
�(`) 6

X
i=1

r

(2+ o(1)) F(2n `i+1) k1 ��� ki:

=
X
i=1

r

(2+ o(1)) F(2n `i+1)
`

`i+1
:

6
X
i=1

r

(2+ o(1)) F(2n `)

= (2+ o(1)) r F(2n `):

The result now follows from Lemma 4 and (1). �

Remark 7. For `¡1= o(1) and `=O(logn), the bound (18) simpli�es into

Cn
�(`) 6 (/2 3+ o(1)) I(` n):

If logn=O(log `), then the bound becomes

Cn�(`) 6 (/2 3+ o(1)) I(` n)
log `

log log `
:

Remark 8. It is interesting to examine the cost of the precomputations as a function of the
parameters n, ` and m1; :::;m`. For a node of the remainder tree at level i, we essentially
need to compute ki cofactors and their transforms. This can be done in time O(ki I(n `i)).
Since we have k1 ��� ki¡1 nodes at level i, the total precomputation time at level i is
therefore bounded by O(k1 ��� ki I(n `i))=O(ki I(n `)). Now ki=o(log (n `i)/ log log (n `i))=
o(log (n `)/ log log (n `)). Consequently, the total precomputation time is bounded by

Cn;pre
� (`) = o

�
r I(n `)

log (n `)
log log (n `)

�
= o

�
I(n `)

log (n `) log `
log2 log (n `)

�
:

12 Faster Chinese remaindering

3.7. Complexity analysis of multi-modular reduction
Let us now consider the complexity Cn(`) of multi-modular reduction for �xed moduli
m1; :::;m` with mi< 2n for i=1; :::; `. In this case, it is most e�cient to work with scaled
remainders, so the algorithm contains three main steps:

1. The initial conversion of x remM into (an approximation of) x

M
rem 1.

2. The computation of (approximations of) the scaled remainders x

mi
rem1.

3. The �nal conversions of (approximations of) x

mi
rem 1 into x remmi.

At a �rst stage, we will assume that m1; :::;m`< 2
n0, where n0<n is su�ciently small such

that the �nal approximations of the scaled remainders x

mi
rem 1 allow us to recover the

usual remainders x remmi.
Let C~n(`) denote the cost of step 2. The conversions in steps 1 and 3 boil down to

multiplications with �xed arguments, so that

Cn0(`) 6 C~n(`)+ (/4 3+ o(1)) I(n `): (19)

For step 2, we use the scaled remainder tree algorithm from subsection 3.4, while taking
the arities k as in subsection 3.5.

Our next task is to show that n0 :=n¡dlog2(4 `r)e is small enough in order to recover
all remainders x remmi.

Lemma 9. There exists a constant n0 such that for all n>n0 and i=1; :::; r, we have

2 ki 6 2dlog2(4`r)e`i+1 = 2(n¡n
0)`i+1:

Proof. For i = r the result clearly holds, so assume that i < r. In particular, if n is
su�ciently large, then it follows that ki 6 d `i

p
e. Now assume for contradiction that

2 ki>2
dlog2(4`r)e`i+1> 2 �2`i+1. Then we would get `i6ki `i+1<ki log2ki< d `i

p
e log2 d `i

p
e.

This is impossible for `i> 2. �

Now starting with a circular 2¡`n-approximation of x

M
rem 1, the scaled reduction

algorithm from subsection 3.3 yields circular [2 k1 2
¡`2]-approximations for the scaled

remainders Xj

Mj
rem 1 at level i=2. Lemma 9 now shows that � =2 k1 is su�ciently small

for a continued application of the same algorithm for the next level. By induction over i,
the same reasoning shows that the scaled remainders at the (i+1)-th level are computed
with an error below

2 ki 2
¡`i+1n6 2(n¡n0)`i+1 � 2¡`i+1n6 2(n¡n0)`i+1(ki+1¡1) � 2¡`i+1n:

At the very end, we obtain (2 kr 2¡n)-approximations for the scaled remainders x

mi
rem 1.

Since `r= kr, this allows us to reconstruct each remainder x remmi using a multiplication
by mi. This shows that n0 is indeed small enough for the algorithm to work.

Theorem 10. If integer multiplication is based on an inborn FFT scheme, then

Cn(`) 6 (/2 3+ o(1)) I(` n)

�
max

�
log `

log log (n `)
; 1

�
+2

�
: (20)

This bound holds uniformly in ` for n!1.

Proof. A similar cost analysis as in the proof of Theorem 6 yields

C~n(`) 6 N(2n) `2+2 F(2n) `+O(N(2n) `) = (/2 3+ o(1)) I(n) `

Joris van der Hoeven 13

when r=1 and

C~n(`) 6 (2+ o(1)) r F(2n `)

when r > 1. In both cases, combination with (19) yields

Cn0(`) 6 (/2 3+ o(1)) I(` n)

�
max

�
log `

log log (n `)
; 1

�
+2

�
:

Notice also that n0=n¡dlog2(4 `r)e>n¡O(logn), by Lemma 5.
Given a number n�>n, we may construct a similar sequence `1�; :::; `r�+1� when using n�

in the role of n. Taking n� minimal such that n�¡dlog2(4 `r��)e>n, we have

Cn(`) 6 (/2 3+ o(1)) I(` n�)

�
max

�
log `

log log (n� `)
; 1

�
+2

�
: (21)

