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The Chinese remainder theorem is a key tool for the design of efficient multi-modular
algorithms. In this paper, we study the case when the moduli my, ..., m, are fixed
and can even be chosen by the user. Through an appropriate use of the technique of
FFT-trading, we will show that this assumption allows for the gain of an asymptotic
factor O(loglog ¢) in the complexity of “Chinese remaindering”. For small ¢, we will
also show how to choose “gentle moduli” that allow for further gains at the other end.
The multiplication of integer matrices is one typical application where we expect
practical gains for various common matrix dimensions and integer bitsizes.

KEYWORDS: Chinese remainder theorem, algorithm, complexity, integer matrix mul-
tiplication

1. INTRODUCTION

Modular reduction is an important tool in computer algebra and elsewhere for speeding
up computations. The technique allows to reduce a problem that involves large integer or
polynomial coefficients to one or more similar problems that only involve small modular
coefficients. Depending on the application, the solution to the initial problem is recon-
structed via the Chinese remainder theorem or Hensel’s lemma. We refer to [10, chapter 5]
for a gentle introduction to this topic.

In this paper, we will mainly be concerned with multi-modular algorithms over the
integers that rely on the Chinese remainder theorem. The archetype of such an algorithm
works as follows. We start with a polynomial function f:7Z"— 7Z° For any modulus m,
reduction of f modulo m yields a new function f,,: (Z/m Z)" — (Z/mZ)* such that

f(x1,...,z;)modm = fp(zximodm,...,z, modm)

for all x1, ..., x, € Z. Given an algorithm to compute f that only uses ring operations on
integers, it suffices to replace each ring operations by its reduction modulo m in order to
obtain an algorithm that computes f,,. Now given integers xy,...,x, € Z and (y1, ..., Ys) =
f(z1,...,x;), assume that we know a bound B € N with |z;|< B fori=1,...,7 and |y;| < B
for =1, ..., s. Then the following multi-modular algorithm provides with an alternative
way to compute f(x1,...,2,):

0. Select moduli my, ...,mg with my ---mg>2 B that are mutually coprime.
1. For i=1,...,r, compute z; j:=x;modm; for j=1,...,¢.

2. For j=1,...,¢, compute (y1,j, ..., Ys,j) := fm;(T1,5, s Tr 5)-
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3. For i=1,..., s, reconstruct y; from the values y; j:=y; modm; with j=1,...,¢.

Step 1 consists of r multi-modular reductions (finding the z; ; as a function of z;) and
step 3 of s multi-modular reconstructions (finding y; as a function the y; ;); this is where
the Chinese remainder theorem comes in. For a more detailed example with an application
to integer matrix multiplication, we refer to section 4.5.

In favourable cases, the cost of steps 0, 1 and 3 is negligible with respect to the cost
of step 2. In such situations, the multi-modular algorithm to compute f is usually much
faster than the original algorithm. In less favourable cases, the cost of steps 1 and 3 can
no longer be neglected. This raises the question whether it is possible to reduce the cost
of these steps as much as possible.

Two observations are crucial here. First of all, the moduli my, ..., my are the same for
all » multi-modular reductions and s multi-modular reconstructions. If r + s is large, then
this means that we can essentially assume that m;, ..., my were fixed once and for all.
Secondly, we are free to choose my, ..., my in any way that suits us. By making each m;
fit into a machine word, one may ensure that every modular operation only takes a few
cycles. Special “FFT-moduli” are often used as well for speeding up polynomial arithmetic.

In this paper, we will show how to exploit both of the above observations. For fixed
moduli, we will show in section 3 how to make Chinese remaindering asymptotically more
efficient by a factor O(loglog /) when ¢ gets large. In section 4, we show that it is possible
to construct “gentle modulo” that allow for speed-ups when ¢ is small (I <64). Both results
can be combined in order to accelerate Chinese remaindering for all possible values of £.

The new asymptotic complexity bounds make heavy use of discrete Fourier transforms.
For our purposes, it is crucial to avoid “synthetic” FFT schemes that require the adjunction
of artificial roots of unity as in Schonhage—Strassen multiplication [24]. Instead, one should
use “inborn” FFT schemes that work with approximate roots of unity in C or roots of
unity with high smooth orders in finite fields; see [24, section 3] and [23, 15]|. Basic com-
plexity properties of integer multiplication and division based on fast Fourier techniques
are recalled in section 2.

Let I(n) be the bit complexity for multiplying two n-bit numbers. Given pairwise
comprime moduli my, ..., my of bit-size n, it is well known that multi-modular reduction and
reconstruction can be carried out in time O(I(n ¢) log ¢) using so called remainder trees [8,
20, 3]. Recent improvements of this technique can be found in [4, 2]. The main goal of
section 3 is to show that this complexity essentially drops down to O(l(n ¢) log ¢ /loglog )
in the case when all moduli my, ..., my are fixed; see Theorems 6 and 10 for more precise
statements. The main idea is to increase the arities of nodes in the remainder tree, while
performing the bulk of the computations at each node using Fourier representations. This
technique of trading faster algorithms against faster representations was also used in [16],
where we called it FFT-trading; see also [1]. The same approach can also be applied to
the problem of base conversion (see section 3.8) and for univariate polynomials instead of
integers (see section 3.9).

Having obtained a non trivial asymptotic speed-up for large ¢, we next turn our atten-
tion to the case when £ is small (say ¢ <64). The main goal of section 4 there is to exhibit
the existence of gentle moduli my, ..., my for which Chinese remaindering becomes more
efficient than usual. The first idea is to pick moduli m; of the form 25% — ¢2, where w is
somewhat smaller than the hardware word size, s is even, and £ < 2%. In section 4.1, we
will show that multi-modular reduction and reconstruction both become a lot simpler for
such moduli. Secondly, each m; can be factored as m;= (25/% —¢;) (2°/2 4 ¢;) and, if we
are lucky, then both 25/2 — g; and 2°%/2 4 ¢; can be factored into s /2 moduli that fit into
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machine words. If we are very lucky, then this allows us to obtain w ¢ moduli m;_; of bitsize
~w that are mutually coprime and for which Chinese remaindering can be implemented
efficiently. Gentle moduli can be regarded as the integer analogue of “special sets of points”
that allowed for speed-ups of multi-point evaluation and interpolation in [5].

Acknowledgments. We would like to thank Grégoire LECERF for pointing us to Bern-
stein’s work [2] on the topic of this paper.

2. PRELIMINARIES

2.1. Integer multiplication

Throughout this paper we will assuming the deterministic multitape Turing model [21] in
order to analyze the “bit complexity” of our algorithms. We will denote by I(n) the cost
of n-bit integer multiplication. The best current bound [15] for I(n) is

I(n) = O(nlogn 88 ™),

where log* n := min {k: eN: (logo kX o log)(n) < 1} is called the iterator of the logarithm.

For large n, it is well known that the fastest algorithms for integer multiplication [23,
24, 9, 15] are all based on the discrete Fourier transform [7]: denoting by F(2 n) the
cost of a “suitable Fourier transform” of bitsize 2 n and by N(2 n) the cost of the “inner
multiplications” for this bitsize, one has

I(n) = 3F(2n)+N(2n). (1)
For the best current algorithm from [15], we have

F(2n) = O(nlogn8ls™™) (2)
N(2n) = O(n4le ). (3)

One always has N(2 n) = o(F(2 n)). The actual size of Fourier transforms is usually
somewhat restricted: for efficiency reasons, it should be the product of powers of small
prime numbers only, such as 2, 3 and 5. Fortunately, for large numbers n, it is always
possible to find n’ € 2N3N5N with n’>n and n//n=1+o0(1).

It is also well known that fast Fourier transforms allow for several tricks. For instance,
if one of the multiplicands of an n-bit integer product is fixed, then its Fourier transform
can be precomputed. This means that the cost of the multiplication drops down to

lixea(n) = 2F(2n)+N(2n) ~ 251(n).

In particular, the complexity I(N,n) of multiplying an N-bit integer with an n-bit one (for
N >n) satisfies

(V) = (25 + Y t0(1) ) 1)

Squares of n-bit numbers can be computed in time (2+0(1)) F(2n) ~?31(n) for the same
reason. Yet another example is the multiplication of two 2 x 2 matrices with (n — 1)-bit
integer entries: such multiplications can be done in time (12 4+ o(1)) F(2 n) ~ 4 I(n) by
transforming the input matrices, multiplying the transformed matrices in the “Fourier
model”, and then transforming the result back.
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In the remainder of this paper, we will systematically assume that asymptotically fast
integer multiplication is based on fast Fourier transforms. In particular, we have (1) for
certain functions F and N. We will also assume that the functions F(n)/(N(n)logn) and
N(n) /n are (not necessarily strictly) increasing and that F(n) = o(N(n) log n log log n).
These additional conditions are satisfied for (2) and (3). The first condition is violated
whenever the FFT scheme requires the adjunction of artificial roots of unity. This happens
for Schonhage—Strassen multiplication, in which case we have F(2n)=O(nlognloglogn)
and N(2 n) = O(n log n)). We will say that an FFT-scheme is inborn if it satisfies our
additional requirements.

