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Abstract— In many imaging systems and in particular in X ray
Computed Tomography (CT) the reconstruction problem can be
written as a linear inverse problem. In these problems, one prop-
erty which can often be exploited is sparsity of the solution in an
appropriate basis. In this work we consider the Student-t model in
its hierarchical Normal-Inverse Gamma with an appropriate dic-
tionary based coefficient. Then, thanks to the hierarchical genera-
tive model of the observation, we derive the expression of the joint
posterior law of all the unknowns and an alternate optimisation al-
gorithm for obtaining the joint MAP solution. We then detail the
implementation issues of this algorithms for parallel computation
and show the results on real size 2D and 3D phantoms.

1 Introduction
In many imaging systems, very often the reconstruction prob-
lem can be written as a linear inverse problem. This is the
case in X ray Computed Tomography (CT) [1, 2]. In these
problems, the solution often has a sparse representation in a
suitable basis. This sparsity property can be exploited in the
reconstruction algorithm. For example, for a piecewise contin-
uous or constant image, using Haar Transform (HT) gives rise
to very sparse coefficients. To impose sparsity, three great cate-
gories of priors have been used: i) Generalized Gaussian (GG),
ii) mixture of two Gaussian and iii) the heavy tailed probabil-
ity density functions such as Cauchy and its generalisation a
Student-t [3, 4, 5, 6].

In this work we consider Student-t model in its hierarchical
Normal-Inverse Gamma with an appropriate dictionary based
coefficient. Then, thanks to the hierarchical generative model
of the observation, we derive the expression of the joint pos-
terior law of all the unknowns and an alternate optimisation
algorithm for obtaining the joint MAP solution.

We then detail the implementation issues of this algorithms
for parallel computation and show the results on real size 2D
and 3D phantoms.

2 Proposed model
We consider a linear model

g = Hf + ✏ (1)

where f is the object to be reconstructed, H is the forward
model, g the observed quantities and ✏ represents the errors.
We choose an appropriate basis or dictionary D for the object
f in such a way that we can write

f = Dz + ⇠ (2)

and such that z is sparse. For imposing the sparsity of z we
propose to use the generalized Student-t prior for its elements
zj :
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and where
p(z|vz) =

Q

j p(zj |vzj ), p(vz|↵z0 ,�z0) =

Q

j p(vzj |↵z0 ,�z0)

and p(z,vz|↵z0 ,�z0) = p(z|vz)p(vz|↵z0 ,�z0).
In the forward model (1) and the prior model (2) we also use

Student-t for the elements of ✏i and ⇠j which give rise to the
following relations:

⇢

p(g|f , v✏) = N (g|Hf ,V ✏) with V ✏ = diag [v✏]

p(v✏) =
Q

i IG(v✏i |↵✏0 ,�✏0)
(5)

and
⇢

p(f |z,v⇠) = N (f |Dz,V ⇠) with V ⇠ = diag [v⇠]

p(v⇠) =
Q

j IG(v⇠j |↵⇠0 ,�⇠0)
(6)

With these prior models, we can show the graphical genera-
tive model of the data as follows:
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Figure 1: The graphical model of the generative forward model for linear in-
verse problems and hierarchical sparsity enforcing model.

With these relations and equations, the expression of the pos-
terior law of all the unknowns writes:

p(f , z,v✏,vz,v⇠|g) / p(g|f ,v✏) p(f |z,v⇠) p(z|vz)

p(v✏) p(vz) p(v⇠)

(7)
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We can then use it for inferring these unknowns. Classically,
there are two major estimators: JMAP and Posterior Means
(PM). The JMAP writes:

(

bf , bz, bv✏, bvz, bv⇠) = argmax

(f ,z,v
✏

,v
z

,v
⇠

)

{p(f , z,v✏,vz,v⇠|g)}

(8)
for which, the easiest optimisation is alternate optimisation.
Hopefully, with the proposed hierarchical structure and conju-
gate priors, in any of these steps we have analytical solutions:
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As we can see, the main part of the algorithm is two optimiza-
tions of quadratic criteria which can also be written as
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For implementation of the gradient based optimisation algo-
rithms we need their gradients:
⇢

rJ(f) = �2H 0V ✏
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(11)
The algorithm we propose here which can be implemented ef-
ficiently and scale up for real applications and Big Data is as
follows
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where �f and �z have to be adapted and updated at each itera-
tion.

3 Simulation results
To show the effectiveness of the proposed method, we show
here two examples of X ray image reconstruction from 32 pro-
jections. The images have 128x128 and 512x512 pixels and in
both cases we simulated 32 projections uniformly distributed
between 0 and 180 degrees. A Gaussian noise is added in such
a way to have a SNR of 20dB.

We will show examples of 3D reconstruction results in the
final paper. These results are obtained with objects of volume
256x256x256 and 32 projections of size 256x256.

4 Conclusion
We proposed a hierarchical Normal-Inverse Gamma prior for
modelling the sparsity of both the error terms of the data-
forward model and the error terms of dictionary based decom-
position of the unknown images. With these priors we obtain

Figure 2: X ray CT: Originals, Projections, Initialization by Back-projection
(BP), Reconstruction results.

an expression for the joint posterior law of all the unknowns
(image itself f , the coefficients of the decomposition z and
their respective hidden variances v✏, v⇠ and vz). An approxi-
mate Bayesian Computation (ABC) based on the alternate op-
timization of this joint posterior law with respect its arguments
gives an algorithm which can be implemented in an efficient
way which can scales up for real applications.
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