Joris Van Der Hoeven

Faster Chinese remaindering

Keywords: Chinese remainder theorem, algorithm, complexity, integer matrix multiplication

published or not. The documents may come

Introduction

Modular reduction is an important tool in computer algebra and elsewhere for speeding up computations. The technique allows to reduce a problem that involves large integer or polynomial coecients to one or more similar problems that only involve small modular coecients. Depending on the application, the solution to the initial problem is reconstructed via the Chinese remainder theorem or Hensel's lemma. We refer to [10, chapter 5] for a gentle introduction to this topic.

In this paper, we will mainly be concerned with multi-modular algorithms over the integers that rely on the Chinese remainder theorem. The archetype of such an algorithm works as follows. We start with a polynomial function f : Z r ! Z s . For any modulus m, reduction of f modulo m yields a new function f m : (Z/m Z) r ! (Z/m Z) s such that f (x 1 ; :::; x r) mod m = f m (x 1 mod m; :::; x r mod m) for all x 1 ; :::; x r 2 Z. Given an algorithm to compute f that only uses ring operations on integers, it suces to replace each ring operations by its reduction modulo m in order to obtain an algorithm that computes f m . Now given integers x 1 ; :::; x r 2 Z and (y 1 ; :::; y s) = f (x 1 ; :::; x r), assume that we know a bound B 2 N with jx i j 6 B for i = 1; :::; r and jy i j 6 B for i = 1; :::; s. Then the following multi-modular algorithm provides with an alternative way to compute f (x 1 ; :::; x r): 0. Select moduli m 1 ; :::; m `with m 1 m `> 2 B that are mutually coprime. 1. For i = 1; :::; r, compute x i;j := x i mod m j for j = 1; :::; `.

2. For j = 1; :::; `, compute (y 1;j ; :::; y s;j) := f m j (x 1;j ; :::; x r;j).

3. For i = 1; :::; s, reconstruct y i from the values y i;j := y i mod m j with j = 1; :::; `.

Step 1 consists of r multi-modular reductions (nding the x i;j as a function of x i) and step 3 of s multi-modular reconstructions (nding y i as a function the y i;j); this is where the Chinese remainder theorem comes in. For a more detailed example with an application to integer matrix multiplication, we refer to section 4.5.

In favourable cases, the cost of steps 0, 1 and 3 is negligible with respect to the cost of step 2. In such situations, the multi-modular algorithm to compute f is usually much faster than the original algorithm. In less favourable cases, the cost of steps 1 and 3 can no longer be neglected. This raises the question whether it is possible to reduce the cost of these steps as much as possible.

Two observations are crucial here. First of all, the moduli m 1 ; :::; m `are the same for all r multi-modular reductions and s multi-modular reconstructions. If r + s is large, then this means that we can essentially assume that m 1 ; :::; m `were xed once and for all. Secondly, we are free to choose m 1 ; :::; m `in any way that suits us. By making each m i t into a machine word, one may ensure that every modular operation only takes a few cycles. Special FFT-moduli are often used as well for speeding up polynomial arithmetic.

In this paper, we will show how to exploit both of the above observations. For xed moduli, we will show in section 3 how to make Chinese remaindering asymptotically more ecient by a factor O(log log `) when `gets large. In section 4, we show that it is possible to construct gentle modulo that allow for speed-ups when `is small (l . 64). Both results can be combined in order to accelerate Chinese remaindering for all possible values of `.

The new asymptotic complexity bounds make heavy use of discrete Fourier transforms. For our purposes, it is crucial to avoid synthetic FFT schemes that require the adjunction of articial roots of unity as in SchönhageStrassen multiplication [START_REF] Schönhage | Schnelle Multiplikation groÿer Zahlen[END_REF]. Instead, one should use inborn FFT schemes that work with approximate roots of unity in C or roots of unity with high smooth orders in nite elds; see [24, section 3] and [START_REF] Pollard | The fast Fourier transform in a finite field[END_REF][START_REF] Harvey | Even faster integer multiplication[END_REF]. Basic complexity properties of integer multiplication and division based on fast Fourier techniques are recalled in section 2.

Let I(n) be the bit complexity for multiplying two n-bit numbers. Given pairwise comprime moduli m 1 ; :::; m `of bit-size n, it is well known that multi-modular reduction and reconstruction can be carried out in time O(I(n `) log `) using so called remainder trees [START_REF] Fiduccia | Polynomial evaluation via the division algorithm: the fast fourier transform revisited[END_REF][START_REF] Moenck | Fast modular transforms via division[END_REF][START_REF] Borodin | Fast modular transforms[END_REF]. Recent improvements of this technique can be found in [START_REF] Bostan | Tellegen's principle into practice[END_REF][START_REF] Bernstein | Scaled remainder trees[END_REF]. The main goal of section 3 is to show that this complexity essentially drops down to O(I(n `) log `/log log `) in the case when all moduli m 1 ; :::; m `are xed; see Theorems 6 and 10 for more precise statements. The main idea is to increase the arities of nodes in the remainder tree, while performing the bulk of the computations at each node using Fourier representations. This technique of trading faster algorithms against faster representations was also used in [START_REF] Van Der Hoeven | Newton's method and FFT trading[END_REF], where we called it FFT-trading; see also [START_REF] Bernstein | Removing redundancy in high precision Newton iteration[END_REF]. The same approach can also be applied to the problem of base conversion (see section 3.8) and for univariate polynomials instead of integers (see section 3.9).

Having obtained a non trivial asymptotic speed-up for large `, we next turn our attention to the case when `is small (say `. 64). The main goal of section 4 there is to exhibit the existence of gentle moduli m 1 ; :::; m `for which Chinese remaindering becomes more ecient than usual. The rst idea is to pick moduli m i of the form 2 sw ¡ " i 2 , where w is somewhat smaller than the hardware word size, s is even, and " i 2 < 2 w . In section 4.1, we will show that multi-modular reduction and reconstruction both become a lot simpler for such moduli. Secondly, each m i can be factored as m i = (2 sw/2 ¡ " i) (2 sw/2 + " i) and, if we are lucky, then both 2 sw/2 ¡ " i and 2 sw/2 + " i can be factored into s/2 moduli that t into machine words. If we are very lucky, then this allows us to obtain w `moduli m i;j of bitsize w that are mutually coprime and for which Chinese remaindering can be implemented eciently. Gentle moduli can be regarded as the integer analogue of special sets of points that allowed for speed-ups of multi-point evaluation and interpolation in [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF].

Acknowledgments. We would like to thank Grégoire Lecerf for pointing us to Bernstein's work [START_REF] Bernstein | Scaled remainder trees[END_REF] on the topic of this paper.

Preliminaries

Integer multiplication

Throughout this paper we will assuming the deterministic multitape Turing model [START_REF] Papadimitriou | Computational Complexity[END_REF] in order to analyze the bit complexity of our algorithms. We will denote by I(n) the cost of n-bit integer multiplication. The best current bound [START_REF] Harvey | Even faster integer multiplication[END_REF] for I(n) is

I(n) = O(n log n 8 log n);
where log n := min k 2 N: ¡ log ::: k log (n) 6 1 is called the iterator of the logarithm. For large n, it is well known that the fastest algorithms for integer multiplication [START_REF] Pollard | The fast Fourier transform in a finite field[END_REF][START_REF] Schönhage | Schnelle Multiplikation groÿer Zahlen[END_REF][START_REF] Fürer | Faster integer multiplication[END_REF][START_REF] Harvey | Even faster integer multiplication[END_REF] are all based on the discrete Fourier transform [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]: denoting by F(2 n) the cost of a suitable Fourier transform of bitsize 2 n and by N(2 n) the cost of the inner multiplications for this bitsize, one has

I(n) = 3 F(2 n) + N(2 n):
(

For the best current algorithm from [START_REF] Harvey | Even faster integer multiplication[END_REF], we have

F(2 n) = O(n log n 8 log n) (2) N (2 n) = O(n 4 log n): (3)
One always has

N(2 n) = o(F(2 n)).
The actual size of Fourier transforms is usually somewhat restricted: for eciency reasons, it should be the product of powers of small prime numbers only, such as 2, 3 and 5. Fortunately, for large numbers n, it is always possible to nd n 0 2 2 N 3 N 5 N with n 0 > n and n 0 /n = 1 + o [START_REF] Bernstein | Removing redundancy in high precision Newton iteration[END_REF].