For a hypothetical integer multiplication that runs in time I(n) = o(n logn 8!°8" "), but
for which I(n) / (n log n) is (not necessarily strictly) increasing, we also notice that it is
possible to design an inborn FFT-based integer multiplication method that runs in time
O(I(n)); this is for instance used in [13].

2.2. Euclidean division of integers

Let D(IV, n) denote the cost of euclidean division with remainder of an N-bit integer by
an n-bit one. In [16, section 3.2|, we gave an algorithm divide for the euclidean division
of a polynomial of degree <2 n by another polynomial of degree <n. This algorithm is
based on FFT trading, a technique that consists of doing as much work as possible in the
FFT-model even at the expense of using naive, suboptimal algorithms in the FFT-model.

The straightforward adaptation of this division to integer arithmetic yields the asymp-
totic bound

D(2n,n) < (°+0(1))l(n).

Furthermore, the discrete Fourier transforms for the dividend make up for roughly one fifth
of the total amount of transforms. For N > 2 n, the cost of the transforms for the dividend
does not grow with N, which leads to the refinement

D(N,n) < (Yo —1+0()In) (N >2n)
Similarly, if n=o0(N), then
DN, N =n) < (Ja+o() i) (n=o(N),

since the bulk of the computation consists of multiplying the approximate n-bit quotient
with the (N —n)-bit dividend. If the dividend is fixed, then we even get

Disea( N, N =) < (fg+o(1) 2 1(n)  (n=0(N)),

since the Fourier transforms for the dividend can be precomputed.

2.3. Approximate products modulo one

Let us start with a few definitions and notations. Given n € N and e € Z, we define
Dpe = {k2¢7m:0<k<2"}

be the set of dyadic fixed point numbers of bitsize n and with exponent e. Given = € R
and m € R”, we denote by

rremm = x—{ﬁJm € [0,m)
m
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the remainder of the euclidean division of x by m. Given x € R and ¢ € R”, we say
that £ € R is an e-approzimation of x if |T — x| < e. We also say that Z is a circular
e-approzimation of x if | — x|, <e. Here |T — x| :=mingecz|T — x — k| denotes the circular
distance between T and x.

Let x=k272"¢ Doy, —on, y=1 20¢ Dy 0and z=z yrem1¢& Do, _2,. Mutatis mutandis,
Bernstein observed in [2] that we may compute a circular 2~ "-approximation Z € D,, _,, for
2 as follows. We first compute the product m = klrem (22" — 1) of k and [ modulo 22" — 1
and then take Z=[2""m]27".

Let us show that Z indeed satisfies the required property. By construction, there exists
an a € N with a < 2" such that m =kl —a (22" —1). Therefore, 0 <m 272" — 7 < 27" and
ry—m2 =a(22"-1)2"?"=a—-a27?", whence a — 27" <zy—Z<a+27"

More generally, if we only have a circular [r 27"]-approximation 7 =k 272" € Da,, _ay,
of a number z € R (instead of a number x € k 27" € Dy, 2, as above), then the algorithm
computes a circular [(1 4 y 27" 1) 2~ "]-approximation Z of xyrem 1.

Bernstein’s trick is illustrated in Figure 1: we are only interested in the highlighted
portion of the product. We notice that these kinds of truncated products are reminiscent
of the “middle product” in the case of polynomials [12]; in our setting, we also have to
cope with carries and rounding errors. When using FFT-multiplication, products modulo
227 1 can be computed using three discrete Fourier transforms of bitsize 2 n, so the cost is
essentially the same as the cost of an n-bit integer multiplication. If one of the arguments
is fixed, then the cost becomes asymptotic to %/31(n).

Figure 1. Product modulo one of € Dy, _2, and y € D, o with n significant bits.

More generally, for £€{1,2,...}, let £ € D¢y, _¢p be a circular 7 2~ t_approximation of

a number z € R and let y € D(y_1), 0. Then we may compute a circular approximation
z€Dy, _nof z=xyrem1 as follows. Consider the expansions

- (-2
F=) &2, y =Y y2" (4)
= i=0
with Z_¢,...,Z_1, Y0, ..., Yye—2 € Dy, o; see Figure 2. By what precedes, for i =0,...,/ -2, we
may compute circular 2~ "-approximations u; for
wp = [(F_;-1272"+7_;27") y;]rem 1.
Setting
v = [(F_27 0L 27 y]rem 1,

it follows that |u; — vilo <2-27", whereas v:=Zyrem 1= (vg+ - +vs_2) rem 1. Taking
Z=(up+ -+ ur—2)rem1, it follows that |Z —v|o < (2£ —2)27" and

Z—z]o < (20—2+4y2 Ny,
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When using FFT-multiplication, we notice that the sum vg+ --- +wv¢_9 can be computed in
the FFT-model, before being transformed back. In that way, we only need 2 ¢+ 1 instead
of 3¢ transforms of size 2n, for a total cost of (#3504 13+40(1))1(n).

Figure 2. Product modulo one of € Dy, 4, and y €Dy _1)n,0 With n significant bits.

2.4. Machine arithmetic

For actual machine implementations of large integer arithmetic, it is customary to choose
a base of the form 2" and to perform all computations with respect to that base. We will
call w the soft word size. For processors that have good hardware support for integer
arithmetic, taking w =32 or w = 64 is usually most efficient. The GMP package [11] uses
this approach.

However, modern processors are often better at floating point arithmetic. General
purpose processors generally provide double precision IEEE-768 compliant instructions,
whereas GPUs are frequently limited to single precision. The respective choices w = 50
and w ~ 22 are most adequate in these cases. It is good to pick w slightly below the
maximum bitsize of the mantissa in order to accelerate carry handling. We refer to [17]
for more details on the implementation of multiple precision arithmetic based on floating
point arithmetic.

Another particularity of recent processors is the availability of ever wider SIMD (Single
Instruction Multiple Data) instructions. For modern implementations of large integer arith-
metic, we therefore recommend to focus on the problem of multiplying several (1,2,4,8,...)
large integers of a given bitsize instead of a single one. We again refer to [17] for more
details.

In what follows, when using integer arithmetic, we will denote by W the maximal bitsize
such that we have a hardware instruction to multiply two integers of W bits (e.g. W =32
or W =64). When using floating point arithmetic, we let W be the bitsize of a mantissa (i.e.
W =23 or W=53). We will call W the machine word size. For implementations of multiple
precision arithmetic, we always have w < W, but it can be interesting to take w < W.

For moduli m that fit into a machine word, arithmetic modulo m can be implemented
efficiently using hardware instructions. In this case, the available algorithms again tend
to be somewhat faster if the size of m is a few bit smaller than W. We refer to [19] for
a survey of the best currently available algorithms in various cases and how to exploit
SIMD instructions.
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When using arithmetic modulo m, it is often possible to delay the reductions modulo m
as much as possible. One typical example is modular matrix multiplication. Assume that
we have two r X r matrices with coefficients modulo m (represented by integers between 0
and m — 1, say). If » m? fits into a machine word, then we may multiply the matrices using
integer or floating point arithmetic and reduce the result modulo m. This has the advantage
that we may use standard, highly optimized implementations of matrix multiplication. One
drawback is that the intermediate results before reduction require at least twice as much
space. Also, the bitsize of the modulus is at least twice as small as W.

3. ASYMPTOTICALLY FAST CHINESE REMAINDERING

3.1. The Chinese remainder theorem

For any integer m > 1, we will write R,, ={0,...,m —1}. We recall:

CHINESE REMAINDER THEOREM. Let my, ..., my be positive integers that are mutually
coprime and denote M = myq -~ mp,. Given a1 € Ry, ..., ar € Ry, there exists a unique
x € Ry with x =a; (modm;) fori=1,..., L.

We will prove the following more constructive version of this theorem.

THEOREM 1. Let my, ..., my be positive integers that are mutually coprime and denote
M =myq - my,. There exist c1, ..., cp € Ry such that for any a1 € Ry, ..., ag € Ry, the
number

x = (cra1+ - +cpap) rem M
satisfies © = a; (modm;) fori=1,.... L.