Moreover, n > n� ¡ O(log n�), which implies n� 6 n + O(log n). Plugging this into (21),
the result follows, since log log ((n+ O(log n)) `) � log log (n `) and the assumption that
I(n)/(n logn) is increasing implies I(` (n+O(logn)))� I(` n). �

Remark 11. For `¡1= o(1) and `=O(logn), the bound (20) simpli�es into

Cn(`) 6 (2+ o(1)) I(` n):

If log logn= o(log `), then the bound (20) becomes

Cn(`) 6 (/2 3+ o(1)) I(` n)
log `

log log (n `)
:

For very large ` with logn=O(log `), this yields

Cn(`) 6 (/2 3+ o(1)) I(` n)
log `

log log `
:

Remark 12. Using a similar analysis as in Remark 8, the cost of all precomputations as
a function of n, ` and m1; :::;m` is again bounded by

Cn;pre(`) = o

�
I(n `)

log (n `) log `
log2 log (n `)

�
:

3.8. Base conversion
The approach of this section can also be used for the related problem such as base conver-
sion. Let b2R2n and ` be a �xed base and order. Given a number x2Rb`, the problem is
to compute x0; :::; x`¡12Rb with

x = x0+x1 b+ ���+ x`¡1 b
`¡1: (22)

Inversely, one may wish to reconstruct x from x0; :::; x`¡1. It is well known that both
problems can be solved using a similar remainder tree process as in the case of Chinese
remainders. The analogues for the formulas (7) and (9) are (22) and

xi
b
rem 1 =

h
b`¡1¡i

�
x

b`
rem1

�i
rem 1 (i=0; :::; `¡ 1): (23)

The analogue of the recursive process of subsection 3.4 reduces a problem of size ` to
k similar problems of size d` / ke and one similar problem of size k but for the base
bd`/ke. A routine veri�cation shows that the complexity bounds (18) and (20) also apply
in this context.

14 Faster Chinese remaindering

Moreover, for nodes of the remainder tree at the same level, the analogues of the
cofactors and the multiplicandsM /mi in (9) do not vary as a function of the node. For this
reason, the required precomputations as a function of b and ` can actually be done much
faster. This makes it possible to drop the hypothesis that b and ` are �xed and consider
these parameters as part of the input. Let us denote by Bn(`) and Bn

�(`) the complexities
of computing x0; :::; x`¡1 as a function of x and vice versa.

Theorem 13. If integer multiplication is based on an inborn FFT scheme, then

Bn
�(`) 6 (/2 3+ o(1)) I(` n)

�
log `

log log (n `)
+O(log log `)

�
(24)

Bn(`) 6 (/2 3+ o(1)) I(` n)

�
log `

log log (n `)
+O(log log `)

�
: (25)

These bound holds uniformly in ` for n!1.

Proof. Let us estimate the cost of the precomputations as a function of b and `. The
analysis is similar as in Remark 8 except that we only have to do the precomputations
for a single node of the tree at each level i. Consequently, the precomputation time is
now bounded by O(k1 I(n `1) + ��� + kr I(n `r)). Since the `1; `2; ::: decrease with at least

geometric speed, this cost is dominated by O(k1 I(n `1))= o
�
I(n `) log (n `)

log log (n `)

�
. This proves

the result under the condition that logn=O(log `).
If log ` = o(log n), then we need to construct k1; :::; kr in a slightly di�erent way.

Assuming that n is su�ciently large, let t be maximal such that

22
t¡1 6 	n

�l
2 `

22
t¡1

m�
:

Notice that

t 6 dlog2 log2 `e:
We again set `1= ` and `i+1= d`i/kie. This time, we take ki=22

i¡1
for i6 t and proceed

with the usual construction ki= k(`i) for i > t. It follows that

`i =
l

2 `

22
i¡1

m
(i=1; :::; t+1)

ki 6 	n(`i) (i=1; :::; t)

kt+1 = 	n(`t+1) < 22
t

kt+1 `t+1 = O(`)

and

r 6 t+
log `

log log (n `) + o(1):

Using the new bound for r, a similar complexity analysis as in the proofs of Theorems 6
and 10 yields the bounds (24) and (25) when forgetting about the cost of the precompu-
tations. Now the cost P1 of the precomputations for the �rst t levels is bounded by

P1 = O(k1 I(n `1)+ k2 I(n `2)+ ���+ kt I(n `t))

= O
�
2 I
�
2n `

2

�
+4 I

�
2n `

4

�
+ ���+22

t¡1
I
�

2n `

22
t¡1

��
= O(t I(n `))

and the cost P2 for the remaining levels by

P2 = O(kt+1 I(n `t+1)+ ���+ kr I(n `r))

= O(kt+1 I(n `t+1))

= O
�
kt+1

`t+1
`

I(n `)
�

= O(I(n `)):

Joris van der Hoeven 15

We conclude that the right-hand sides of (24) and (25) absorb the cost P1 + P2 of the
precomputations. �

3.9. Polynomial analogues

It is quite straightforward to adapt the theory of this section to univariate polynomials
instead of integers. An example of this kind of adaptations can be found in [2]. In particular,
this yields e�cient algorithms for multi-point evaluation and interpolation in the case when
the evaluation points are �xed. The analogues of our algorithms for base conversion yield
e�cient methods for p-adic expansions and reconstruction.