It is also well known that fast Fourier transforms allow for several tricks. For instance, if one of the multiplicands of an n-bit integer product is xed, then its Fourier transform can be precomputed. This means that the cost of the multiplication drops down to

I xed (n) = 2 F(2 n) + N(2 n) / 2 3 I(n):
In particular, the complexity I(N ; n) of multiplying an N -bit integer with an n-bit one (for

N > n) satises I(N ; n) = / 2 3 N n + / 1 3 + o(1) I(n):
Squares of n-bit numbers can be computed in time

(2 + o(1)) F(2 n) / 2 3 I(n)
for the same reason. Yet another example is the multiplication of two 2 2 matrices with (n ¡ 1)-bit integer entries: such multiplications can be done in time (12 + o(1)) F(2 n) 4 I(n) by transforming the input matrices, multiplying the transformed matrices in the Fourier model, and then transforming the result back.

In the remainder of this paper, we will systematically assume that asymptotically fast integer multiplication is based on fast Fourier transforms. In particular, we have (1) for certain functions F and N. We will also assume that the functions F(n) /(N(n) log n) and N(n) / n are (not necessarily strictly) increasing and that F(n) = o(N(n) log n log log n). These additional conditions are satised for (2) and (3). The rst condition is violated whenever the FFT scheme requires the adjunction of articial roots of unity. This happens for SchönhageStrassen multiplication, in which case we have

F(2 n) = O(n log n log log n) and N(2 n) = O(n log n)).
We will say that an FFT-scheme is inborn if it satises our additional requirements.

For a hypothetical integer multiplication that runs in time I(n) = o(n log n 8 log n), but for which I(n) / (n log n) is (not necessarily strictly) increasing, we also notice that it is possible to design an inborn FFT-based integer multiplication method that runs in time O(I(n)); this is for instance used in [START_REF] Harvey | On the complexity of integer matrix multiplication[END_REF].

Euclidean division of integers

Let D(N ; n) denote the cost of euclidean division with remainder of an N -bit integer by an n-bit one. In [16, section 3.2], we gave an algorithm divide for the euclidean division of a polynomial of degree <2 n by another polynomial of degree <n. This algorithm is based on FFT trading, a technique that consists of doing as much work as possible in the FFT-model even at the expense of using naive, suboptimal algorithms in the FFT-model.

The straightforward adaptation of this division to integer arithmetic yields the asymptotic bound

D(2 n; n) 6 (/ 5 3 + o(1)) I(n):
Furthermore, the discrete Fourier transforms for the dividend make up for roughly one fth of the total amount of transforms. For N > 2 n, the cost of the transforms for the dividend does not grow with N , which leads to the renement

D(N ; n) 6 / 4 3 N n ¡ 1 + o(1) I(n) (N > 2 n): Similarly, if n = o(N), then D(N ; N ¡ n) 6 (/ 2 3 + o(1)) N n I(n) (n = o(N));
since the bulk of the computation consists of multiplying the approximate n-bit quotient with the (N ¡ n)-bit dividend. If the dividend is xed, then we even get

D xed (N ; N ¡ n) 6 (/ 1 3 + o(1)) N n I(n) (n = o(N));
since the Fourier transforms for the dividend can be precomputed.

Approximate products modulo one

Let us start with a few denitions and notations. Given n 2 N and e 2 Z, we dene

D n;e = fk 2 e¡n : 0 6 k < 2 n g
be the set of dyadic xed point numbers of bitsize n and with exponent e. Given x 2 R and m 2 R > , we denote by

x rem m = x ¡ j x m k m 2 [0; m)
the remainder of the euclidean division of x by m. Given x 2 R and " 2 R > , we say that x ~2 R is an "-approximation of x if jx ~¡ xj < ". We also say that x ~is a circular "-approximation of x if jx ~¡ xj < ". Here jx ~¡ xj := min k2Z jx ~¡ x ¡ kj denotes the circular distance between x ~and x. Let x = k 2 ¡2n 2 D 2n;¡2n , y = l 2 0 2 D n;0 and z = x y rem 1 2 D 2n;¡2n . Mutatis mutandis, Bernstein observed in [START_REF] Bernstein | Scaled remainder trees[END_REF] that we may compute a circular 2 ¡n -approximation z ~2 D n;¡n for z as follows. We rst compute the product m = k l rem (2 2n ¡ 1) of k and l modulo 2 2n ¡ 1 and then take z ~= b2 ¡n mc 2 ¡n .

Let us show that z ~indeed satises the required property. By construction, there exists an a 2 N with a < 2 n such that m = k l ¡ a (2 2n ¡ 1). Therefore, 0 6 m 2 ¡2n ¡ z ~< 2 ¡n and

x y ¡ m 2 ¡2n = a (2 2n ¡ 1) 2 ¡2n = a ¡ a 2 ¡2n , whence a ¡ 2 ¡n < x y ¡ z ~< a + 2 ¡n .
More generally, if we only have a circular [2 ¡n]-approximation x ~= k 2 ¡2n 2 D 2n;¡2n of a number x 2 R (instead of a number x 2 k 2 ¡n 2 D 2n;¡2n as above), then the algorithm computes a circular [(1 + y 2 ¡n) 2 ¡n]-approximation z ~of x y rem 1.

Bernstein's trick is illustrated in Figure 1: we are only interested in the highlighted portion of the product. We notice that these kinds of truncated products are reminiscent of the middle product in the case of polynomials [START_REF] Hanrot | The middle product algorithm I. speeding up the division and square root of power series[END_REF]; in our setting, we also have to cope with carries and rounding errors. When using FFT-multiplication, products modulo 2 2n ¡ 1 can be computed using three discrete Fourier transforms of bitsize 2 n, so the cost is essentially the same as the cost of an n-bit integer multiplication. If one of the arguments is xed, then the cost becomes asymptotic to / 2 3 I(n). More generally, for `2 f1; 2; :::g, let x ~2 D `n;¡`n be a circular 2 ¡`n -approximation of a number x 2 R and let y 2 D (`¡1)n;0 . Then we may compute a circular approximation z ~2 D n;¡n of z = x y rem 1 as follows. Consider the expansions

x ~= X i=¡¡ 1 x ~i 2 in ; y = X i=0 `¡2 y i 2 in ; (4)
with x ~¡`; :::; x ~¡1 ; y 0 ; :::; y `¡2 2 D n;0 ; see Figure 2. By what precedes, for i = 0; :::; `¡ 2, we may compute circular 2 ¡n -approximations u ~i for

u i = [(x ~¡i¡1 2 ¡2n + x ~¡i 2 ¡n) y i] rem 1:
Setting

v i = [(x ~¡`2 ¡(`+1¡i)n + + x ~¡i 2 ¡n) y i] rem 1; it follows that ju ~i ¡ v i j < 2 2 ¡n , whereas v := x ~y rem 1 = (v 0 + + v `¡2) rem 1. Taking z ~= (u 0 + + u `¡2) rem 1, it follows that jz ~¡ vj < (2 `¡ 2) 2 ¡n and jz ~¡ z j < (2 `¡ 2 + y 2 ¡(`¡1)n) 2 ¡n :
When using FFT-multiplication, we notice that the sum v 0 + + v `¡2 can be computed in the FFT-model, before being transformed back. In that way, we only need 2 `+ 1 instead of 3 `transforms of size 2 n, for a total cost of (/

Machine arithmetic

For actual machine implementations of large integer arithmetic, it is customary to choose a base of the form 2 w and to perform all computations with respect to that base. We will call w the soft word size. For processors that have good hardware support for integer arithmetic, taking w = 32 or w = 64 is usually most ecient. The GMP package [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] uses this approach.

However, modern processors are often better at oating point arithmetic. General purpose processors generally provide double precision IEEE-768 compliant instructions, whereas GPUs are frequently limited to single precision. The respective choices w 50 and w 22 are most adequate in these cases. It is good to pick w slightly below the maximum bitsize of the mantissa in order to accelerate carry handling. We refer to [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] for more details on the implementation of multiple precision arithmetic based on oating point arithmetic.

Another particularity of recent processors is the availability of ever wider SIMD (Single Instruction Multiple Data) instructions. For modern implementations of large integer arithmetic, we therefore recommend to focus on the problem of multiplying several (1; 2; 4; 8; :::) large integers of a given bitsize instead of a single one. We again refer to [START_REF] Van Der Hoeven | Faster FFTs in medium precision[END_REF] for more details.

In what follows, when using integer arithmetic, we will denote by W the maximal bitsize such that we have a hardware instruction to multiply two integers of W bits (e.g. W = 32 or W = 64). When using oating point arithmetic, we let W be the bitsize of a mantissa (i.e. W = 23 or W = 53). We will call W the machine word size. For implementations of multiple precision arithmetic, we always have w 6 W , but it can be interesting to take w < W .