NOTATION. We call ¢y, ...,cq the cofactors formy,...,my in M and also denote these numbers
by Cmy; M =C1,y wovy Crys M = Cy.

Proof. If £ =1, then it suffices to take ¢; = 1. If £ = 2, then the extended Euclidean
algorithm allows us to compute a Bezout relation

kimi+koms = 1, (5)
where k1 € Ry, and kg € Ryy,,. Let us show that we may take

cl = kgmg € lemg
o = kimy € Rm1m2~

Indeed, given a1 € Ry, and as € Ryy,, we have
kimixz+kemox=x=cy a1+ caa2=kimyag+ kamaar (modmy ms).

In particular, mq divides k1 my (x — az). Since (5) implies ged (k1 my,ma) =1, it follows that
x =ag (mod mg). Similarly, z = a; (modm,).

For ¢ > 2, we will use induction. Let h = [£/2]|, M1 =my - mp and Ma=mp41 - my.
By induction, we may compute cas; M, CMo; My Cmg:Mys -5 Cmps My @0 Crnyy 412 Moy -5 Crng; M-
We claim that we may take

Cm; = Cmy; M1 CMy; M (i=1,...h)
Cm; = Cmy; My CMo: M (i:h—f-l,...,f).
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Indeed, for i=1,..., h, we get

T = CMy;M (le;Ml a1+ A Cmys My ah) + CMo; M (th+1;M2 41T+ Cmyg; My aﬁ)
= Cmy;M, 01 + -4 Crp; My Qb (mod Ml),

whence == a; (modm;). For i=h+1,...,¢ we obtain z =a; (mod m;) in a similar way. O

3.2. Naive multi-modular reduction and reconstruction

Let mq, ..., m¢g, M =mq --- my, a1 € Ryny, ..., & € Ry, and © € Ry be as in the Chinese

remainder theorem. We will refer to the computation of ai, ..., ay as a function of x

as the problem of multi-modular reduction. The inverse problem is called multi-modular

reconstruction. In what follows, we assume that m1, ..., my have been fixed once and for all.
The simplest way to perform multi-modular reduction is to simply take

a; = xremm, (i=1,...,0). (6)
Inversely, Theorem 1 provides us with a formula for multi-modular reconstruction:
x = (emyMma1+ -+ Cmpumag) rem M. (7)

Since mi, ..., my are fixed, the computation of the cofactors c,,,.»s can be regarded as
a pre-computation.

Let us analyze the cost of the above methods in terms of the complexity I(n) of n-bit
integer multiplication. Assume that m; < 2" for i=1,...,£. Then multi-modular reduction
can clearly be done in time £D({n,n)= (Y350 —1+0(1)) £1(n).

As to multi-modular reconstruction, assume that m; < 2 for i = 1, ..., £, where
n':=n — [logy £] is such that ¢ 2" < 2. Cutting the cofactors in chunks of n bits as
in (4), we precompute the Fourier transform of all obtained chunks. The Fourier transforms
of ay, ..., ag can be computed in time <¢ F(2n). The sum S = ¢pyp a1 + -+ + Cmp M Gt
can be computed in the Fourier model in time N(2 n) ¢? and transformed back in time
F(2n) £+ O(n¥). Our assumption that £m; < 2" for i=1, ..., ¢ ensures that the computed
sum is correct. The remainder S rem M can be computed in time Dgyed((¢ + 1) n,
¢n)<F(2n)l+5F12n)+ O(N(2n)¢). The total time of the reconstruction is therefore
bounded by

Cinaive(!) = (N(2n)2+2F(2n){+5F(2n) 4+ O(N(2n){)). (8)

If we only assume that m; < 2", then we need to increase the bitsize n by [logs ¢]. If
¢log £ = O(n), then this means that we have to multiply the right-hand side of (8) by
1+0®ogl/n)=1+0(71).

3.3. Scaled remainders

The above complexity analysis shows that naive multi-modular recomposition can be done
faster than naive multi-modular reduction. In order to make the latter operation more
efficient, one may work with scaled remainders that were introduced in [2]. The idea is that
each remainder of the form urem P is replaced by %rem 1. The quotient ]% is regarded as

a real number and its remainder modulo 1 as a number in the interval [0, 1).

If we allow ourselves to compute with exact real numbers, then this leads us to replace
the relation (6) by
2 rem1 = [M<%reml)]reml (i=1,...,0) (9)

myg my
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and (7) by
& omt [ emm (a1 L Cngime
Mreml [ i (ml reml)—i— 7 <m£ reml)]reml. (10)

For actual machine computations, we rather work with fixed point approximations of the
scaled remainders. In order to retrieve the actual remainder v rem P from the scaled one
% rem 1, we need a circular (2 P)~!-approximation of % rem 1.

Now assume that my, ..., my € R, with
n' < n—[logy(44)].
Given a circular [7 2_£"]—approximation of %rem 1 in Dy, gy with
r g 2=

the algorithm at the end of section 2.3 allows us to compute a circular [2 ¢ 2~"]-approxi-
mation modulo 1 of %rem 1, by applying the formula (9). Since 2/£27" < 2-"'~1 we may
then recover the number x rem m; using one final n-bit multiplication. Moreover, in the
FFT-model, the transforms for %rem 1 need to be computed only once and the transforms
Mi can be precomputed. In summary, given an approximation for the
x

M

for the numbers

scaled remainder
X

rem 1, we may thus compute approximations for the scaled remainders
rem 1 in time

Cotseated(f) = N(21) 2+ 2F(2n) £+ O(N(2n) 0). (11)

7

From this, we may recover the actual remainders z remm; in time £1(n).

Scaled remainders can also be used for multi-modular reconstruction, but carry han-
dling requires more care and the overall payoff is less when compared to the algorithm from
the previous subsection.

3.4. Remainder trees

It is well-known that Chinese remaindering can be accelerated using a similar dichotomic
technique as in the proof of Theorem 1. This time, we subdivide M = {my, ..., my} into
k parts My = {mygyy1, ..., mpy by ooy Mg ={my,_,41+ 1, ..., mg, } with £; = [(j¢)/k] for
J=0,....,k. We denote M;=my, 11 my, and assume that £ >k (if £ <k, then we apply
the native algorithms from the previous subsections).

Fast multi-modular reduction proceeds as follows. We first compute

X; = zrem M, (7=1,...,k) (12)

using the algorithm from the previous subsection. Next, we recursively apply fast multi-
modular reduction to obtain

a; = Xjremml- (’L':Ejfl—l-l,...,gj). (13)

The computation process can be represented in the form of a so called remainder tree;
see Figure 3. The root of the tree is labeled by x mod M. The children of the root are the
remainder trees for X; modulo M, where j=1,..., k. If needed, then the arity £ can be
adjusted as a function of the bitsize of the moduli and £.

Fast multi-modular reconstruction is done in a similar way, following the opposite
direction. We first reconstruct

Xj = (cmfjfl'Fl;MjaZj—l'i‘l+"'+Cm[j;MjaZj)remMj (1=1,...k), (14)
followed by
xr = (CMI;MXl—|—---—f—ch;MXk)remM. (15)
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The computation flow can again be represented using a tree, but this time the computations
are done in a bottom-up way.

Following the approach from subsection 3.3, it is also possible to systematically work
with fixed point approximations of scaled remainders %rem 1 instead of usual remainders
urem P. In that case, the computation process gives rise to a scaled remainder tree as in
Figure 4. Of course, the precision of the approximations has to be chosen with care. Before
we come to this, let us first show how to choose k.

123456 rem 255255

333 rem 1001 36 rem 255

S RN N

4rem7 3rem1]l 8rem13 Orem3 lremb 2rem17

Figure 3. Example of a remainder tree with arities k=2 and k=3 at the two recursion levels. In
the case of a reduction, the remainders are computed top-down. In the case of a reconstruction,
they are reconstructed in a bottom-up fashion.

4057213-2-23

/

10901 -2-15 4626 -2715

S ]

203-279 140-279 315-279 0-279 102-279 60-27?

Figure 4. The scaled remainder tree corresponding to Example 3, while using fixed point approx-
imations for the scaled remainders.