More precisely, let R be an e�ective commutative ring and let M(n) be the cost of
multiplying two polynomials of degree <n in R[x]. Assume that R allows for inborn FFT
multiplication. Then M(n)=3 F(2n)+N(2n), where F and N satisfy similar properties as
in the integer case. Let Q1; :::;Q` be `monic polynomials of degree n. Given a polynomial P
of degree <` n in R[x] we may then compute the remainders P modQi for i=1; :::; ` in time

Cn;R(`) 6 (/2 3+ o(1))M(` n)

�
max

�
log `

log log (n `)
; 1

�
+2

�
:

The reconstruction of P from these remainders can be done in time

Cn;R
� (`) 6 (/2 3+ o(1))M(` n)max

�
log `

log log (n `)
; 1+O(`¡1)

�
:

The assumption that R admits a suitable inborn FFT scheme is in particular satis�ed
if R is a �nite �eld [14]. When working in an algebraic complexity model, this is still the
case if R is any �eld of positive characteristic [14]. For general �elds of characteristic zero,
the best known FFT schemes rely on the adjunction of arti�cial roots of unity [6]. In that
case, our techniques only result in an asymptotic speed-up by a factor log log log (n `)
instead of log log (n `). Nevertheless, the �eld of complex numbers does admit roots of unity
of any order, and our algorithms can be used for �xed point approximations of complex
numbers at any precision.

Multi-point evaluation has several interesting applications, but it is important to keep
in mind that our speed-ups only apply when the moduli are �xed. For instance, assume that
we computed approximate zeros z1; :::; z` to a complex polynomial of degree `, using a bit-
precision n. Then we may use multi-point evaluation in order to apply Newton's method
simultaneously to all roots and �nd approximations of bit-precision �2n. Unfortunately,
our speed-up does not work in this case, since the approximate zeros z1; :::; z` are not �xed.
On the other hand, if the polynomial has degree k ` instead of ` and we are still given `
approximate zeros z1; :::; z` (say all zeros in some disk), then the same moduli are used
k times, and one may hope for some speed-up when using our methods.

At another extremity, it is instructive to consider the approximate evaluation of a �xed
polynomial P = P0 + ��� + P`¡1 x

`¡1 with �xed point coe�cients P0; :::; P`¡1 2 Dn;0

at a single point a 2 Dn;0. We may thus assume that suitable Fourier transforms of
the Pi have been precomputed. Now we rewrite P = P[0] + ��� + P[d¡1] (x

k)d¡1 with
k=

�
`

p �
, d= d`/ke and P[i]= Pki+ ���+ Pki+k¡1 x

k¡1. In order to evaluate each of the
P[i] at a, it su�ces to transform the numbers 1; x; :::; xk¡1, to perform the evaluations
in the Fourier representation and then transform the results back. This can be achieved
in time O(k I(n)) + k dN(2n) + d F(2 n). We may �nally compute P (a) = P[0](a) + ��� +
P[d¡1](a) (a

k)d¡1 using Horner's method, in time O(d I(n)). For large `, the dominant term
of the computation time is k dN(2n)� `N(2n).

16 Faster Chinese remaindering

4. Gentle moduli

4.1. The base algorithms revisited for special moduli

Let us now reconsider the naive algorithms from section 3.2, but in the case when the
moduli m1; :::;m` are all close to a speci�c power of two. More precisely, we assume that

mi = 2sw+ �i (i=1; :::; `);

where j�ij6 2w¡1 and s> 2 a small number. As usual, we assume that the mi are pairwise
coprime and we let M =m1 ���m`.

For such moduli, the naive algorithm for the euclidean division of a number x2R2`sw

by mi becomes particularly simple and essentially boils down to the multiplication of �i
with the quotient of this division. In other words, the remainder can be computed in
time ` s I(w) +O(` s w) instead of D(` s w; s w). For small values of `, s and w, this gives
rise to a speedup by a factor s at least. More generally, the computation of ` remainders
a1= x remm1; :::; a`=x remm` can be done in time `2 s I(w)+O(`2 sw).

Multi-modular reconstruction can also be done faster, as follows, using a similar tech-
nique as in [5]. Let x 2RM . Besides the usual binary representation of x and the multi-
modular representation (a1; :::; a`) = (x remm1; :::; x remm`), it is also possible to use the
Newton representation

x = b1+ b2m1+ b3m1m2+ ���+ b`m1 ���m`¡1;

where bi2Rmi. Let us now show how to obtain (b1; :::; b`) e�ciently from (a1; :::; a`). Since
x remm1= b1=a1, we must take b1=a1. Assume that b1; :::; bi¡1 have been computed. For
j= i¡ 1; :::; 1 we next compute

uj ;i = (bj+ bj+1mj+ ���+ bi¡1mj ���mi¡2) remmi

using ui¡1;i= bi¡1 and

uj ;i = (bj+ uj+1;imj) remmi

= (bj+ uj+1;i � (�j ¡ �i)) remmi (j= i¡ 2; :::; 1):

Notice that ui¡1;i; :::; u1;i can be computed in time (i¡ 1) (s+1) I(w)+O(i s w). We have

x remmi = (u1;i+ bim1 ���mi¡1) remmi = ai:

Now the inverse vi of m1 ���mi¡1 modulo mi can be precomputed. We �nally compute

bi = vi (ai¡ u1) remmi;

which can be done in time I(s w) + O(s w). For small values of i, we notice that it may
be faster to divide successively by m1; :::;mi¡1 modulo mi instead of multiplying with vi.
In total, the computation of the Newton representation (b1; :::; b`) can be done in time�
`
2

�
(s + 1) I(w) + I(s w) ` + O(`2 s w). Having computed the Newton representation, we

next compute

xi = bi+ bi+1mi+ ���+ b`mi ���m`¡1

for i= `; :::; 1, using the recurrence relation

xi = bi+ xi+1mi:

Joris van der Hoeven 17

Since xi+1 2 R2(`¡i)sw, the computation of xi takes a time (l ¡ i) s I(w) + O((l ¡ i) s w).
Altogether, the computation of x = x1 from (a1; :::; a`) can therefore be done in time�
`
2

�
(2 s+1) I(w)+ I(sw) `+O(`2 sw)� `2 s I(w).