For moduli m that t into a machine word, arithmetic modulo m can be implemented eciently using hardware instructions. In this case, the available algorithms again tend to be somewhat faster if the size of m is a few bit smaller than W . We refer to [START_REF] Van Der Hoeven | Modular SIMD arithmetic in Mathemagix[END_REF] for a survey of the best currently available algorithms in various cases and how to exploit SIMD instructions.

When using arithmetic modulo m, it is often possible to delay the reductions modulo m as much as possible. One typical example is modular matrix multiplication. Assume that we have two r r matrices with coecients modulo m (represented by integers between 0 and m ¡ 1, say). If r m 2 ts into a machine word, then we may multiply the matrices using integer or oating point arithmetic and reduce the result modulo m. This has the advantage that we may use standard, highly optimized implementations of matrix multiplication. One drawback is that the intermediate results before reduction require at least twice as much space. Also, the bitsize of the modulus is at least twice as small as W .

Asymptotically fast Chinese remaindering

The Chinese remainder theorem

For any integer m > 1, we will write R m = f0; :::; m ¡ 1g. We recall:

Chinese Remainder Theorem. Let m 1 ; :::; m `be positive integers that are mutually coprime and denote M = m 1 m m . Given a 1 2 R m 1 ; :::; a `2 R m `, there exists a unique x 2 R M with x a i (mod m i) for i = 1; :::; `.

We will prove the following more constructive version of this theorem.

Theorem 1. Let m 1 ; :::; m `be positive integers that are mutually coprime and denote M = m 1 m m . There exist c 1 ; ::

:; c `2 R M such that for any a 1 2 R m 1 ; :::; a `2 R m `, the number x = (c 1 a 1 + + c `a`) rem M
satises x a i (mod m i) for i = 1; :::; `.

Notation. We call c 1 ; :::; c `the cofactors for m 1 ; :::; m `in M and also denote these numbers by c m 1 ;M = c 1 ; :::; c m `;M = c `.

Proof. If `= 1, then it suces to take c 1 = 1. If `= 2, then the extended Euclidean algorithm allows us to compute a Bezout relation

k 1 m 1 + k 2 m 2 = 1; (5)
where

k 1 2 R m 2 and k 2 2 R m 1 .
Let us show that we may take

c 1 = k 2 m 2 2 R m 1 m 2 c 2 = k 1 m 1 2 R m 1 m 2 : Indeed, given a 1 2 R m 1 and a 2 2 R m 2 , we have k 1 m 1 x + k 2 m 2 x x c 1 a 1 + c 2 a 2 k 1 m 1 a 2 + k 2 m 2 a 1 (mod m 1 m 2):
In particular,

m 2 divides k 1 m 1 (x ¡ a 2). Since (5) implies gcd(k 1 m 1 ; m 2) = 1, it follows that x a 2 (mod m 2). Similarly, x a 1 (mod m 1). For `> 2, we will use induction. Let h = b`/2c, M 1 = m 1 m h and M 2 = m h+1 m l .
By induction, we may compute c M 1 ;M , c M 2 ;M , c m 1 ;M 1 ; :::; c m h ;M 1 and c m h+1 ;M 2 ; :::; c m `;M 2 . We claim that we may take

c m i = c m i ;M 1 c M 1 ;M (i = 1; :::; h) c m i = c m i ;M 2 c M 2 ;M (i = h + 1; :::; `):
Indeed, for i = 1; :::; h, we get

x c M 1 ;M (c m 1 ;M 1 a 1 + + c m h ;M 1 a h) + c M 2 ;M (c m h+1 ;M 2 a h+1 + + c m `;M 2 a `) c m 1 ;M 1 a 1 + + c m h ;M 1 a h (mod M 1);
whence x a i (mod m i). For i = h + 1; :::; `we obtain x a i (mod m i) in a similar way.

Naive multi-modular reduction and reconstruction

Let m 1 ; :::; m `, M = m 1 m `, a 1 2 R m 1 ; :::; a `2 R m `and x 2 R M be as in the Chinese remainder theorem. We will refer to the computation of a 1 ; :::; a `as a function of x as the problem of multi-modular reduction. The inverse problem is called multi-modular reconstruction. In what follows, we assume that m 1 ; :::; m `have been xed once and for all.

The simplest way to perform multi-modular reduction is to simply take

a i := x rem m i (i = 1; :::; `): (6)
Inversely, Theorem 1 provides us with a formula for multi-modular reconstruction:

x := (c m 1 ;M a 1 + + c m `;M a `) rem M : (7)
Since m 1 ; :::; m `are xed, the computation of the cofactors c m 1 ;M can be regarded as a pre-computation.

Let us analyze the cost of the above methods in terms of the complexity I(n) of n-bit integer multiplication. Assume that m i < 2 n for i = 1; :::; `. Then multi-modular reduction can clearly be done in time

`D(`n; n) = (/ 4 3 `¡ 1 + o(1)) `I(n).
As to multi-modular reconstruction, assume that m i < 2 n 0 for i = 1; :::; `, where n 0 := n ¡ dlog 2 `e is such that `2n 0 6 2 n . Cutting the cofactors in chunks of n bits as in (4), we precompute the Fourier transform of all obtained chunks. The Fourier transforms of a 1 ; :::; a `can be computed in time 6`F(2 n). The sum S = c m 1 ;M a 1 + + c m `;M a can be computed in the Fourier model in time N(2 n) `2 and transformed back in time F(2 n) `+ O(n `). Our assumption that `mi < 2 n for i = 1; :::; `ensures that the computed sum is correct. The remainder S rem M can be computed in time

D xed ((`+ 1) n; `n) 6 F(2 n) `+ 5 F(2 n) + O(N(2 n) `).
The total time of the reconstruction is therefore bounded by

C n 0 ;naive (`) = (N(2 n) `2 + 2 F(2 n) `+ 5 F(2 n) + O(N(2 n) `)): (8)
If we only assume that m i < 2 n , then we need to increase the bitsize n by dlog 2 `e. If `log `= O(n), then this means that we have to multiply the right-hand side of (8) by

1 + O(log `/n) = 1 + O(`¡ 1).

Scaled remainders

The above complexity analysis shows that naive multi-modular recomposition can be done faster than naive multi-modular reduction. In order to make the latter operation more ecient, one may work with scaled remainders that were introduced in [START_REF] Bernstein | Scaled remainder trees[END_REF]. The idea is that each remainder of the form u rem P is replaced by u P rem 1. The quotient u P is regarded as a real number and its remainder modulo 1 as a number in the interval [0; 1).

If we allow ourselves to compute with exact real numbers, then this leads us to replace the relation (6) by

x m i rem 1 = M m i x M rem 1 rem 1 (i = 1; :::; `) (9)
and (7) by

x M rem 1 = c m 1 ;M m 1 M a 1 m 1 rem 1 + + c m `;M m M a m`r em 1 rem 1: (10)
For actual machine computations, we rather work with xed point approximations of the scaled remainders. In order to retrieve the actual remainder u rem P from the scaled one u P rem 1, we need a circular (2 P) ¡1 -approximation of u P rem 1. Now assume that m 1 ; :::; m k 2 R 2 n 0 with

n 0 6 n ¡ dlog 2 (4 `)e: Given a circular [2 ¡`n]-approximation of x M rem 1 in D `n;¡`n with 6 2 (n¡n 0)(`¡1) ;
the algorithm at the end of section 2.3 allows us to compute a circular [2 `2¡n]-approximation modulo 1 of x m i rem 1, by applying the formula (9). Since 2 `2¡n 6 2 ¡n 0 ¡1 , we may then recover the number x rem m i using one nal n-bit multiplication. Moreover, in the FFT-model, the transforms for x M rem 1 need to be computed only once and the transforms for the numbers M m i can be precomputed. In summary, given an approximation for the scaled remainder x M rem 1, we may thus compute approximations for the scaled remainders

x m i rem 1 in time C n 0 ;scaled (`) = N(2 n) `2 + 2 F(2 n) `+ O(N(2 n) `): (11)
From this, we may recover the actual remainders x rem m i in time `I(n).

Scaled remainders can also be used for multi-modular reconstruction, but carry handling requires more care and the overall payo is less when compared to the algorithm from the previous subsection.

Remainder trees

It is well-known that Chinese remaindering can be accelerated using a similar dichotomic technique as in the proof of Theorem 1. This time, we subdivide M = fm 1 ; :::; m `g into k parts M 1 = fm `0+1 ; :::; m `1g; :::; M k = fm `k¡1 +1 + 1; :::; m `k g with `j = b(j `) / kc for j = 0; :::; k. We denote M j = m `j ¡1 +1 m `j and assume that `> k (if `< k, then we apply the native algorithms from the previous subsections).