3.5. Specification of the arities of nodes in the remainder tree

Let us first focus on multi-modular reconstruction. In order to make this process as efficient
as possible, the arity k should be selected as a function of n and £ so as to make N(2n) ¢2
as large as possible in (8), while remaining negligible with respect to F(2n) ¢. Let

Ba0) = - FCL) _ <M>

(2¢n)log?log (2¢n) N(2¢n)
For inborn FFT schemes, we notice that

B log (24 n)
o,(0) = <1g1ggm>

1 log?log (24n)\ log?log n
Pa(6)™ = O< log (24n) =0 logn )

For the root of the remainder tree, we take

14 if £<®,(0)
Ve if 2B <D, (0 <t

k= Wo(0) = < |
®,(¢) otherwise

Using the same formula recursively for the other levels of the remainder tree, it is natural
to define the sequences /1, ..., 0,1 and ki, ..., ky by 61 =10, ki = V,,(¢;) and l;41=[0; [ k; ]
for ¢=1,...,7; the construction stops as soon as ¢,y; = 1. Notice that we always have
Uy(n) < Pg(n). The precise choice of k=, (¢) is motivated by the following lemmas.

LEMMA 2. Ifr>1, then £;' =0O((logn)~/3).
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Proof. We clearly cannot have ¢, _1 < ®,,(¢,_1), since otherwise ¢, =1. If Ef/gl <P, —1)<

£-_1, then
=l /[ Va1 ] = 0(61) O(@n(te—1) ") = O((log ) ~1/?).
If ®,(¢,_1) <>/, then
G =Ty ) @) ] < 0152 < B (1) V2= O((log ) ~1/3).
This proves the result in all cases. O
LEMMA 3. Ifr>1, then we have k1 - k;i_1£;~{ fori=1,...,r+1.

Proof. Fori=1,...,r—1, we have £; ' < ®,(¢;)~'=O(log?logn /logn), so that k; >3 and
li+1<¥;/2 whenever n is sufficiently large. By construction, we also have

kiliy1 < (1—1-@%) ¢;.
By induction, it follows that
ki-kio1l; < (H—%) (1+%>f1
< exp(e—lr—i-'--—i-e—ll)ﬁl
< eXP(%)&
¢,
fori=1,...,7. We also have ky--- k. by 1=Ky kp_16.-~Z. O

2

LEMMA 4. We have r < (14 0(1)) %.

Proof. Let e >0 and let s be smallest such that log ®,(¢s) < (1 —€)loglog (n ¢) — 1. For
all i < s, we have log ¢; > (1 — €) loglog (n ¢) +log ¢; 11, whence

log ¢
< .
oS (1—¢)loglog (¢n) (16)
Let ¢ >0 be a constant such that ®,(¢) > bg“;% (n) ) for all /. We also have
log| ¢ _log(fsm) <log ®,(¢s) < (1 —¢€)loglog (n¥),
log2 log (¢
so that
log(¢sn) = O(log?log (¢sn) (log (£n))t =)
= O(log?log (¢n) (log (£n))*~¢).
Since £; > 2 4; 1 for all i <r, it follows that
r—s < log £ = O(log%log (¢n) (log (¢ n))*~¢). (17)
log 2
Adding up (16) and (17) while letting € tend to zero, the result follows. O

LEMMA 5. We have £, =O(logn).

Proof. By construction, ¢, < ®,(¢,) = O(log (¢, n)). For large n, this means that ¢, <n,
since otherwise £, = O(log(¢?)) = O(log ¢,.), which is impossible. Consequently, £, =
O(log(n?)) =O(logn). O
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3.6. Complexity analysis of multi-modular reconstruction
Let C,(¢) be the complexity multi-modular reconstruction for fixed moduli my, ..., mg with
m; <2 for i=1,..., .

THEOREM 6. If integer multiplication is based on an inborn FFT scheme, then
log ¢ _
. < (2 )l — 1 ). 1
G () (%34 0(1))1(¢n) max(loglog o)’ +O0(¢ )) (18)

This bound holds uniformly in £ for n— oo.

Proof. In the special case when r =1, the bound (8) yields
Ci(f) < (140 1)) (N(2n)2+2F(2n)L+5F(2n))+O(N(2n)¢)
= 2+O0UH))F2n) L+ (1+ 0 Y))N(2n) ¢
< (240 H)F2n) L+ (1+0())N(2n) ®,(0) ¢
= (2407 +o(1)F(2n) ¢
(#3+0(1))1(n) £+ O(I(n)),

and we are done. If 7 >1, then (8) implies
Cilli) < 240k ) F2nlipa) ki+ 1+ 0k ) N2nlis1) b + Ch(lira) ks
< (2+0(1)) F(2nlivr) ki+ C(liv) ki,
for i=1,...,r. By induction, and using the fact that C}(1) =0, we get

Ci(l) < i(2+0(1))F(2n€i+1)k:1---/<:i.
= Z (24 0(1))F(2nL;11)
< i (2+0(1))F(2n¥)
= E;+0(1))TF(2n€).

liv1

The result now follows from Lemma 4 and (1). O
Remark 7. For /~1=0(1) and /= O(logn), the bound (18) simplifies into
Gl < (P+0(1))I(En).

If logn=O(log¥), then the bound becomes
log ¢
Ci(t) < (hto(L)(en) 2

loglog ¢

Remark 8. It is interesting to examine the cost of the precomputations as a function of the
parameters n, £ and my, ..., my. For a node of the remainder tree at level i, we essentially
need to compute k; cofactors and their transforms. This can be done in time O(k; (n ¢4;)).
Since we have ki --- k;_1 nodes at level 7, the total precomputation time at level 7 is
therefore bounded by O(k; -+ k; 1(n £;)) =O(k; I(n £)). Now k;=o(log (n ¢;) /loglog (n ¢;)) =
o(log (n?) /loglog (n¥¢)). Consequently, the total precomputation time is bounded by
log (n ¢
Chorell) = 0(7“ I(n0) m>
log (n¢)log ¢

= of 0 AT )
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3.7. Complexity analysis of multi-modular reduction

Let us now consider the complexity C,(¢) of multi-modular reduction for fixed moduli
ma,...,myg with m; <2"™ for =1, ..., £. In this case, it is most efficient to work with scaled
remainders, so the algorithm contains three main steps:

1. The initial conversion of xrem M into (an approximation of) %rem 1.

2. The computation of (approximations of) the scaled remainders %rem 1.

3. The final conversions of (approximations of) —rem 1 into x rem m;.

7

At a first stage, we will assume that my, ..., me < 2", where n’ <n is sufficiently small such
that the final approximations of the scaled remainders — rem 1 allow us to recover the
usual remainders x remm;. '

Let C,(¢f) denote the cost of step 2. The conversions in steps 1 and 3 boil down to
multiplications with fixed arguments, so that

Car(l) < Cal0)+ (Ya+0(1)) I(n ). (19)

For step 2, we use the scaled remainder tree algorithm from subsection 3.4, while taking
the arities k as in subsection 3.5.

Our next task is to show that n’:=n — [loga(4 ¢,)] is small enough in order to recover
all remainders x rem m;.

LEMMA 9. There exists a constant ng such that for alln>ng andi=1,...,r, we have

2k; < 2Mog2(4t)liv1 — g(n—n)lit1

Proof. For i = r the result clearly holds, so assume that i < r. In particular, if n is
sufficiently large, then it follows that k; < [\/E_J Now assume for contradiction that
2 k; > 2Moe2(46)1liv1 5 9. 9lit1 Then we would get £; < ki li+1 < ki loga ki < [0 ] loga [/
This is impossible for ¢; > 2. O
X
M
algorithm from subsection 3.3 yields circular [2 ky 2*52]—approximations for the scaled

27211

Now starting with a circular -approximation of rem 1, the scaled reduction

remainders %rem 1 at level ¢ =2. Lemma 9 now shows that 7 =2 k; is sufficiently small
J

for a continued application of the same algorithm for the next level. By induction over ¢,
the same reasoning shows that the scaled remainders at the (i 4+ 1)-th level are computed
with an error below

2k, 2 tivin o(n—nYliy1 o9—Llitin < o(n—n)lir1(kit1—1) g—Llijin

xT

At the very end, we obtain (2 k, 27")-approximations for the scaled remainders — rem 1.

Since £, = k,., this allows us to reconstruct each remainder x remm; using a multiplication
by m;. This shows that n’ is indeed small enough for the algorithm to work.

THEOREM 10. If integer multiplication is based on an inborn FFT scheme, then

Coll) < (Ys+o(1))1(£n) [max(%, 1)+2]. (20)

This bound holds uniformly in £ for n— occ.

Proof. A similar cost analysis as in the proof of Theorem 6 yields

Ca(f) < N(2n)2+2F2n) L+ O(N2n)E) = (Y3+0(1))I(n) ¢
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when r =1 and
Coll) < (240(1))rF(2n0)

when r > 1. In both cases, combination with (19) yields

Coll) < (s+o(1))1(€n) [max(%,l)—i—%.