4.2. The gentle modulus hunt
For practical applications, we usually wish to work with moduli that �t into one word or
half a word. Now the algorithm from the previous subsection is particularly e�cient if the
numbers �i also �t into one word or half a word. This means that we need to impose the
further requirement that each modulus mi can be factored

mi = mi;1 ���mi;s;

withmi;1; :::;mi;s<2w. If this is possible, then the mi are called s-gentle moduli . For given
bitsizes w and s> 2, the main questions are now: do such moduli indeed exist? If so, then
how to �nd them?

If s=2, then it is easy to construct s-gentle moduli mi= 22w+ �i by taking �i=¡"i2,
where 06 "i< 2(w¡1)/2 is odd. Indeed,

22w¡ "i2 = (2w+ "i) (2
w¡ "i)

and gcd(2w + "i; 2w ¡ "i) = gcd(2w + "i; 2 "i) = gcd(2w + "i; "i) = gcd(2w; "i) = 1.
Unfortunately, this trick does not generalize to higher values s > 3. Indeed, consider
a product

(2w+ �1) ��� (2w+ �s) = 2sw+(�1+ ���+ �s) 2
(s¡1)w+

((�1+ ���+ �s)
2¡ (�12+ ���+ �s

2)) 2(s¡2)w¡1+ ���;

where �1; :::; �s are small compared to 2w. If the coe�cient �1+ ���+ �s of 2(s¡1)w vanishes,
then the coe�cient of 2(s¡2)w¡1 becomes the opposite ¡(�12+ ���+ �s

2) of a sum of squares.
In particular, both coe�cients cannot vanish simultaneously, unless �1= ���= �s=0.

If s> 2, then we are left with the option to search s-gentle moduli by brute force. As
long as s is �reasonably small� (say s6 8), the probability to hit an s-gentle modulus for a
randomly chosen �i often remains signi�cantly larger than 2¡w. We may then use sieving to
�nd such moduli. By what precedes, it is also desirable to systematically take �i=¡"i2 for
06 "i< 2(w¡1)/2. This has the additional bene�t that we �only� have to consider 2(w¡1)/2

possibilities for "i.

4.3. The sieving procedure
We implemented a sieving procedure in Mathemagix [18] that uses the Mpari package
with an interface to Pari-GP [22]. Given parameters s; w; w 0 and �, the goal of our
procedure is to �nd s-gentle moduli of the form

M = (2sw/2¡ ") (2sw/2¡ ") = m1 ���ms

with the constraints that

mi < 2w
0

gcd(mi; 2
�!) = 1;

for i=1; :::; s, and m16 ���6ms. The parameter s is small and even. One should interpret
w and w 0 as the intended and maximal bitsize of the small moduli mi. The parameter �
stands for the minimal bitsize of a prime factor of mi. The parameter " should be such
that 4 "2 �ts into a machine word.

18 Faster Chinese remaindering

In Table 1 below we have shown some experimental results for this sieving procedure
in the case when s=6, w= 22, w 0= 25 and �=4. For " < 1000000, the table provides us
with ", the modulim1; :::;ms, as well as the smallest prime power factors of the productM .
Many hits admit small prime factors, which increases the risk that di�erent hits are not
coprime. For instance, the number 17 divides both 2132 ¡ 3113852 and 2132 ¡ 3765632,
whence these 6-gentle moduli cannot be selected simultaneously (except if one is ready
to sacri�ce a few bits by working modulo lcm(2132¡ 3113852; 2132¡ 3765632) instead of
(2132¡ 3113852) � (2132¡ 3765632)).

In the case when we use multi-modular arithmetic for computations with rational
numbers instead of integers (see [10, section 5 and, more particularly, section 5.10]), then
small prime factors should completely be prohibited, since they increase the probability
of divisions by zero. For such applications, it is therefore desirable that m1; :::; ms are all
prime. In our table, this occurs for "= 57267 (we indicated this by highlighting the list of
prime factors of M).

In order to make multi-modular reduction and reconstruction as e�cient as possible,
a desirable property of the moduli mi is that they either divide 2sw/2¡ " or 2sw/2+ ". In
our table, we highlighted the " for which this happens. We notice that this is automatically
the case if m1; :::;ms are all prime. If only a small number of mi (say a single one) do not
divide either 2sw/2¡" or 2sw/2+", then we remark that it should still be possible to design
reasonably e�cient ad hoc algorithms for multi-modular reduction and reconstruction.

Another desirable property of the modulim16 ���6ms is thatms is as small as possible:
the spare bits can for instance be used to speed up matrix multiplication moduloms. Notice
however that one �occasional� large modulus ms only impacts on one out of s modular
matrix products; this alleviates the negative impact of such moduli. We refer to section 4.5
below for more details.

For actual applications, one should select gentle moduli that combine all desirable
properties mentioned above. If not enough such moduli can be found, then it it depends
on the application which criteria are most important and which ones can be released.