Fast multi-modular reduction proceeds as follows. We rst compute

X j = x rem M j (j = 1; :::; k) (12)
using the algorithm from the previous subsection. Next, we recursively apply fast multimodular reduction to obtain

a i = X j rem m i (i = `j¡1 + 1; :::; `j): (13)
The computation process can be represented in the form of a so called remainder tree; see Figure 3. The root of the tree is labeled by x mod M . The children of the root are the remainder trees for X j modulo M j , where j = 1; :::; k. If needed, then the arity k can be adjusted as a function of the bitsize of the moduli and `. Fast multi-modular reconstruction is done in a similar way, following the opposite direction. We rst reconstruct

X j = ¡ c m `j ¡1 +1 ;M j a `j ¡1 +1 + + c m `j;M j a `j
rem M j (j = 1; :::; k); [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF] followed by

x = (c M 1 ;M X 1 + + c M k ;M X k) rem M : (15
)
The computation ow can again be represented using a tree, but this time the computations are done in a bottom-up way. Following the approach from subsection 3.3, it is also possible to systematically work with xed point approximations of scaled remainders u P rem 1 instead of usual remainders u rem P . In that case, the computation process gives rise to a scaled remainder tree as in Figure 4. Of course, the precision of the approximations has to be chosen with care. Before we come to this, let us rst show how to choose k.

Specication of the arities of nodes in the remainder tree

Let us rst focus on multi-modular reconstruction. In order to make this process as ecient as possible, the arity k should be selected as a function of n and `so as to make N(2 n) `2 as large as possible in [START_REF] Fiduccia | Polynomial evaluation via the division algorithm: the fast fourier transform revisited[END_REF], while remaining negligible with respect to

F(2 n) `. Let n (`) = F(2 `n) N(2 `n) log 2 log (2 `n) = o F(2 `n) N(2 `n) :
For inborn FFT schemes, we notice that

n (`) = o log (2 `n) log log (2 `n) n (`) ¡1 = O log 2 log (2 `n) log (2 `n) = O log 2 log n log n :
For the root of the remainder tree, we take

k = n (`) = 8 > < > : `if `6 n (`) p if `2/3 6 n (`) < n (`) otherwise
Using the same formula recursively for the other levels of the remainder tree, it is natural to dene the sequences `1; :::; `r+1 and k 1 ; :::; k r by `1 = `, k i = n (`i) and `i+1 = d`i /k i e for i = 1; :::; r; the construction stops as soon as `r+1 = 1. Notice that we always have

`(n) 6 `(n).
The precise choice of k = n (`) is motivated by the following lemmas.

Lemma 2. If r > 1, then `r ¡1 = O((log n) ¡1/3). Proof. We clearly cannot have `r¡1 6 n (`r ¡1), since otherwise `r = 1. If `r¡1 2/3 6 n (`r ¡1) < `r¡1 , then `r ¡1 = `r¡1 / `r¡1 p ¡1 = O ¡ `r¡1 ¡1/2 6 O(n (`r ¡1) ¡1/2) = O((log n) ¡1/3): If n (`r ¡1) < `r¡1 2/3 , then `r ¡1 = d`r ¡1 / n (`r ¡1)e ¡1 < `r¡1 ¡1/3 < n (`r ¡1) ¡1/2 = O((log n) ¡1/3):
This proves the result in all cases.

Lemma 3. If r > 1, then we have k 1 k i¡1 `i `for i = 1; :::; r + 1.

Proof. For i = 1; :::; r ¡ 1, we have `i ¡1 < n (`i) ¡1 = O(log 2 log n/log n), so that k i > 3 and `i+1 < `i/2 whenever n is suciently large. By construction, we also have

k i `i+1 6 1 + 1 `i `i:
By induction, it follows that

k 1 k i¡1 `i 6 1 + 1 `i 1 + 1 `1 `1 6 exp 1 `r + + 1 `1 `1 6 exp 2 `r `1 `;
for i = 1; :::; r. We also have Proof. Let > 0 and let s be smallest such that log n (`s) < (1 ¡) log log (n `) ¡ 1. For all i < s, we have log `i > (1 ¡) log log (n `) + log `i+1 , whence

k 1 k r `r+1 = k 1 k r ¡1 `r `.
s 6 log (1 ¡) log log (`n) : (16
)
Let c > 0 be a constant such that n (`) > c log (`n) log 2 log (`n) for all `. We also have

log c log (`s n) log 2 log (`s n) < log n (`s) < (1 ¡) log log (n `); so that log(`s n) = O(log 2 log (`s n) (log (`n)) 1¡) = O(log 2 log (`n) (log (`n)) 1¡): Since `i > 2 `i+1 for all i < r, it follows that r ¡ s 6 log `s log 2 = O(log 2 log (`n) (log (`n)) 1¡): (17)
Adding up (16) and (17) while letting tend to zero, the result follows.

Complexity analysis of multi-modular reconstruction

Let C n (`) be the complexity multi-modular reconstruction for xed moduli m 1 ; :::; m `with m i < 2 n for i = 1; :::; `.

Theorem 6. If integer multiplication is based on an inborn FFT scheme, then

C n (`) 6 (/ 2 3 + o(1)) I(`n) max log log log (n `); 1 + O(`¡ 1) : (18
)
This bound holds uniformly in `for n ! 1.

Proof. In the special case when r = 1, the bound (8) yields

C n (`) 6 (1 + O(`¡ 1)) (N(2 n) `2 + 2 F(2 n) `+ 5 F(2 n)) + O(N(2 n) `) = (2 + O(`¡ 1)) F(2 n) `+ (1 + O(`¡ 1)) N(2 n) `2 6 (2 + O(`¡ 1)) F(2 n) `+ (1 + O(`¡ 1)) N(2 n) n (`) = (2 + O(`¡ 1) + o(1)) F(2 n) = (/ 2 3 + o(1)) I(n) `+ O(I(n));
and we are done. If r > 1, then (8) implies

C n (`i) 6 (2 + O(k i ¡1)) F(2 n `i+1) k i + (1 + O(k i ¡1)) N(2 n `i+1) k i 2 + C n (`i +1) k i 6 (2 + o(1)) F(2 n `i+1) k i + C n (`i +1) k i ;
for i = 1; :::; r. By induction, and using the fact that C n (1) = 0, we get

C n (`) 6 X i=1 r (2 + o(1)) F(2 n `i+1) k 1 k i : = X i=1 r (2 + o(1)) F(2 n `i+1) ì +1 : 6 X i=1 r (2 + o(1)) F(2 n `) = (2 + o(1)) r F(2 n `):
The result now follows from Lemma 4 and (1).

Remark 7.

For `¡1 = o(1) and `= O(log n), the bound (18) simplies into

C n (`) 6 (/ 2 3 + o(1)) I(`n):
If log n = O(log `), then the bound becomes

C n (`) 6 (/ 2 3 + o(1)) I(`n) log log log `:
Remark 8. It is interesting to examine the cost of the precomputations as a function of the parameters n, `and m 1 ; :::; m `. For a node of the remainder tree at level i, we essentially need to compute k i cofactors and their transforms. This can be done in time O(k i I(n `i)).

Since we have k 1 k i¡1 nodes at level i, the total precomputation time at level i is therefore bounded by O(k

1 k i I(n `i)) = O(k i I(n `)). Now k i = o(log (n `i) /log log (n `i)) = o(log (n `)/log log (n `))
. Consequently, the total precomputation time is bounded by

C n;pre (`) = o r I(n `) log (n `) log log (n `) = o I(n `) log (n `) log log 2 log (n `) :

Complexity analysis of multi-modular reduction

Let us now consider the complexity C n (`) of multi-modular reduction for xed moduli m 1 ; :::; m `with m i < 2 n for i = 1; :::; `. In this case, it is most ecient to work with scaled remainders, so the algorithm contains three main steps:

1. The initial conversion of x rem M into (an approximation of)

x M rem 1. 2. The computation of (approximations of) the scaled remainders

x m i rem 1.
3. The nal conversions of (approximations of)

x m i rem 1 into x rem m i .
At a rst stage, we will assume that m 1 ; :::; m `< 2 n 0 , where n 0 < n is suciently small such that the nal approximations of the scaled remainders x m i rem 1 allow us to recover the usual remainders x rem m i .