Notice also that n’=n — [loga(44,)] >n — O(logn), by Lemma 5.
Given a number n* >n, we may construct a similar sequence ¢7, ..., £y, 1 when using n*
in the role of n. Taking n* minimal such that n* — [loga(4 £;+)] = n, we have

Call) < (Yato(1))1(£n%) [max<m,1)+2} (21)

Moreover, n > n* — O(log n*), which implies n* < n + O(log n). Plugging this into (21),
the result follows, since loglog ((n + O(logn)) £) ~ loglog (n ¢) and the assumption that
I(n)/(nlogn) is increasing implies (¢ (n+ O(logn))) ~1(¢n). O

Remark 11. For /~'=0(1) and £=O(logn), the bound (20) simplifies into
Cu(f) < (2+0(1))1(€n).

If loglog n =o(log ¢), then the bound (20) becomes

log ¢

Ca(f) < (3+0(1))1(fn) Toglog (0 7)°

For very large ¢ with logn = O(log¥¢), this yields

log ¢
< (2 o8t
Cll) < Chto()I(en) o250
Remark 12. Using a similar analysis as in Remark 8, the cost of all precomputations as
a function of n, £ and myq, ..., m¢ is again bounded by

Ch,pre(f) = 0< I(n0) %)'

3.8. Base conversion

The approach of this section can also be used for the related problem such as base conver-
sion. Let b€ Ron and ¢ be a fixed base and order. Given a number x € Ry, the problem is
to compute xo, ..., z¢_1 € Ry with

T = xo+a1bt-+xp 1L (22)

Inversely, one may wish to reconstruct x from xg, ..., zy—1. It is well known that both
problems can be solved using a similar remainder tree process as in the case of Chinese
remainders. The analogues for the formulas (7) and (9) are (22) and

Trem1 = [bz_l_i(%reml)}reml (i=0,...0—1), (23)

The analogue of the recursive process of subsection 3.4 reduces a problem of size £ to
k similar problems of size [¢ / k] and one similar problem of size k but for the base
blt/k1 A routine verification shows that the complexity bounds (18) and (20) also apply
in this context.
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Moreover, for nodes of the remainder tree at the same level, the analogues of the
cofactors and the multiplicands M /m; in (9) do not vary as a function of the node. For this
reason, the required precomputations as a function of b and ¢ can actually be done much
faster. This makes it possible to drop the hypothesis that b and ¢ are fixed and consider
these parameters as part of the input. Let us denote by B, (¢) and B;;,(¢) the complexities
of computing xg, ..., z¢—1 as a function of x and vice versa.

THEOREM 13. If integer multiplication is based on an inborn FFT scheme, then

BE(0) < (Ys+o0(1))1(£n) <%+O(loglogf)> (24)
Ba(f) < (Zs+o(1))1(fn) <%+0(10g10g5)>. (25)

These bound holds uniformly in £ for n— oo.

Proof. Let us estimate the cost of the precomputations as a function of b and £. The
analysis is similar as in Remark 8 except that we only have to do the precomputations
for a single node of the tree at each level i. Consequently, the precomputation time is
now bounded by O(ki I(n ¢1) + -+ + ky I(n £;)). Since the ¢1, £a, ... decrease with at least

geometric speed, this cost is dominated by O(k11(n¢1)) = 0( I(nf) %). This proves
the result under the condition that logn =O(log¥).

If log ¢ = o(log n), then we need to construct ki, ..., k. in a slightly different way.
Assuming that n is sufficiently large, let ¢ be maximal such that

t—1 24
27 < w([g5])

t < [logalogaf].

We again set ¢1=/¢ and ¢;11=[¢;/k;]. This time, we take k; = 227" for 1 <t and proceed
with the usual construction k; = k(¢;) for ¢ > t. It follows that

Notice that

20 .
b = {F—‘ (i=1,..,t+1)
ki < Wn(l) (i=1,...,t)
kiv1 = Up(liyr) < 22
kiy1liv1 = O(F)

and

log ¢
IS t+log10g(n€)+0(1)'

Using the new bound for r, a similar complexity analysis as in the proofs of Theorems 6
and 10 yields the bounds (24) and (25) when forgetting about the cost of the precompu-
tations. Now the cost P; of the precomputations for the first ¢ levels is bounded by

Pi1 = O(k1l(nty)+kal(ntla)+ -+ ke l(nty))
2n/t 2nt - 2nt
= O(tl(n?))
and the cost Py for the remaining levels by
P2 = O(kHlI(n€t+1)+'-'+k‘rl(n&))
= O(kis11(nles1))
= Of kg 22 |(n£))

¢
= 0O(l(n?)).
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We conclude that the right-hand sides of (24) and (25) absorb the cost P; + Py of the
precomputations. Il

3.9. Polynomial analogues

It is quite straightforward to adapt the theory of this section to univariate polynomials
instead of integers. An example of this kind of adaptations can be found in [2]. In particular,
this yields efficient algorithms for multi-point evaluation and interpolation in the case when
the evaluation points are fixed. The analogues of our algorithms for base conversion yield
efficient methods for p-adic expansions and reconstruction.

More precisely, let R be an effective commutative ring and let M(n) be the cost of
multiplying two polynomials of degree <n in R[z]. Assume that R allows for inborn FFT
multiplication. Then M(n) =3F(2n)+ N(2n), where F and N satisfy similar properties as
in the integer case. Let @1, ..., Q¢ be £ monic polynomials of degree n. Given a polynomial P
of degree <¢n in R[x] we may then compute the remainders P mod @; for i =1,...,¢ in time

Corll) < (Zs+0(1))M(¢n) [mm<%,1>+2}

The reconstruction of P from these remainders can be done in time

rll) < Gt ol) M(en) max 1B 14 0() ).

The assumption that R admits a suitable inborn FFT scheme is in particular satisfied
if R is a finite field [14]. When working in an algebraic complexity model, this is still the
case if R is any field of positive characteristic [14]. For general fields of characteristic zero,
the best known FFT schemes rely on the adjunction of artificial roots of unity [6]. In that
case, our techniques only result in an asymptotic speed-up by a factor log log log (n ¢)
instead of loglog (n ¢). Nevertheless, the field of complex numbers does admit roots of unity
of any order, and our algorithms can be used for fixed point approximations of complex
numbers at any precision.

Multi-point evaluation has several interesting applications, but it is important to keep
in mind that our speed-ups only apply when the moduli are fixed. For instance, assume that
we computed approximate zeros z1, ..., z¢ to a complex polynomial of degree ¢, using a bit-
precision n. Then we may use multi-point evaluation in order to apply Newton’s method
simultaneously to all roots and find approximations of bit-precision ~2n. Unfortunately,
our speed-up does not work in this case, since the approximate zeros z1, ..., z¢ are not fixed.
On the other hand, if the polynomial has degree k £ instead of £ and we are still given ¢
approximate zeros zi, ..., z¢ (say all zeros in some disk), then the same moduli are used
k times, and one may hope for some speed-up when using our methods.

At another extremity, it is instructive to consider the approximate evaluation of a fixed
polynomial P = Py + -+ + Pp_; !~ with fixed point coefficients P, ..., Pj_1 € D
at a single point a € DD, 0. We may thus assume that suitable Fourier transforms of
the P; have been precomputed. Now we rewrite P = Pjo) + -+ + Pg_q] (2%)2=1 with
k= [\/ﬂ, d=[{/k] and Py = Pgi+ -+ Pritr—1 =1, In order to evaluate each of the
Py at a, it suffices to transform the numbers 1, z, ..., xzF~1, to perform the evaluations
in the Fourier representation and then transform the results back. This can be achieved
in time O(k I(n)) + kdN(2n) + d F(2n). We may finally compute P(a) = Pg(a) + - +
Prq_1)(a) (a¥)?~! using Horner’s method, in time O(d I(n)). For large ¢, the dominant term
of the computation time is kdN(2n) ~¢N(2n).
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4. GENTLE MODULI

4.1. The base algorithms revisited for special moduli

Let us now reconsider the naive algorithms from section 3.2, but in the case when the
moduli my, ..., my are all close to a specific power of two. More precisely, we assume that

m; = 25V 6; (i:1,...,€),

where [§;| <2¥~! and s> 2 a small number. As usual, we assume that the m; are pairwise
coprime and we let M =myq --- my.