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::
27657 28867 4365919 6343559 13248371 20526577 25042063 29; 41; 43; 547; :::
57267 416459 1278617 2041469 6879443 25754563 28268089 416459; :::
77565 7759 8077463 8261833 18751793 19509473 28741799 59; 641; :::
95253 724567 965411 3993107 4382527 19140643 23236813 43; 724567; :::
294537 190297 283729 8804561 19522819 19861189 29537129 232; 151; 1879; :::
311385 145991 4440391 4888427 6812881 7796203 32346631 17; 79; 131; :::
348597 114299 643619 6190673 11389121 32355397 32442427 31; 277; :::
376563 175897 1785527 2715133 7047419 30030061 30168739 17; 127; 1471; :::
462165 39841 3746641 7550339 13195943 18119681 20203643 67; 641; 907; :::
559713 353201 873023 2595031 11217163 18624077 32569529 19; 59; 14797; :::
649485 21727 1186571 14199517 15248119 31033397 31430173 19; 109; 227; :::
656997 233341 1523807 5654437 8563679 17566069 18001723 79; 89; 63533; :::
735753 115151 923207 3040187 23655187 26289379 27088541 53; 17419; :::
801687 873767 1136111 3245041 7357871 8826871 26023391 23; 383777; :::
826863 187177 943099 6839467 11439319 12923753 30502721 73; 157; 6007; :::
862143 15373 3115219 11890829 18563267 19622017 26248351 31; 83; 157; :::
877623 514649 654749 4034687 4276583 27931549 33525223 41; 98407; :::
892455 91453 2660297 3448999 12237457 21065299 25169783 29; 397; 2141; :::

Table 1. List of 6-gentle moduli for w= 22, w 0= 25, �=4 and "< 1000000.

Joris van der Hoeven 19

4.4. In�uence of the parameters s, w and w 0

Ideally speaking, we want s to be as large as possible. Furthermore, in order to waste as
few bits as possible, w 0 should be close to the word size (or half of it) and w 0¡w should
be minimized. When using double precision �oating point arithmetic, this means that we
wish to take w 02f24; 25; 26; 50; 51; 52g. Whenever we have e�cient hardware support for
integer arithmetic, then we might prefer w 2f30; 31; 32; 62; 63; 64g.

Let us start by studying the in�uence of w 0¡w on the number of hits. In Table 2, we
have increased w by one with respect to Table 1. This results in an approximate 5% increase
of the �capacity� sw of the modulus M . On the one hand, we observe that the hit rate of
the sieve procedure roughly decreases by a factor of thirty. On the other hand, we notice
that the rare gentle moduli that we do �nd are often of high quality (on four occasions the
moduli m1; :::;ms are all prime in Table 2).

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::

936465 543889 4920329 12408421 15115957 24645539 28167253 19; 59; 417721; :::
2475879 867689 4051001 11023091 13219163 24046943 28290833 867689; :::
3205689 110161 12290741 16762897 22976783 25740731 25958183 59; 79; 509; :::
3932205 4244431 5180213 5474789 8058377 14140817 25402873 4244431; :::
5665359 241739 5084221 18693097 21474613 23893447 29558531 31; 41; 137; :::
5998191 30971 21307063 21919111 22953967 31415123 33407281 101; 911; 941; :::
6762459 3905819 5996041 7513223 7911173 8584189 29160587 43; 137; 90833; :::
9245919 2749717 4002833 8274689 9800633 15046937 25943587 2749717; :::
9655335 119809 9512309 20179259 21664469 22954369 30468101 17; 89; 149; :::

12356475 1842887 2720359 7216357 13607779 23538769 30069449 1842887; :::
15257781 1012619 5408467 9547273 11431841 20472121 28474807 31; 660391; :::

Table 2. List of 6-gentle moduli for w= 23, w 0= 25, �=4 and "< 16000000.

Without surprise, the hit rate also sharply decreases if we attempt to increase s. The
results for s=8 and w= 22 are shown in Table 3. A further infortunate side e�ect is that
the quality of the gentle moduli that we do �nd also decreases. Indeed, on the one hand,
M tends to systematically admit at least one small prime factor. On the other hand, it is
rarely the case that each mi divides either 2sw/2¡ " or 2sw/2+ " (this might nevertheless
be the case for other recombinations of the prime factors of M , but only modulo a further
increase of ms).

" m1 m2 m3 m4 m5 m6 m7 m8 p1
�1; p2

�2; :::
889305 50551 1146547 4312709 5888899 14533283 16044143 16257529 17164793 17; 31; 31;59; :::
2447427 53407 689303 3666613 4837253 7944481 21607589 25976179 32897273 31; 61; 103; :::
2674557 109841 1843447 2624971 5653049 7030883 8334373 18557837 29313433 103;223; 659; :::
3964365 10501 2464403 6335801 9625841 10329269 13186219 17436197 25553771 23;163; 607; :::
4237383 10859 3248809 5940709 6557599 9566959 11249039 22707323 28518509 23; 163;1709; :::
5312763 517877 616529 879169 4689089 9034687 11849077 24539909 27699229 43; 616529; :::
6785367 22013 1408219 4466089 7867589 9176941 12150997 26724877 29507689 23; 41; 197; :::
7929033 30781 730859 4756351 9404807 13807231 15433939 19766077 22596193 31;307; 503; :::
8168565 10667 3133103 3245621 6663029 15270019 18957559 20791819 22018021 43;409; 467; :::
8186205 41047 2122039 2410867 6611533 9515951 14582849 16507739 30115277 23;167; 251; :::

Table 3. List of 8-gentle moduli for w= 22, w 0= 25, �=4 and "< 10000000.