Let C ~n(`) denote the cost of step 2. The conversions in steps 1 and 3 boil down to multiplications with xed arguments, so that

C n 0(`) 6 C ~n(`) + (/ 4 3 + o(1)) I(n `): (19
)
For step 2, we use the scaled remainder tree algorithm from subsection 3.4, while taking the arities k as in subsection 3.5. Our next task is to show that n 0 := n ¡ dlog 2 (4 `r)e is small enough in order to recover all remainders x rem m i . Lemma 9. There exists a constant n 0 such that for all n > n 0 and i = 1; :::; r, we have

2 k i 6 2 dlog 2 (4`r)e`i +1 = 2 (n¡n 0)`i +1 :
Proof. For i = r the result clearly holds, so assume that i < r. In particular, if n is suciently large, then it follows that k i 6 d `i p e. Now assume for contradiction that 2 k i > 2 dlog 2 (4`r)e`i +1 > 2 2 `i+1 . Then we would get `i

6 k i `i+1 < k i log 2 k i < d `i p e log 2 d `i p e. This is impossible for `i > 2.
Now starting with a circular 2 ¡`n -approximation of x M rem 1, the scaled reduction algorithm from subsection 3.3 yields circular [2 k 1 2 ¡`2]-approximations for the scaled remainders X j M j rem 1 at level i = 2. Lemma 9 now shows that = 2 k 1 is suciently small for a continued application of the same algorithm for the next level. By induction over i, the same reasoning shows that the scaled remainders at the (i + 1)-th level are computed with an error below

2 k i 2 ¡`i +1 n 6 2 (n¡n 0)`i +1 2 ¡`i +1 n 6 2 (n¡n 0)`i +1 (k i+1 ¡1) 2 ¡`i +1 n :
At the very end, we obtain (2 k r 2 ¡n)-approximations for the scaled remainders

x m i rem 1.
Since `r = k r , this allows us to reconstruct each remainder x rem m i using a multiplication by m i . This shows that n 0 is indeed small enough for the algorithm to work.

Theorem 10. If integer multiplication is based on an inborn FFT scheme, then

C n (`) 6 (/ 2 3 + o(1)) I(`n) max log log log (n `) ; 1 + 2 : (20
)
This bound holds uniformly in `for n ! 1.

Proof.

A similar cost analysis as in the proof of Theorem 6 yields

C ~n(`) 6 N(2 n) `2 + 2 F(2 n) `+ O(N(2 n) `) = (/ 2

Base conversion

The approach of this section can also be used for the related problem such as base conversion. Let b 2 R 2 n and `be a xed base and order. Given a number x 2 R b `, the problem is to compute x 0 ; :::; x `¡1 2 R b with

x = x 0 + x 1 b + + x `¡1 b `¡1 : (22)
Inversely, one may wish to reconstruct x from x 0 ; :::; x `¡1 . It is well known that both problems can be solved using a similar remainder tree process as in the case of Chinese remainders. The analogues for the formulas (7) and (9) are (22) and

x i b rem 1 = h b `¡1¡i x b `rem 1 i rem 1 (i = 0; :::; `¡ 1): (23)
The analogue of the recursive process of subsection 3.4 reduces a problem of size `to k similar problems of size d`/ k e and one similar problem of size k but for the base b d`/ke . A routine verication shows that the complexity bounds (18) and (20) also apply in this context.

Moreover, for nodes of the remainder tree at the same level, the analogues of the cofactors and the multiplicands M / m i in (9) do not vary as a function of the node. For this reason, the required precomputations as a function of b and `can actually be done much faster. This makes it possible to drop the hypothesis that b and `are xed and consider these parameters as part of the input. Let us denote by B n (`) and B n (`) the complexities of computing x 0 ; :::; x `¡1 as a function of x and vice versa.

Theorem 13. If integer multiplication is based on an inborn FFT scheme, then

B n (`) 6 (/ 2 3 + o(1)) I(`n) log log log (n `) + O(log log `) (24)
B n (`) 6 (/

2 3 + o(1)) I(`n) log log log (n `) + O(log log `) : (25
)
These bound holds uniformly in `for n ! 1.

Proof. Let us estimate the cost of the precomputations as a function of b and `. The analysis is similar as in Remark 8 except that we only have to do the precomputations for a single node of the tree at each level i. Consequently, the precomputation time is now bounded by O(k 1 I(n `1) + + k r I(n `r)). Since the `1; `2; ::: decrease with at least geometric speed, this cost is dominated by

O(k 1 I(n `1)) = o I(n `) log (n `) log log (n `)
. This proves the result under the condition that log n = O(log `).

If log `= o(log n), then we need to construct k 1 ; :::; k r in a slightly dierent way. Assuming that n is suciently large, let t be maximal such that

2 2 t¡1 6 n l 2 22 t¡1 m :
Notice that t 6 dlog 2 log 2 `e:

We again set `1 = `and `i+1 = d`i/k i e. This time, we take k i = 2 2 i¡1 for i 6 t and proceed with the usual construction k i = k(`i) for i > t. It follows that

`i = l 2 22
i¡1 m (i = 1; :::; t + 1)

k i 6 n (`i) (i = 1; :::; t) k t+1 = n (`t +1) < 2 2 t k t+1 `t+1 = O(`) and r 6 t + log log log (n `) + o(1):
Using the new bound for r, a similar complexity analysis as in the proofs of Theorems 6 and 10 yields the bounds (24) and (25) when forgetting about the cost of the precomputations. Now the cost P 1 of the precomputations for the rst t levels is bounded by

P 1 = O(k 1 I(n `1) + k 2 I(n `2) + + k t I(n `t)) = O 2 I 2 n 2 + 4 I 2 n 4 + + 2 2 t¡1 I 2 n 22 t¡1 = O(t I(n `))
and the cost P 2 for the remaining levels by

P 2 = O(k t+1 I(n `t+1) + + k r I(n `r)) = O(k t+1 I(n `t+1)) = O k t+1 `t+1 `I(n `)

= O(I(n `)):

We conclude that the right-hand sides of (24) and (25) absorb the cost P 1 + P 2 of the precomputations.

Polynomial analogues

It is quite straightforward to adapt the theory of this section to univariate polynomials instead of integers. An example of this kind of adaptations can be found in [START_REF] Bernstein | Scaled remainder trees[END_REF]. In particular, this yields ecient algorithms for multi-point evaluation and interpolation in the case when the evaluation points are xed. The analogues of our algorithms for base conversion yield ecient methods for p-adic expansions and reconstruction. More precisely, let R be an eective commutative ring and let M(n) be the cost of multiplying two polynomials of degree <n in R [x]. Assume that R allows for inborn FFT multiplication. Then M(n) = 3 F(2 n) + N(2 n), where F and N satisfy similar properties as in the integer case. Let Q 1 ; :::; Q `be `monic polynomials of degree n. Given a polynomial P of degree <`n in R[x] we may then compute the remainders P mod Q i for i = 1; :::; `in time

C n;R (`) 6 (/ 2 3 + o(1)) M(`n) max log log log (n `) ; 1 + 2 :
The reconstruction of P from these remainders can be done in time

C n;R (`) 6 (/ 2 3 + o(1)) M(`n) max log log log (n `) ; 1 + O(`¡ 1) :
The assumption that R admits a suitable inborn FFT scheme is in particular satised if R is a nite eld [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF]. When working in an algebraic complexity model, this is still the case if R is any eld of positive characteristic [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF]. For general elds of characteristic zero, the best known FFT schemes rely on the adjunction of articial roots of unity [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF]. In that case, our techniques only result in an asymptotic speed-up by a factor log log log (n `) instead of log log (n `). Nevertheless, the eld of complex numbers does admit roots of unity of any order, and our algorithms can be used for xed point approximations of complex numbers at any precision.

Multi-point evaluation has several interesting applications, but it is important to keep in mind that our speed-ups only apply when the moduli are xed. For instance, assume that we computed approximate zeros z 1 ; :::; z `to a complex polynomial of degree `, using a bitprecision n. Then we may use multi-point evaluation in order to apply Newton's method simultaneously to all roots and nd approximations of bit-precision 2 n. Unfortunately, our speed-up does not work in this case, since the approximate zeros z 1 ; :::; z `are not xed. On the other hand, if the polynomial has degree k `instead of `and we are still given àpproximate zeros z 1 ; :::; z `(say all zeros in some disk), then the same moduli are used k times, and one may hope for some speed-up when using our methods.

At another extremity, it is instructive to consider the approximate evaluation of a xed polynomial P = P 0 + + P `¡1 x `¡1 with xed point coecients P 0 ; :::; P `¡1 2 D n;0 at a single point a 2 D n;0 . We may thus assume that suitable Fourier transforms of the P i have been precomputed. Now we rewrite P = P [0] + + P [d¡1] (x k) d¡1 with k = p , d = d`/ke and P [i] = P ki + + P ki+k ¡1 x k¡1 . In order to evaluate each of the P [i] at a, it suces to transform the numbers 1; x; :::; x k¡1 , to perform the evaluations in the Fourier representation and then transform the results back. This can be achieved in time O(k

I(n)) + k d N(2 n) + d F(2 n).
We may nally compute P (a) = P [0] (a) + + P [d¡1] (a) (a k) d¡1 using Horner's method, in time O(d I(n)). For large `, the dominant term of the computation time is k d N(2 n) `N(2 n). Faster Chinese remaindering

Gentle moduli

The base algorithms revisited for special moduli

Let us now reconsider the naive algorithms from section 3.2, but in the case when the moduli m 1 ; :::; m `are all close to a specic power of two. More precisely, we assume that m i = 2 sw + i (i = 1; :::; `);

where j i j 6 2 w ¡1 and s > 2 a small number. As usual, we assume that the m i are pairwise coprime and we let M = m 1 m

`.