For such moduli, the naive algorithm for the euclidean division of a number x € Ryesw
by m; becomes particularly simple and essentially boils down to the multiplication of 9;
with the quotient of this division. In other words, the remainder can be computed in
time £ s l(w) + O(¢ s w) instead of D(¢ s w, sw). For small values of ¢, s and w, this gives
rise to a speedup by a factor s at least. More generally, the computation of ¢ remainders
a1 =xremmy,...,a¢=2x remmy can be done in time 2 s1(w)+ O(£? sw).

Multi-modular reconstruction can also be done faster, as follows, using a similar tech-
nique as in [5]. Let € Rys. Besides the usual binary representation of z and the multi-
modular representation (ay, ..., ap) = (zremmy, ..., x remmy), it is also possible to use the
Newton representation

T = by+bamy+bymima+--+bpmy--my_q,

where b; € R,,,. Let us now show how to obtain (b1, ..., b) efficiently from (ay, ..., a¢). Since
rremmi = by = a1, we must take by =a;. Assume that by,...,b;_1 have been computed. For
j=1—1,...,1 we next compute

Uji = (bj+bj+1mj+---+bi_1mj---mi_2)remm,~
using u;—1,;=b;—1 and

uji = (bj+ujrrim;) remm;
= (bj+uj+17i-(5j—5i))remmi (j:i—Q,...,l).

Notice that u;_1 j,...,u1,; can be computed in time (¢ — 1) (s +1) (w) + O(i sw). We have
xremm; = (u1;+b;mi--mij_1)remm; = a;.
Now the inverse v; of my ---m;_1 modulo m; can be precomputed. We finally compute
bi = v;(a;—up) remm;,

which can be done in time I(s w) + O(s w). For small values of i, we notice that it may
be faster to divide successively by myi, ..., m;_1 modulo m; instead of multiplying with v;.
In total, the computation of the Newton representation (b1, ..., b¢) can be done in time
(g) (s + 1) l(w) + I(s w) £ + O(f? s w). Having computed the Newton representation, we
next compute

ri = bi+tbiyimi+ - +bemi-mp_y
for 1=/,..., 1, using the recurrence relation

i = bi+zipr1m,.
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Since ;41 € Ry-isw, the computation of z; takes a time (I — 1) s (w) + O((I — i) s w).
Altogether, the computation of z = x; from (ay, ..., ag) can therefore be done in time
(5) @s+ 1) 1(w) +1(sw) £+ O£ sw) = 12 51(w).

4.2. The gentle modulus hunt

For practical applications, we usually wish to work with moduli that fit into one word or
half a word. Now the algorithm from the previous subsection is particularly efficient if the
numbers §; also fit into one word or half a word. This means that we need to impose the
further requirement that each modulus m; can be factored

mi = MM,

with m; 1,...,m; s <2%. If this is possible, then the m; are called s-gentle moduli. For given
bitsizes w and s> 2, the main questions are now: do such moduli indeed exist? If so, then
how to find them?

If s=2, then it is easy to construct s-gentle moduli m; = 22 + §; by taking &; = —e7,
where 0 < g; < 2(W~D/2 {5 6dd. Indeed,

220 —ef = (2¥+e)(2¥ — &)

and ged(2¥ + &, 2% — g;) = ged(2¥ + €4, 2 &) = ged(2¥ + &4, &) = ged(2¥, ) = 1.
Unfortunately, this trick does not generalize to higher values s > 3. Indeed, consider
a product

(2w+771)"'(2w+775) — 25w+(771+m+,,75) 2(371)w+
((771++?73)2_(77%++?7§)) 2(8—2)’11}—1_’_'“’

where 71, ..., 15 are small compared to 2. If the coefficient 77, + - 4 1 of 205~ D% vanishes,
then the coefficient of 20°=2®*~1 becomes the opposite —(77% 4+ ng) of a sum of squares.
In particular, both coefficients cannot vanish simultaneously, unless 71 =---=ns=0.

If s> 2, then we are left with the option to search s-gentle moduli by brute force. As
long as s is “reasonably small” (say s < 8), the probability to hit an s-gentle modulus for a
randomly chosen §; often remains significantly larger than 2. We may then use sieving to
find such moduli. By what precedes, it is also desirable to systematically take ;= —e? for
0<e; < 2®@=1/2 This has the additional benefit that we “only” have to consider o(w—1)/2
possibilities for ;.

4.3. The sieving procedure

We implemented a sieving procedure in MATHEMAGIX [18] that uses the MPARI package
with an interface to PARI-GP [22]. Given parameters s, w, w’ and p, the goal of our
procedure is to find s-gentle moduli of the form

M = (2°9/2—¢) (25" —¢) = my--my
with the constraints that
m; < 2w’
ged(m;, 2H) = 1,

fori=1,...,s, and m; <--- <mg. The parameter s is small and even. One should interpret
w and w’ as the intended and maximal bitsize of the small moduli m;. The parameter p
stands for the minimal bitsize of a prime factor of m;. The parameter € should be such
that 4 fits into a machine word.
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In Table 1 below we have shown some experimental results for this sieving procedure
in the case when s =6, w =22, w’ =25 and u=4. For £ < 1000000, the table provides us
with e, the moduli m1, ..., ms, as well as the smallest prime power factors of the product M.
Many hits admit small prime factors, which increases the risk that different hits are not
coprime. For instance, the number 17 divides both 232 — 311385% and 232 — 3765632,
whence these 6-gentle moduli cannot be selected simultaneously (except if one is ready
to sacrifice a few bits by working modulo lem(2!32 — 3113852, 2132 — 3765632) instead of
(2132 - 311385%) - (2192 — 376563?)).

In the case when we use multi-modular arithmetic for computations with rational
numbers instead of integers (see [10, section 5 and, more particularly, section 5.10]), then
small prime factors should completely be prohibited, since they increase the probability
of divisions by zero. For such applications, it is therefore desirable that mq, ..., mg are all
prime. In our table, this occurs for € = 57267 (we indicated this by highlighting the list of
prime factors of M).

In order to make multi-modular reduction and reconstruction as efficient as possible,
a desirable property of the moduli m; is that they either divide 2°*/2 — ¢ or 2°%/2 4+ ¢. In
our table, we highlighted the ¢ for which this happens. We notice that this is automatically
the case if my,...,ms are all prime. If only a small number of m; (say a single one) do not
divide either 2°/2 — ¢ or 2°/2 4+ ¢, then we remark that it should still be possible to design
reasonably efficient ad hoc algorithms for multi-modular reduction and reconstruction.

Another desirable property of the moduli m; <--- <my is that m is as small as possible:
the spare bits can for instance be used to speed up matrix multiplication modulo ms. Notice
however that one “occasional” large modulus ms only impacts on one out of s modular
matrix products; this alleviates the negative impact of such moduli. We refer to section 4.5
below for more details.

For actual applications, one should select gentle moduli that combine all desirable
properties mentioned above. If not enough such moduli can be found, then it it depends
on the application which criteria are most important and which ones can be released.

£ my ma ms3 my ms me pi P, -
27657 | 28867 4365919 | 6343559 | 13248371 | 20526577 | 25042063 | 29,41, 43, 547, ...
57267 | 416459 | 1278617 | 2041469 | 6879443 | 25754563 | 28268089 416459, ...
77565 | 7759 | 8077463 | 8261833 | 18751793 | 19509473 | 28741799 59,641, ...

95253 | 724567 | 965411 | 3993107 | 4382527 | 19140643 | 23236813 43, 724567, ...
294537 | 190297 | 283729 | 8804561 | 19522819 | 19861189 | 29537129 | 232,151, 1879, ...
311385 | 145991 | 4440391 | 4888427 | 6812881 | 7796203 | 32346631 17,79,131, ...
348597 [ 114299 | 643619 | 6190673 | 11389121 | 32355397 | 32442427 31,277, ...
376563 | 175897 | 1785527 | 2715133 | 7047419 | 30030061 | 30168739 | 17,127,1471, ...
462165 | 39841 | 3746641 | 7550339 | 13195943 | 18119681 | 20203643 | 67,641,907, ...
559713 | 353201 | 873023 | 2595031 | 11217163 | 18624077 | 32569529 | 19,59, 14797, ...
649485 | 21727 | 1186571 | 14199517 | 15248119 | 31033397 | 31430173 | 19,109, 227, ...
656997 | 233341 | 1523807 | 5654437 | 8563679 | 17566069 | 18001723 | 79, 89,63533, ...
735753 | 115151 | 923207 | 3040187 | 23655187 | 26289379 | 27088541 53,17419, ...
801687 [ 873767 | 1136111 | 3245041 | 7357871 | 8826871 | 26023391 23,383777, ...
826863 | 187177 | 943099 | 6839467 | 11439319 | 12923753 | 30502721 | 73,157,6007, ...
862143 | 15373 |3115219| 11890829 | 18563267 | 19622017 | 26248351 31,83,157, ...
877623 | 514649 | 654749 | 4034687 | 4276583 |27931549 | 33525223 41, 98407, ...
892455 | 91453 | 2660297 | 3448999 | 12237457 | 21065299 | 25169783 | 29,397,2141, ...