An increase of w 0 while maintaining s and w 0 ¡ w �xed also results in a decrease
of the hit rate. Nevertheless, when going from w 0 = 25 (�oating point arithmetic) to
w 0= 31 (integer arithmetic), this is counterbalanced by the fact that " can also be taken
larger (namely "<2w

0
); see Table 4 for a concrete example. When doubling w and w 0 while

keeping the same upper bound for ", the hit rate remains more or less unchanged, but the
rate of high quality hits tends to decrease somewhat: see Table 5.

20 Faster Chinese remaindering

It should be possible to analyze the hit rate as a function of the parameters s, w,
w 0 and � from a probabilistic point of view, using the idea that a random number n is
prime with probability (log n)¡1. However, from a practical point of view, the priority
is to focus on the case when w 0 6 64. For the most signi�cant choices of parameters
� < w < w 0 6 64 and s, it seems in principle to be possible to compile full tables of s-
gentle moduli. Unfortunately, our current implementation is still somewhat ine�cient for
w 0> 32. A helpful feature for upcoming versions of Pari would be a function to �nd all
prime factors of an integer below a speci�ed maximum 2w

0
(the current version only does

this for prime factors that can be tabulated).

" m1 m2 m3 m4 m5 m6 p1
�1; p2

�2; :::

303513 42947057 53568313 331496959 382981453 1089261409 1176003149 292; 1480933; :::
851463 10195123 213437143 470595299 522887483 692654273 1008798563 17; 41; 67; :::

1001373 307261 611187931 936166801 1137875633 1196117147 1563634747 47; 151; :::
1422507 3950603 349507391 490215667 684876553 693342113 1164052193 29; 211; 349; :::
1446963 7068563 94667021 313871791 877885639 1009764377 2009551553 23; 71; 241; :::
1551267 303551 383417351 610444753 1178193077 2101890797 2126487631 29; 43; 2293; :::
1555365 16360997 65165071 369550981 507979403 1067200639 1751653069 17; 23; 67; :::

4003545 20601941 144707873 203956547 624375041 655374931 1503716491 47; 67; :::
4325475 11677753 139113383 210843443 659463289 936654347 1768402001 19; 41; :::
4702665 8221903 131321017 296701997 496437899 1485084431 1584149417 8221903; :::
5231445 25265791 49122743 433700843 474825677 907918279 1612324823 17; 1486223; :::
5425527 37197571 145692101 250849363 291039937 456174539 2072965393 37197571; :::
6883797 97798097 124868683 180349291 234776683 842430863 858917923 97798097; :::
7989543 4833137 50181011 604045619 638131951 1986024421 2015143349 23; 367; :::

Table 4. List of 6-gentle moduli for w= 28, w 0= 31, �=4 and "< 1600000. Followed by some of
the next gentle moduli for which each mi divides either 2sw/2¡� or 2sw/2+�.

" m1 m2 ��� m5 m6 p1
�1; p2

�2; :::

15123 380344780931 774267432193 ��� 463904018985637 591951338196847 37; 47; 239; :::
34023 9053503517 13181369695139 ��� 680835893479031 723236090375863 29; 35617; :::
40617 3500059133 510738813367 ��� 824394263006533 1039946916817703 23; 61; 347; :::
87363 745270007 55797244348441 ��� 224580313861483 886387548974947 71; 9209; :::
95007 40134716987 2565724842229 ��� 130760921456911 393701833767607 19; 67; :::

101307 72633113401 12070694419543 ��� 95036720090209 183377870340761 41; 401; :::
140313 13370367761 202513228811 ��� 397041457462499 897476961701171 379; 1187; :::
193533 35210831 15416115621749 ��� 727365428298107 770048329509499 59; 79; :::

519747 34123521053 685883716741 ��� 705516472454581 836861326275781 127; 587; :::
637863 554285276371 1345202287357 ��� 344203886091451 463103013579761 79; 1979; :::
775173 322131291353 379775454593 ��� 194236314135719 1026557288284007 322131291353; :::
913113 704777248393 1413212491811 ��� 217740328855369 261977228819083 37; 163; 677; :::

1400583 21426322331 42328735049 ��� 411780268096919 626448556280293 21426322331; :::

Table 5. List of 6-gentle moduli for w= 44, w 0= 50, �=4 and " < 200000. Followed by some of
the next gentle moduli for which each mi divides either 2sw/2¡� or 2sw/2+�.

4.5. Application to matrix multiplication

One of our favourite applications of multi-modular arithmetic is the multiplication of
integer matrices A;B 2Zr�r. We proceed as follows:

1. Compute A remmi and B remmi for i=1; :::; `, using 2 r2 multi-modular reductions.

Joris van der Hoeven 21

2. Multiply C remmi := (A remmi) (B remmi) remmi for i=1; :::; `.

3. Reconstruct C remM using r2 multi-modular reconstructions.

If M is larger than 2 j(AB)i;j j for all i and j, then AB can be read o� from AB remM .

From a practical point of view, the second step can be implemented very e�ciently
if rmi

2 �ts into the size of a word. When using �oating point arithmetic, this means that
we should have rmi

2<252 for all i. For large values of r, this is unrealistic; in that case, we
subdivide the r� r matrices into smaller ri� ri matrices with rimi

2< 252. The fact that ri
may depend on i is very signi�cant. First of all, the larger we can take ri, the faster we can
multiply matrices modulo mi. Secondly, the mi in the tables from the previous sections
often vary in bitsize. It frequently happens that we may take all ri large except for the
last modulus m`. The fact that matrix multiplications modulo the worst modulus m` are
somewhat slower is compensated by the fact that they only account for one out of every `
modular matrix products.