For such moduli, the naive algorithm for the euclidean division of a number x 2 R 2 `sw by m i becomes particularly simple and essentially boils down to the multiplication of i with the quotient of this division. In other words, the remainder can be computed in time `s I(w) + O(`s w) instead of D(`s w; s w). For small values of `, s and w, this gives rise to a speedup by a factor s at least. More generally, the computation of `remainders a 1 = x rem m 1 ; :::; a `= x rem m `can be done in time `2 s I(w) + O(`2 s w).

Multi-modular reconstruction can also be done faster, as follows, using a similar technique as in [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]. Let x 2 R M . Besides the usual binary representation of x and the multimodular representation (a 1 ; :::; a `) = (x rem m 1 ; :::; x rem m `), it is also possible to use the Newton representation

x = b 1 + b 2 m 1 + b 3 m 1 m 2 + + b `m1 m `¡1 ;
where b i 2 R m i . Let us now show how to obtain (b 1 ; :::; b `) eciently from (a 1 ; :::; a `). Since x rem m 1 = b 1 = a 1 , we must take b 1 = a 1 . Assume that b 1 ; :::; b i¡1 have been computed. For j = i ¡ 1; :::; 1 we next compute

u j ;i = (b j + b j+1 m j + + b i¡1 m j m i¡2) rem m i using u i¡1;i = b i¡1 and u j ;i = (b j + u j+1;i m j) rem m i = (b j + u j+1;i (j ¡ i))
rem m i (j = i ¡ 2; :::; 1): Notice that u i¡1;i ; :::; u 1;i can be computed in time (i ¡ 1) (s + 1) I(w) + O(i s w). We have

x rem m i = (u 1;i + b i m 1 m i¡1) rem m i = a i :
Now the inverse v i of m 1 m i¡1 modulo m i can be precomputed. We nally compute

b i = v i (a i ¡ u 1) rem m i ;
which can be done in time I(s w) + O(s w). For small values of i, we notice that it may be faster to divide successively by m 1 ; :::; m i¡1 modulo m i instead of multiplying with v i . In total, the computation of the Newton representation (b 1 ; :::; b `) can be done in time

2

(s + 1) I(w) + I(s w) `+ O(`2 s w). Having computed the Newton representation, we next compute

x i = b i + b i+1 m i + + b `mi m `¡1
for i = `; :::; 1, using the recurrence relation

x i = b i + x i+1 m i : Since x i+1 2 R 2 (`¡i)sw, the computation of x i takes a time (l ¡ i) s I(w) + O((l ¡ i) s w).
Altogether, the computation of x = x 1 from (a 1 ; :::; a `) can therefore be done in time 2 (2 s + 1) I(w) + I(s w) `+ O(`2 s w) `2 s I(w).

The gentle modulus hunt

For practical applications, we usually wish to work with moduli that t into one word or half a word. Now the algorithm from the previous subsection is particularly ecient if the numbers i also t into one word or half a word. This means that we need to impose the further requirement that each modulus m i can be factored

m i = m i;1 m i;s ;
with m i;1 ; :::; m i;s < 2 w . If this is possible, then the m i are called s-gentle moduli. For given bitsizes w and s > 2, the main questions are now: do such moduli indeed exist? If so, then how to nd them?

If s = 2, then it is easy to construct s-gentle moduli m i = 2 2w + i by taking i = ¡" i 2 , where 0 6 " i < 2 (w ¡1)/2 is odd. Indeed,

2 2w ¡ " i 2 = (2 w + " i) (2 w ¡ " i)
and gcd(2 w + " i ;

2 w ¡ " i) = gcd(2 w + " i ; 2 " i) = gcd(2 w + " i ; " i) = gcd(2 w ; " i) = 1.
Unfortunately, this trick does not generalize to higher values s > 3. Indeed, consider a product

(2 w + 1) (2 w + s) = 2 sw + (1 + + s) 2 (s¡1)w + ((1 + + s) 2 ¡ (1 2 + + s 2)) 2 (s¡2)w¡1 + ;
where 1 ; :::; s are small compared to 2 w . If the coecient 1 + + s of 2 (s¡1)w vanishes, then the coecient of 2 (s¡2)w¡1 becomes the opposite ¡(1 2 + + s 2) of a sum of squares. In particular, both coecients cannot vanish simultaneously, unless 1 = = s = 0.

If s > 2, then we are left with the option to search s-gentle moduli by brute force. As long as s is reasonably small (say s 6 8), the probability to hit an s-gentle modulus for a randomly chosen i often remains signicantly larger than 2 ¡w . We may then use sieving to nd such moduli. By what precedes, it is also desirable to systematically take i = ¡" i 2 for 0 6 " i < 2 (w ¡1)/2 . This has the additional benet that we only have to consider 2 (w ¡1)/2 possibilities for " i .

The sieving procedure

We implemented a sieving procedure in Mathemagix [START_REF] Van Der Hoeven | [END_REF] that uses the Mpari package with an interface to Pari-GP [START_REF]PARI/GP[END_REF]. Given parameters s; w; w 0 and , the goal of our procedure is to nd s-gentle moduli of the form

M = (2 sw/2 ¡ ") (2 sw/2 ¡ ") = m 1 m s with the constraints that m i < 2 w 0 gcd(m i ; 2 !) = 1;
for i = 1; :::; s, and m 1 6 6 m s . The parameter s is small and even. One should interpret w and w 0 as the intended and maximal bitsize of the small moduli m i . The parameter stands for the minimal bitsize of a prime factor of m i . The parameter " should be such that 4 " 2 ts into a machine word.

In Table 1 below we have shown some experimental results for this sieving procedure in the case when s = 6, w = 22, w 0 = 25 and = 4. For " < 1000000, the table provides us with ", the moduli m 1 ; :::; m s , as well as the smallest prime power factors of the product M . Many hits admit small prime factors, which increases the risk that dierent hits are not coprime. For instance, the number 17 divides both 2 132 ¡ 311385 2 and 2 132 ¡ 376563 2 , whence these 6-gentle moduli cannot be selected simultaneously (except if one is ready to sacrice a few bits by working modulo lcm(2 132 ¡ 311385 2 ; 2 132 ¡ 376563 2) instead of (2 132 ¡ 311385 2) (2 132 ¡ 376563 2)).

In the case when we use multi-modular arithmetic for computations with rational numbers instead of integers (see [10, section 5 and, more particularly, section 5.10]), then small prime factors should completely be prohibited, since they increase the probability of divisions by zero. For such applications, it is therefore desirable that m 1 ; :::; m s are all prime. In our table, this occurs for " = 57267 (we indicated this by highlighting the list of prime factors of M).

In order to make multi-modular reduction and reconstruction as ecient as possible, a desirable property of the moduli m i is that they either divide 2 sw/2 ¡ " or 2 sw/2 + ". In our table, we highlighted the " for which this happens. We notice that this is automatically the case if m 1 ; :::; m s are all prime. If only a small number of m i (say a single one) do not divide either 2 sw/2 ¡ " or 2 sw/2 + ", then we remark that it should still be possible to design reasonably ecient ad hoc algorithms for multi-modular reduction and reconstruction.

Another desirable property of the moduli m 1 6 6 m s is that m s is as small as possible: the spare bits can for instance be used to speed up matrix multiplication modulo m s . Notice however that one occasional large modulus m s only impacts on one out of s modular matrix products; this alleviates the negative impact of such moduli. We refer to section 4.5 below for more details.

For actual applications, one should select gentle moduli that combine all desirable properties mentioned above. If not enough such moduli can be found, then it it depends on the application which criteria are most important and which ones can be released.

Inuence of the parameters s, w and w 0

Ideally speaking, we want s to be as large as possible. Furthermore, in order to waste as few bits as possible, w 0 should be close to the word size (or half of it) and w 0 ¡ w should be minimized. When using double precision oating point arithmetic, this means that we wish to take w 0 2 f24; 25; 26; 50; 51; 52g. Whenever we have ecient hardware support for integer arithmetic, then we might prefer w 2 f30; 31; 32; 62; 63; 64g.