Table 1. List of 6-gentle moduli for w=22, w'=25, p=4 and £ < 1000000.
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4.4. Influence of the parameters s, w and w’

Ideally speaking, we want s to be as large as possible. Furthermore, in order to waste as
few bits as possible, w’ should be close to the word size (or half of it) and w’ — w should
be minimized. When using double precision floating point arithmetic, this means that we
wish to take w’ € {24,25,26,50,51,52}. Whenever we have efficient hardware support for
integer arithmetic, then we might prefer w € {30, 31, 32,62, 63, 64}.

Let us start by studying the influence of w’ —w on the number of hits. In Table 2, we
have increased w by one with respect to Table 1. This results in an approximate 5% increase
of the “capacity” s w of the modulus M. On the one hand, we observe that the hit rate of
the sieve procedure roughly decreases by a factor of thirty. On the other hand, we notice
that the rare gentle moduli that we do find are often of high quality (on four occasions the
moduli my, ..., mg are all prime in Table 2).

e ma mao ms my ms meg pTl, pgz,
936465 | 543889 | 4920329 | 12408421 | 15115957 | 24645539 | 28167253 | 19,59,417721, ...
2475879 | 867689 | 4051001 | 11023091 | 13219163 | 24046943 | 28290833 867689, ...
3205689 | 110161 | 12290741 | 16762897 | 22976783 | 25740731 | 25958183 99, 79,509, ...
3932205 | 4244431 | 5180213 | 5474789 | 8058377 | 14140817 | 25402873 4244431, ...

9665359 | 241739 | 5084221 | 18693097 | 21474613 | 23893447 | 29558531 31,41,137, ...
9998191 | 30971 | 21307063 | 21919111 | 22953967 | 31415123 | 33407281 | 101,911,941, ...
6762459 | 3905819 | 5996041 | 7513223 | 7911173 | 8584189 29160587 |43,137,90833, ...

9245919 | 2749717 | 4002833 | 8274689 | 9800633 | 15046937 | 25943587 2749717, ...
9655335 | 119809 | 9512309 | 20179259 | 21664469 | 22954369 | 30468101 17,89, 149, ...
12356475 | 1842887 | 2720359 | 7216357 | 13607779 | 23538769 | 30069449 1842887, ...

156257781 | 1012619 | 5408467 | 9547273 | 11431841 | 20472121 | 28474807 31,660391, ...

Table 2. List of 6-gentle moduli for w=23, w'=25, u =4 and € < 16000000.

Without surprise, the hit rate also sharply decreases if we attempt to increase s. The
results for s =8 and w =22 are shown in Table 3. A further infortunate side effect is that
the quality of the gentle moduli that we do find also decreases. Indeed, on the one hand,
M tends to systematically admit at least one small prime factor. On the other hand, it is
rarely the case that each m; divides either 25W/2 _ g or 25W/2 4 ¢ (this might nevertheless
be the case for other recombinations of the prime factors of M, but only modulo a further
increase of mg).

3 mi m2 m3 mq ms me mr msg plfl, pgz,

889305 | 50551 | 1146547 | 4312709 | 5888899 | 14533283 | 16044143 | 16257529 | 17164793 | 17, 31, 31, 59, ...
2447427 | 53407 | 689303 | 3666613 | 4837253 | 7944481 | 21607589 | 25976179 | 32897273 | 31,61, 103, ...
2674557 [ 109841 | 1843447 | 2624971 | 5653049 | 7030883 | 8334373 | 18557837 | 29313433 | 103, 223, 659, ...
3964365 | 10501 | 2464403 | 6335801 | 9625841 | 10329269 | 13186219 | 17436197 | 25553771 | 23,163, 607, ...
4237383 | 10859 | 3248809 | 5940709 | 6557599 | 9566959 | 11249039 | 22707323 | 28518509 | 23, 163, 1709, ...
5312763 [ 517877 | 616529 | 879169 | 4689089 | 9034687 | 11849077 | 24539909 | 27699229 |  43,616529, ...
6785367 | 22013 | 1408219 | 4466089 | 7867589 | 9176941 | 12150997 | 26724877 | 29507689 |  23,41,197, ...
7929033 | 30781 | 730859 | 4756351 | 9404807 | 13807231 | 15433939 | 19766077 | 22596193 | 31, 307, 503, ...
8168565 | 10667 | 3133103 | 3245621 | 6663029 | 15270019 | 18957559 | 20791819 | 22018021 | 43,409, 467, ...
8186205 | 41047 | 2122039 | 2410867 | 6611533 | 9515951 | 14582849 | 16507739 | 30115277 | 23,167, 251, ...

Table 3. List of 8-gentle moduli for w=22, w'=25, u=4 and £ < 10000000.

An increase of w’ while maintaining s and w’ — w fixed also results in a decrease
of the hit rate. Nevertheless, when going from w’ = 25 (floating point arithmetic) to
w’ =31 (integer arithmetic), this is counterbalanced by the fact that ¢ can also be taken
larger (namely & < 2%"); see Table 4 for a concrete example. When doubling w and w’ while
keeping the same upper bound for ¢, the hit rate remains more or less unchanged, but the
rate of high quality hits tends to decrease somewhat: see Table 5.
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It should be possible to analyze the hit rate as a function of the parameters s, w,
w’ and p from a probabilistic point of view, using the idea that a random number n is
prime with probability (log n)~!. However, from a practical point of view, the priority
is to focus on the case when w’ < 64. For the most significant choices of parameters
i< w < w' <64 and s, it seems in principle to be possible to compile full tables of s-
gentle moduli. Unfortunately, our current implementation is still somewhat inefficient for
w’ > 32. A helpful feature for upcoming versions of PARI would be a function to find all
prime factors of an integer below a specified maximum ouw’ (the current version only does
this for prime factors that can be tabulated).

g miy mo ms ™my ms me p11/17 p12/27
303513 | 42947057 | 53568313 | 331496959 | 382981453 | 1089261409 | 1176003149 | 292, 1480933, ...
851463 | 10195123 | 213437143 | 470595299 | 522887483 | 692654273 | 1008798563 17,41,67, ...

1001373 307261 | 611187931 | 936166801 | 1137875633 | 1196117147 | 1563634747 47,151, ...
1422507 | 3950603 | 349507391 | 490215667 | 684876553 | 693342113 | 1164052193 | 29,211,349, ...
1446963 | 7068563 | 94667021 | 313871791 | 877885639 | 1009764377 | 2009551553 23,71,241, ...
1551267 303551 | 383417351 | 610444753 | 1178193077 | 2101890797 | 2126487631 | 29,43,2293, ...
1555365 | 16360997 | 65165071 | 369550981 | 507979403 | 1067200639 | 1751653069 17,23,67, ...
4003545 | 20601941 | 144707873 | 203956547 | 624375041 | 655374931 | 1503716491 47,67, ...
4325475 | 11677753 | 139113383 | 210843443 | 659463289 | 936654347 | 1768402001 19,41, ...
4702665 | 8221903 | 131321017 | 296701997 | 496437899 | 1485084431 | 1584149417 8221903, ...
5231445 | 25265791 | 49122743 | 433700843 | 474825677 | 907918279 | 1612324823 | 17,1486223, ...
5425527 | 37197571 | 145692101 | 250849363 | 291039937 | 456174539 | 2072965393 37197571, ...
6883797 | 97798097 | 124868683 | 180349291 | 234776683 | 842430863 | 858917923 97798097, ...
7989543 | 4833137 | 50181011 | 604045619 | 638131951 | 1986024421 | 2015143349 23,367, ...

Table 4. List of 6-gentle moduli for w =28, w’=31, =4 and £ < 1600000. Followed by some of
the next gentle moduli for which each m; divides either 25%/2 — a or 2°%/2 4 «.