Several of the tables in the previous subsections were made with the application to
integer matrix multiplication in mind. Consider for instance the modulus M =m1 ���m6=
2132¡ 6569972 from Table 1. When using �oating point arithmetic, we obtain r16 82713,
r26 1939, r36 140, r46 61, r56 14 and r66 13. Clearly, there is a trade-o� between the
e�ciency of the modular matrix multiplications (high values of ri are better) and the
bitsize �` w of M (larger capacities are better).

If r is large with respect to log2 M , then the modular matrix multiplication step is
the main bottleneck, so it is important to take all mi approximately of the same size (i.e.
w 0 ¡ w should be small) and in such a way that the corresponding ri lead to the best
complexity (log2 ri� 6 tends to work well). This can often only be achieved by lowering s
to s = 4 or s = 2. For r closer to log2 M , the Chinese remaindering steps become more
and more expensive, which makes it interesting to consider larger values of s and to
increase the di�erence w 0¡ w. For r signi�cantly below log2M , we resort to FFT-based
matrix multiplication. This corresponds to taking roughly twice as many moduli, but the
transformations become approximately log logM times less expensive.

4.6. Implementation issues

We have not yet implemented any of the algorithms in this paper. The implementation
that we envision selects appropriate code as a function of the parameters w, w 0 and `. The
parameters w and w 0 highly depend on the application: see the above discussion in the
case of integer matrix multiplication. Generally speaking, w 0 is bounded by the bitsize W
of a machine word or by W /2.

So far, we have described four main strategies for solving Chinese remaindering prob-
lems for moduli M =m1 ���m`:

G. The �gentle modulus strategy� requiresM=2ws¡"2 to be an s-gentle modulus with
s= `. Conversions between x remM and (x rem (2ws/2¡ "); x rem (2ws+ ")) can be
done fast. The further conversions from and to (x remm1; :::; x remms) are done in
a naive manner.

P. The �gentle product strategy� strategy requires m1; :::;m` to be gentle moduli. We
now perform the multi-modular reductions and recombinations using the algorithms
from subsection 4.1.

22 Faster Chinese remaindering

N. The �naive strategy� for Chinese remaindering has been described in subsections 3.2
and 3.3.

F. The asymptotically fast �FFT-based strategy� from Theorems 6 and 10, which
attempts to do as much work as possible using Fourier representations.

The idea is now to apply each of these strategies at the appropriate levels of the remainder
tree. At the very bottom, we use G, followed by P and N. At the top levels, we use F.

As a function of `, we need to decide how much work we wish to perform at each of these
levels. For small `. 64, it su�ces to combine the strategies G and P. As soon as sw 0/2
exceeds W , some of the modular reductions in the strategy G may become expensive.
For this reason, it is generally better to let P do a bit more work, i.e. to take s2<`. It is
also a good practice to use w as the �soft word size� for multiple integer arithmetic (see
subsection 2.4).

As soon as ` starts to get somewhat larger, say 64. `. 256, then some intermediate
levels may be necessary before that FFT multiplication becomes plainly e�cient. For
these levels, we use strategy N with arity two. It still has to be found out how large this
intermediate region is, exactly. Indeed, the ability to do more work using the Fourier
representation often lowers the threshold at which such methods become e�cient. If one
manages to design extremely e�cient implementations for the strategies G and P (e.g.
if multi-modular reduction and reconstruction can approximately be done as fast as mul-
tiplication itself), then one may also consider the use of Chinese remaindering instead of
Fourier transforms in F.

For large `& 256, the FFT-based algorithms should become fastest and we expect that
the theoretical log log (w `) speed-up should result in practical gains of a factor three at
least. As emphasized before, it is crucial to rely on inborn FFT strategies. For very large `,
we may also run out of s-gentle moduli. In that case, we may need to resort to lower values
of s, with the consequence that some of the lower levels may become somewhat more
expensive.

4.7. Alternative moduli

A very intriguing question is whether it is possible to select moduli that allow for even
faster Chinese remaindering. In the analogue case of polynomials, highly e�cient algo-
rithms exist for multi-point evaluation and interpolation at points that form a geometric
sequence [5]. Geometric sequences of moduli do not work in our case, since they violate
the mutual coprime requirement and they grow too fast anyway. Arithmetic progressions
are more promising, although only algorithms with a better constant factor are known in
the polynomial case [5], and the elements of such sequences generically admit small prime
factors in common that have to be treated with care.

Another natural idea is to chose products M = m1 ��� m` of the form M = 2n ¡ 1,
where n is highly composite. Each divisor d of n naturally induces a divisor �d(2) of M ,
where �d denotes the d-th cyclotomic polynomial. For instance, the number 26�60 ¡ 1
is divisible by �1(260) = 260 ¡ 1, �2(260) = 260 + 1, �3(260) = 2120 + 260 + 1 and
�6(260)=2120¡ 260+1. Now euclidean division by �1(260);�2(260);�3(260) and �6(260) is
easy since these numbers admit an extremely sparse and regular binary representations.
Furthermore, the numbers �3(260) = m3 m4 and �6(2

60) = m5 m6 can both be factored
into products of two integers of less than 64 bits. Taking m1=260¡ 1 and m2=260+1, it
should therefore be possible to design a reasonably e�cient Chinese remaindering scheme
for M =m1m2m3m4m5m6 on a 64-bit architecture.