Let us start by studying the inuence of w 0 ¡ w on the number of hits. In Table 2, we have increased w by one with respect to Table 1. This results in an approximate 5% increase of the capacity s w of the modulus M . On the one hand, we observe that the hit rate of the sieve procedure roughly decreases by a factor of thirty. On the other hand, we notice that the rare gentle moduli that we do nd are often of high quality (on four occasions the moduli m 1 ; :::; m s are all prime in Without surprise, the hit rate also sharply decreases if we attempt to increase s. The results for s = 8 and w = 22 are shown in Table 3. A further infortunate side eect is that the quality of the gentle moduli that we do nd also decreases. Indeed, on the one hand, M tends to systematically admit at least one small prime factor. On the other hand, it is rarely the case that each m i divides either 2 sw/2 ¡ " or 2 sw/2 + " (this might nevertheless be the case for other recombinations of the prime factors of M , but only modulo a further increase of m s). An increase of w 0 while maintaining s and w 0 ¡ w xed also results in a decrease of the hit rate. Nevertheless, when going from w 0 = 25 (oating point arithmetic) to w 0 = 31 (integer arithmetic), this is counterbalanced by the fact that " can also be taken larger (namely " < 2 w 0); see Table 4 for a concrete example. When doubling w and w 0 while keeping the same upper bound for ", the hit rate remains more or less unchanged, but the rate of high quality hits tends to decrease somewhat: see Table 5.

It should be possible to analyze the hit rate as a function of the parameters s, w, w 0 and from a probabilistic point of view, using the idea that a random number n is prime with probability (log n) ¡1 . However, from a practical point of view, the priority is to focus on the case when w 0 6 64. For the most signicant choices of parameters < w < w 0 6 64 and s, it seems in principle to be possible to compile full tables of sgentle moduli. Unfortunately, our current implementation is still somewhat inecient for w 0 > 32. A helpful feature for upcoming versions of Pari would be a function to nd all prime factors of an integer below a specied maximum 2 w 0 (the current version only does this for prime factors that can be tabulated).

Application to matrix multiplication

One of our favourite applications of multi-modular arithmetic is the multiplication of integer matrices A; B 2 Z rr . We proceed as follows:

1. Compute A rem m i and B rem m i for i = 1; :::; `, using 2 r 2 multi-modular reductions.

2. Multiply C rem m i := (A rem m i) (B rem m i) rem m i for i = 1; :::; `.

3. Reconstruct C rem M using r 2 multi-modular reconstructions.

If M is larger than 2 j(A B) i;j j for all i and j, then A B can be read o from A B rem M .

From a practical point of view, the second step can be implemented very eciently if r m i 2 ts into the size of a word. When using oating point arithmetic, this means that we should have r m i 2 < 2 52 for all i. For large values of r, this is unrealistic; in that case, we subdivide the r r matrices into smaller r i r i matrices with r i m i 2 < 2 52 . The fact that r i may depend on i is very signicant. First of all, the larger we can take r i , the faster we can multiply matrices modulo m i . Secondly, the m i in the tables from the previous sections often vary in bitsize. It frequently happens that we may take all r i large except for the last modulus m `. The fact that matrix multiplications modulo the worst modulus m `are somewhat slower is compensated by the fact that they only account for one out of every modular matrix products.

Several of the tables in the previous subsections were made with the application to integer matrix multiplication in mind. Consider for instance the modulus M = m 1 m 6 = 2 132 ¡ 656997 2 from Table 1. When using oating point arithmetic, we obtain r 1 6 82713, r 2 6 1939, r 3 6 140, r 4 6 61, r 5 6 14 and r 6 6 13. Clearly, there is a trade-o between the eciency of the modular matrix multiplications (high values of r i are better) and the bitsize `w of M (larger capacities are better).

If r is large with respect to log 2 M , then the modular matrix multiplication step is the main bottleneck, so it is important to take all m i approximately of the same size (i.e. w 0 ¡ w should be small) and in such a way that the corresponding r i lead to the best complexity (log 2 r i 6 tends to work well). This can often only be achieved by lowering s to s = 4 or s = 2. For r closer to log 2 M , the Chinese remaindering steps become more and more expensive, which makes it interesting to consider larger values of s and to increase the dierence w 0 ¡ w. For r signicantly below log 2 M , we resort to FFT-based matrix multiplication. This corresponds to taking roughly twice as many moduli, but the transformations become approximately log log M times less expensive.

Implementation issues

We have not yet implemented any of the algorithms in this paper. The implementation that we envision selects appropriate code as a function of the parameters w, w 0 and `. The parameters w and w 0 highly depend on the application: see the above discussion in the case of integer matrix multiplication. Generally speaking, w 0 is bounded by the bitsize W of a machine word or by W /2.

So far, we have described four main strategies for solving Chinese remaindering problems for moduli M = m 1 m `:

G. The gentle modulus strategy requires M = 2 ws ¡ " 2 to be an s-gentle modulus with s = `. Conversions between x rem M and (x rem (2 ws/2 ¡ "); x rem (2 ws + ")) can be done fast. The further conversions from and to (x rem m 1 ; :::; x rem m s) are done in a naive manner.

P.

The gentle product strategy strategy requires m 1 ; :::; m `to be gentle moduli. We now perform the multi-modular reductions and recombinations using the algorithms from subsection 4.1.

N. The naive strategy for Chinese remaindering has been described in subsections 3.2 and 3.3.

F. The asymptotically fast FFT-based strategy from Theorems 6 and 10, which attempts to do as much work as possible using Fourier representations.

The idea is now to apply each of these strategies at the appropriate levels of the remainder tree. At the very bottom, we use G, followed by P and N. At the top levels, we use F.

As a function of `, we need to decide how much work we wish to perform at each of these levels. For small `. 64, it suces to combine the strategies G and P. As soon as s w 0 /2 exceeds W , some of the modular reductions in the strategy G may become expensive. For this reason, it is generally better to let P do a bit more work, i.e. to take s 2 < `. It is also a good practice to use w as the soft word size for multiple integer arithmetic (see subsection 2.4).

As soon as `starts to get somewhat larger, say 64 . `. 256, then some intermediate levels may be necessary before that FFT multiplication becomes plainly ecient. For these levels, we use strategy N with arity two. It still has to be found out how large this intermediate region is, exactly. Indeed, the ability to do more work using the Fourier representation often lowers the threshold at which such methods become ecient. If one manages to design extremely ecient implementations for the strategies G and P (e.g. if multi-modular reduction and reconstruction can approximately be done as fast as multiplication itself), then one may also consider the use of Chinese remaindering instead of Fourier transforms in F.

For large `& 256, the FFT-based algorithms should become fastest and we expect that the theoretical log log (w `) speed-up should result in practical gains of a factor three at least. As emphasized before, it is crucial to rely on inborn FFT strategies. For very large `, we may also run out of s-gentle moduli. In that case, we may need to resort to lower values of s, with the consequence that some of the lower levels may become somewhat more expensive.

Alternative moduli

A very intriguing question is whether it is possible to select moduli that allow for even faster Chinese remaindering. In the analogue case of polynomials, highly ecient algorithms exist for multi-point evaluation and interpolation at points that form a geometric sequence [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF]. Geometric sequences of moduli do not work in our case, since they violate the mutual coprime requirement and they grow too fast anyway. Arithmetic progressions are more promising, although only algorithms with a better constant factor are known in the polynomial case [START_REF] Bostan | Polynomial evaluation and interpolation on special sets of points[END_REF], and the elements of such sequences generically admit small prime factors in common that have to be treated with care.

Another natural idea is to chose products M = m 1 m `of the form M = 2 n ¡ 1, where n is highly composite. Each divisor d of n naturally induces a divisor d (2) of M , where d denotes the d-th cyclotomic polynomial. For instance, the number 2 660 ¡ 1 is divisible by 1 (2 60) = 2 60 ¡ 1, 2 (2 60) = 2 60 + 1, 3 (2 60) = 2 120 + 2 60 + 1 and 6 (2 60) = 2 120 ¡ 2 60 + 1. Now euclidean division by 1 (2 60); 2 (2 60); 3 (2 60) and 6 (2 60) is easy since these numbers admit an extremely sparse and regular binary representations. Furthermore, the numbers 3 (2 60) = m 3 m 4 and 6 (2 60) = m 5 m 6 can both be factored into products of two integers of less than 64 bits. Taking m 1 = 2 60 ¡ 1 and m 2 = 2 60 + 1, it should therefore be possible to design a reasonably ecient Chinese remaindering scheme for M = m 1 m 2 m 3 m 4 m 5 m 6 on a 64-bit architecture.