£ my mg | - ms me pr', o’ -
15123 | 380344780931 774267432193 | --- | 463904018985637 | 591951338196847 37,47,239, ...
34023 9053503517 | 13181369695139 | --- | 680835893479031 | 723236090375863 29, 35617, ...
40617 3500059133 510738813367 | --- | 824394263006533 | 1039946916817703 23,61, 347, ...
87363 745270007 | 55797244348441 | --- | 224580313861483 | 886387548974947 71,9209, ...
95007 | 40134716987 | 2565724842229 | --- | 130760921456911 | 393701833767607 19,67, ...
101307 | 72633113401 | 12070694419543 | ---| 95036720090209 | 183377870340761 41,401, ...
140313 | 13370367761 202513228811 | --- [ 397041457462499 | 897476961701171 379,1187, ...
193533 35210831 | 15416115621749 | --- | 727365428298107 | 770048329509499 59,79,...
519747 | 34123521053 685883716741 | --- | 705516472454581 | 836861326275781 127,587, ...
637863 | 554285276371 | 1345202287357 | --- | 344203886091451 | 463103013579761 79,1979, ...
775173 | 322131291353 379775454593 | --- | 194236314135719 | 1026557288284007 | 322131291353, ...
913113 | 704777248393 | 1413212491811 | --- | 217740328855369 | 261977228819083 37,163,677, ...
1400583 | 21426322331 42328735049 | --- | 411780268096919 | 626448556280293 | 21426322331, ...

Table 5. List of 6-gentle moduli for w =44, w’ =50, u=4 and £ < 200000. Followed by some of
the next gentle moduli for which each m; divides either 2°*/2 — o or 2°%/2 4 a.

4.5. Application to matrix multiplication

One of our favourite applications of multi-modular arithmetic is the multiplication of
integer matrices A, B € Z"*". We proceed as follows:

1. Compute Aremm; and Bremm;, for i =1, ..., £, using 2 r? multi-modular reductions.
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2. Multiply C'remm;:=(Aremm;) (Bremm;)remm,; for i=1,..., (.
3. Reconstruct C'rem M using r? multi-modular reconstructions.

If M is larger than 2 |(A B); ;| for all ¢ and j, then A B can be read off from A Brem M.

From a practical point of view, the second step can be implemented very efficiently
if 7m? fits into the size of a word. When using floating point arithmetic, this means that
we should have rm? < 252 for all i. For large values of r, this is unrealistic; in that case, we
subdivide the r x r matrices into smaller r; x r; matrices with r; m? < 252, The fact that r;
may depend on i is very significant. First of all, the larger we can take r;, the faster we can
multiply matrices modulo m;. Secondly, the m; in the tables from the previous sections
often vary in bitsize. It frequently happens that we may take all r; large except for the
last modulus my. The fact that matrix multiplications modulo the worst modulus my, are
somewhat slower is compensated by the fact that they only account for one out of every ¢
modular matrix products.

Several of the tables in the previous subsections were made with the application to
integer matrix multiplication in mind. Consider for instance the modulus M =my --- mg=
2132 _ 6569972 from Table 1. When using floating point arithmetic, we obtain r; < 82713,
ro < 1939, 73 < 140, r4 <61, 75 < 14 and r¢ < 13. Clearly, there is a trade-off between the
efficiency of the modular matrix multiplications (high values of r; are better) and the
bitsize ~f w of M (larger capacities are better).

If r is large with respect to log? M, then the modular matrix multiplication step is
the main bottleneck, so it is important to take all m; approximately of the same size (i.e.
w’ — w should be small) and in such a way that the corresponding r; lead to the best
complexity (loga7;~ 6 tends to work well). This can often only be achieved by lowering s
to s =4 or s = 2. For r closer to log? M, the Chinese remaindering steps become more
and more expensive, which makes it interesting to consider larger values of s and to
increase the difference w’ — w. For r significantly below log? M, we resort to FFT-based
matrix multiplication. This corresponds to taking roughly twice as many moduli, but the
transformations become approximately loglog M times less expensive.

4.6. Implementation issues

We have not yet implemented any of the algorithms in this paper. The implementation
that we envision selects appropriate code as a function of the parameters w, w’ and £. The
parameters w and w’ highly depend on the application: see the above discussion in the
case of integer matrix multiplication. Generally speaking, w’ is bounded by the bitsize W
of a machine word or by W /2.

So far, we have described four main strategies for solving Chinese remaindering prob-
lems for moduli M =mq -+ my:

G. The “gentle modulus strategy” requires M =23 — 2 to be an s-gentle modulus with
s =/{. Conversions between zrem M and (zrem (2°%/?—¢), zrem (2¥5+¢)) can be
done fast. The further conversions from and to (zremmy,...,x remmg) are done in
a naive manner.

P. The “gentle product strategy” strategy requires myi, ..., my to be gentle moduli. We
now perform the multi-modular reductions and recombinations using the algorithms
from subsection 4.1.
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N. The “naive strategy” for Chinese remaindering has been described in subsections 3.2
and 3.3.

F. The asymptotically fast “FFT-based strategy” from Theorems 6 and 10, which
attempts to do as much work as possible using Fourier representations.

The idea is now to apply each of these strategies at the appropriate levels of the remainder
tree. At the very bottom, we use G, followed by P and N. At the top levels, we use F.

As a function of ¢, we need to decide how much work we wish to perform at each of these
levels. For small ¢ <64, it suffices to combine the strategies G and P. As soon as sw’/2
exceeds W, some of the modular reductions in the strategy G may become expensive.
For this reason, it is generally better to let P do a bit more work, i.e. to take s < /. It is
also a good practice to use w as the “soft word size” for multiple integer arithmetic (see
subsection 2.4).

As soon as / starts to get somewhat larger, say 64 < /¢ < 256, then some intermediate
levels may be necessary before that FFT multiplication becomes plainly efficient. For
these levels, we use strategy N with arity two. It still has to be found out how large this
intermediate region is, exactly. Indeed, the ability to do more work using the Fourier
representation often lowers the threshold at which such methods become efficient. If one
manages to design extremely efficient implementations for the strategies G and P (e.g.
if multi-modular reduction and reconstruction can approximately be done as fast as mul-
tiplication itself), then one may also consider the use of Chinese remaindering instead of
Fourier transforms in F.

For large ¢ 2 256, the FFT-based algorithms should become fastest and we expect that
the theoretical log log (w ¢) speed-up should result in practical gains of a factor three at
least. As emphasized before, it is crucial to rely on inborn FFT strategies. For very large £,
we may also run out of s-gentle moduli. In that case, we may need to resort to lower values
of s, with the consequence that some of the lower levels may become somewhat more
expensive.

4.7. Alternative moduli

A very intriguing question is whether it is possible to select moduli that allow for even
faster Chinese remaindering. In the analogue case of polynomials, highly efficient algo-
rithms exist for multi-point evaluation and interpolation at points that form a geometric
sequence [5]. Geometric sequences of moduli do not work in our case, since they violate
the mutual coprime requirement and they grow too fast anyway. Arithmetic progressions
are more promising, although only algorithms with a better constant factor are known in
the polynomial case [5], and the elements of such sequences generically admit small prime
factors in common that have to be treated with care.

Another natural idea is to chose products M = my --- my of the form M = 2" — 1,
where 7 is highly composite. Each divisor d of n naturally induces a divisor ®4(2) of M,
where ®,; denotes the d-th cyclotomic polynomial. For instance, the number 2660 — 1
is divisible by ®1(200) = 260 — 1, ®5(2%0) = 260 4 1, ®3(260) = 2120 4 260 4 1 and
Pg(200) = 2120 260 4 1. Now euclidean division by ®1(269), ®5(250), ®3(2%°) and Pg(2%Y) is
easy since these numbers admit an extremely sparse and regular binary representations.
Furthermore, the numbers ®3(25°) = mg3 my4 and ®¢(2%°) = ms5 mg can both be factored
into products of two integers of less than 64 bits. Taking mi=2% —1 and my=2%41, it
should therefore be possible to design a reasonably efficient Chinese remaindering scheme
for M =mqmomsmy4msmeg on a 64-bit architecture.
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There are several downsides to this approach. Most importantly, the largest prime
divisor A(n) of 2™ — 1 grows quite quickly with n, even if n is very smooth. For instance,
the four largest n for which A(n) < 232 are n = 180, 200, 204,210 and the four largest n for
which \(n) <264 are n =420, 440, 540, 648. By construction, the number 2" — 1 also admits
many divisors if n is smooth, so several moduli of this type are generally not coprime.
Both obstructions together imply that we can only construct Chinese remaindering schemes
with a small number of moduli in this way. For instance, on a 64 bit architecture, one
of the best schemes would use n = 648 and twelve moduli of an average size of 54 bits.
In comparison, there are many 4-gentle and 6-gentle moduli that are products of prime
numbers of approximately 54 bits (or more), and combining a few of them leads to efficient
Chinese remaindering schemes for twelve (or more) prime moduli of approximately 54 bits.
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