Joris van der Hoeven 23

There are several downsides to this approach. Most importantly, the largest prime
divisor �(n) of 2n¡ 1 grows quite quickly with n, even if n is very smooth. For instance,
the four largest n for which �(n)< 232 are n= 180; 200; 204; 210 and the four largest n for
which �(n)<264 are n=420;440;540;648. By construction, the number 2n¡1 also admits
many divisors if n is smooth, so several moduli of this type are generally not coprime.
Both obstructions together imply that we can only construct Chinese remaindering schemes
with a small number of moduli in this way. For instance, on a 64 bit architecture, one
of the best schemes would use n = 648 and twelve moduli of an average size of 54 bits.
In comparison, there are many 4-gentle and 6-gentle moduli that are products of prime
numbers of approximately 54 bits (or more), and combining a few of them leads to e�cient
Chinese remaindering schemes for twelve (or more) prime moduli of approximately 54 bits.

Bibliography
[1] D. Bernstein. Removing redundancy in high precision Newton iteration. Available from http://

cr.yp.to/fastnewton.html, 2000.
[2] D. Bernstein. Scaled remainder trees. Available from https://cr.yp.to/arith/scaledmod-

20040820.pdf, 2004.
[3] A. Borodin and R.T. Moenck. Fast modular transforms. Journal of Computer and System Sciences ,

8:366�386, 1974.
[4] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In Proceedings of ISSAC 2003 ,

pages 37�44. ACM Press, 2003.
[5] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. Journal

of Complexity , 21(4):420�446, August 2005. Festschrift for the 70th Birthday of Arnold Schönhage.
[6] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta

Informatica , 28:693�701, 1991.
[7] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series.

Math. Computat., 19:297�301, 1965.
[8] C.M. Fiduccia. Polynomial evaluation via the division algorithm: the fast fourier transform revisited.

In A.L. Rosenberg, editor, Fourth annual ACM symposium on theory of computing , pages 88�93, 1972.
[9] M. Fürer. Faster integer multiplication. SIAM J. Comp., 39(3):979�1005, 2009.
[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra . Cambridge University Press, New

York, NY, USA, 3rd edition, 2013.
[11] T. Granlund et al. GMP, the GNU multiple precision arithmetic library. http://www.swox.com/

gmp, 1991.
[12] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm I. speeding up the

division and square root of power series. Accepted for publication in AAECC, 2002.
[13] D. Harvey and J. van der Hoeven. On the complexity of integer matrix multiplication. Technical

report, HAL, 2014. http://hal.archives-ouvertes.fr/hal-01071191, accepted for publication in
JSC.

[14] D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over �nite �elds. Tech-
nical report, ArXiv, 2014. http://arxiv.org/abs/1407.3361, accepted for publication in JACM.

[15] D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. Journal of Com-
plexity , 36:1�30, 2016.

[16] J. van der Hoeven. Newton's method and FFT trading. JSC , 45(8):857�878, 2010.
[17] J. van der Hoeven and G. Lecerf. Faster FFTs in medium precision. In 22nd Symposium on Computer

Arithmetic (ARITH), pages 75�82, June 2015.
[18] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, 2002. http://www.mathemagix.org.
[19] J. van der Hoeven, G. Lecerf, and G. Quintin. Modular SIMD arithmetic in Mathemagix. ACM

Trans. Math. Softw., 43(1):5:1�5:37, 2016.
[20] R.T. Moenck and A. Borodin. Fast modular transforms via division. In Thirteenth annual IEEE

symposium on switching and automata theory , pages 90�96, Univ. Maryland, College Park, Md., 1972.
[21] C.H. Papadimitriou. Computational Complexity . Addison-Wesley, 1994.
[22] The PARI Group, Bordeaux. PARI/GP , 2012. Software available from http://pari.math.u-

bordeaux.fr.
[23] J.M. Pollard. The fast Fourier transform in a finite field. Mathematics of Computation ,

25(114):365�374, 1971.
[24] A. Schönhage and V. Strassen. Schnelle Multiplikation groÿer Zahlen. Computing , 7:281�292, 1971.

24 Faster Chinese remaindering

http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
https://cr.yp.to/arith/scaledmod-20040820.pdf
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://www.swox.com/gmp
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://hal.archives-ouvertes.fr/hal-01071191
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org
http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr
http://pari.math.u-bordeaux.fr

	1. Introduction
	2. Preliminaries
	2.1. Integer multiplication
	2.2. Euclidean division of integers
	2.3. Approximate products modulo one
	2.4. Machine arithmetic

	3. Asymptotically fast Chinese remaindering
	3.1. The Chinese remainder theorem
	3.2. Naive multi-modular reduction and reconstruction
	3.3. Scaled remainders
	3.4. Remainder trees
	3.5. Specification of the arities of nodes in the remainder tree
	3.6. Complexity analysis of multi-modular reconstruction
	3.7. Complexity analysis of multi-modular reduction
	3.8. Base conversion
	3.9. Polynomial analogues

	4. Gentle moduli
	4.1. The base algorithms revisited for special moduli
	4.2. The gentle modulus hunt
	4.3. The sieving procedure
	4.4. Influence of the parameters s, w and w'
	4.5. Application to matrix multiplication
	4.6. Implementation issues
	4.7. Alternative moduli

	Bibliography