There are several downsides to this approach. Most importantly, the largest prime divisor (n) of 2 n ¡ 1 grows quite quickly with n, even if n is very smooth. For instance, the four largest n for which (n) < 2 32 are n = 180; 200; 204; 210 and the four largest n for which (n) < 2 64 are n = 420; 440; 540; 648. By construction, the number 2 n ¡ 1 also admits many divisors if n is smooth, so several moduli of this type are generally not coprime. Both obstructions together imply that we can only construct Chinese remaindering schemes with a small number of moduli in this way. For instance, on a 64 bit architecture, one of the best schemes would use n = 648 and twelve moduli of an average size of 54 bits. In comparison, there are many 4-gentle and 6-gentle moduli that are products of prime numbers of approximately 54 bits (or more), and combining a few of them leads to ecient Chinese remaindering schemes for twelve (or more) prime moduli of approximately 54 bits.

Figure 1 .

 1 Figure 1. Product modulo one of x 2 D 2n;¡2n and y 2 D n;0 with n signicant bits.

0

 rem 3 1 rem 5 2 rem 17

Figure 3 .

 3 Figure 3. Example of a remainder tree with arities k = 2 and k = 3 at the two recursion levels. In the case of a reduction, the remainders are computed top-down. In the case of a reconstruction, they are reconstructed in a bottom-up fashion. 4057213 2 ¡23

Figure 4 .

 4 Figure 4. The scaled remainder tree corresponding to Example 3, while using xed point approximations for the scaled remainders.

Lemma 4 .

 4 We have r 6 (1 + o(1)) log log log (`n) .

Lemma 5 .

 5 We have `r = O(log n). Proof. By construction, `r 6 n (`r) = O(log (`r n)). For large n, this means that `r < n, since otherwise `r = O(log(`r 2)) = O(log `r), which is impossible. Consequently, `r = O(log(n 2)) = O(log n).

"

Table 3 .

 3 List of 8-gentle moduli for w = 22, w 0 = 25, = 4 and " < 10000000.

"

 Product modulo one of x 2 D `n;¡`n and y 2 D (`¡1)n;0 with n signicant bits.

			2 3 `+ / 1 3 + o(1)) I(n).
				y	
				(`¡ 1) n
				n	
				0	
	¡`n	¡2 n	¡n	0	x
	Figure 2.				

Table 1 .

 1 List of 6-gentle moduli for w = 22, w 0 = 25, = 4 and " < 1000000.

		m 1	m 2	m 3	m 4	m 5	m 6	p 1 1 ; p 2 2 ; :::
	27657 28867 4365919 6343559 13248371 20526577 25042063 29; 41; 43; 547; :::
	57267 416459 1278617 2041469 6879443 25754563 28268089	416459; :::
	77565	7759 8077463 8261833 18751793 19509473 28741799	59; 641; :::
	95253 724567 965411 3993107 4382527 19140643 23236813	43; 724567; :::
	294537 190297 283729 8804561 19522819 19861189 29537129 23 2 ; 151; 1879; :::
	311385 145991 4440391 4888427 6812881 7796203 32346631	17; 79; 131; :::
	348597 114299 643619 6190673 11389121 32355397 32442427	31; 277; :::
	376563 175897 1785527 2715133 7047419 30030061 30168739 17; 127; 1471; :::
	462165 39841 3746641 7550339 13195943 18119681 20203643	67; 641; 907; :::
	559713 353201 873023 2595031 11217163 18624077 32569529 19; 59; 14797; :::
	649485 21727 1186571 14199517 15248119 31033397 31430173	19; 109; 227; :::
	656997 233341 1523807 5654437 8563679 17566069 18001723 79; 89; 63533; :::
	735753 115151 923207 3040187 23655187 26289379 27088541	53; 17419; :::
	801687 873767 1136111 3245041 7357871 8826871 26023391	23; 383777; :::
	826863 187177 943099 6839467 11439319 12923753 30502721 73; 157; 6007; :::
	862143 15373 3115219 11890829 18563267 19622017 26248351	31; 83; 157; :::
	877623 514649 654749 4034687 4276583 27931549 33525223	41; 98407; :::
	892455 91453 2660297 3448999 12237457 21065299 25169783 29; 397; 2141; :::

Table 2) .

 2.

	"	m 1	m 2	m 3	m 4	m 5	m 6	p 1 1 ; p 2 2 ; :::
	936465 543889 4920329 12408421 15115957 24645539 28167253 19; 59; 417721; :::
	2475879 867689 4051001 11023091 13219163 24046943 28290833	867689; :::
	3205689 110161 12290741 16762897 22976783 25740731 25958183	59; 79; 509; :::
	3932205 4244431 5180213 5474789 8058377 14140817 25402873	4244431; :::
	5665359 241739 5084221 18693097 21474613 23893447 29558531	31; 41; 137; :::
	5998191	30971 21307063 21919111 22953967 31415123 33407281 101; 911; 941; :::
	6762459 3905819 5996041 7513223 7911173 8584189 29160587 43; 137; 90833; :::
	9245919 2749717 4002833 8274689 9800633 15046937 25943587	2749717; :::
	9655335 119809 9512309 20179259 21664469 22954369 30468101	17; 89; 149; :::
	12356475 1842887 2720359 7216357 13607779 23538769 30069449	1842887; :::
	15257781 1012619 5408467 9547273 11431841 20472121 28474807	31; 660391; :::

Table 2 .

 2 List of 6-gentle moduli for w = 23, w 0 = 25, = 4 and " < 16000000.

Table 4 .

 4 List of 6-gentle moduli for w = 28, w 0 = 31, = 4 and " < 1600000. Followed by some of the next gentle moduli for which each m i divides either 2 sw/2 ¡ or 2 sw/2 + .

		m 1	m 2	m 3	m 4	m 5	m 6	p 1 1 ; p 2 2 ; :::
	303513 42947057 53568313 331496959 382981453 1089261409 1176003149 29 2 ; 1480933; :::
	851463 10195123 213437143 470595299 522887483 692654273 1008798563	17; 41; 67; :::
	1001373	307261 611187931 936166801 1137875633 1196117147 1563634747	47; 151; :::
	1422507 3950603 349507391 490215667 684876553 693342113 1164052193 29; 211; 349; :::
	1446963 7068563 94667021 313871791 877885639 1009764377 2009551553	23; 71; 241; :::
	1551267	303551 383417351 610444753 1178193077 2101890797 2126487631 29; 43; 2293; :::
	1555365 16360997 65165071 369550981 507979403 1067200639 1751653069	17; 23; 67; :::
	4003545 20601941 144707873 203956547 624375041 655374931 1503716491	47; 67; :::
	4325475 11677753 139113383 210843443 659463289 936654347 1768402001	19; 41; :::
	4702665 8221903 131321017 296701997 496437899 1485084431 1584149417	8221903; :::
	5231445 25265791 49122743 433700843 474825677 907918279 1612324823 17; 1486223; :::
	5425527 37197571 145692101 250849363 291039937 456174539 2072965393	37197571; :::
	6883797 97798097 124868683 180349291 234776683 842430863 858917923	97798097; :::
	7989543 4833137 50181011 604045619 638131951 1986024421 2015143349	23; 367; :::
	"	m 1	m 2		m 5		m 6	p 1 1 ; p 2 2 ; :::
	15123 380344780931	774267432193 463904018985637 591951338196847	37; 47; 239; :::
	34023	9053503517 13181369695139 680835893479031 723236090375863	29; 35617; :::
	40617	3500059133	510738813367 824394263006533 1039946916817703	23; 61; 347; :::
	87363	745270007 55797244348441 224580313861483 886387548974947	71; 9209; :::
	95007 40134716987 2565724842229 130760921456911 393701833767607	19; 67; :::
	101307 72633113401 12070694419543 95036720090209 183377870340761	41; 401; :::
	140313 13370367761	202513228811 397041457462499 897476961701171	379; 1187; :::
	193533	35210831 15416115621749 727365428298107 770048329509499	59; 79; :::
	519747 34123521053	685883716741 705516472454581 836861326275781	127; 587; :::
	637863 554285276371 1345202287357 344203886091451 463103013579761	79; 1979; :::
	775173 322131291353	379775454593 194236314135719 1026557288284007 322131291353; :::
	913113 704777248393 1413212491811 217740328855369 261977228819083	37; 163; 677; :::
	1400583 21426322331	42328735049 411780268096919 626448556280293 21426322331; :::

Table 5 .

 5 List of 6-gentle moduli for w = 44, w 0 = 50, = 4 and " < 200000. Followed by some of the next gentle moduli for which each m i divides either 2 sw/2 ¡ or 2 sw/2 + .

Faster Chinese remaindering