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ABSTRACT

In order to improve the quality of X-ray Computed Tomogra-
phy (CT) reconstruction for Non Destructive Testing (NDT),
we propose a hierarchical prior modeling with a Bayesian ap-
proach. In this paper we present a new hierarchical structure
for the inverse problem of CT by using a multivariate Student-
t prior which enforces sparsity and preserves edges. This
model can be adapted to the piecewise continuous image re-
construction problems. We demonstrate the feasibility of this
method by comparing with some other state of the art meth-
ods. In this paper, we show simulation results in 2D where
the image is the middle slice of the Shepp-Logan object but
the algorithms are adapted to the big data size problem, which
is one of the principal difficulties in the 3D CT reconstruction
problem.

Index Terms— Computed Tomography (CT), Non De-
structive Testing (NDT), Hierarchical Model, Bayesian Method,
Student-t prior models

1. INTRODUCTION.

The concept of an inverse problem is now a familiar one to
most scientists and engineers, particularly in the field of sig-
nal and image processing. In a nutshell, it involves the estima-
tion of an unknown quantity from another observable quan-
tity which is linked to it through a mathematical relationship
known as the forward model. In this paper, we are concerned
with CT. The domains of CT application range from medical
imaging to NDT. X-ray computed tomography (X-ray CT) is
nowadays a common technology in NDT. In X-ray tomog-
raphy, the reconstructed 3D image represents the attenuation
function of the volume being examined. The 3D X-ray CT
image reconstruction, which is recently a popular topic in in-
verse problem, is usually implemented in GPU to reduce the
computation time [1].
To model and solve an inverse problem, firstly a mathemati-
cal model is considered. In this paper, Cartesian coordinates
is used. Different coordinates can also be applied accord-
ing to the character of model. [2] has presented a 3D CT re-
construction using polar coordinates, and [3] has introduced
the method using hexagonal grids. Various methods have

been used for doing the inversion in the forward model. The
most widely used is MAP estimation method [4], the Markov
Chain Monte Carlo (MCMC) method [5], Discrete Algebraic
Reconstruction Technique (DART) reconstruction method [6]
and the super-resolution method [7]. In this article we adapt
a Bayesian approach. The Bayesian approach can be done
via a hierarchical model, which assigns priors for the image
and the noise. In this Bayes framework, by using the pri-
ors and the likelihood, we obtain the posterior distrubution,
from which we estimate the unknowns of the model, together
with their corresponding variances, via two techniques: the
Posterior Mean (PM) estimation via Variational Bayesian Ap-
proach (VBA) and the Joint Maximum A Posterior (JMAP).

One of the estimation that we used is the PM via VBA.
More details of VBA are given in [4,8–10]. For the Bayesian-
based methods, by assuming the prior distributions and like-
lihood distribution, the posterior distribution can be obtained.
Different assumptions for the prior distribution will encode
different prior knowledgement. Some prior models are dis-
cussed in [11–15].
In the mathematical model, f ∈ RN represents all the pixels
or voxels of the object and g ∈ RM represents all the pro-
jection data. The projection system is denoted by the linear
matrix H ∈ RM×N , which depends on the geometry of the
acquisition system. The forward model is expressed as:

g =Hf + ε, (1)

with ε ∈ RM representing the noise.
The inverse problem consists of using the real projection data
to infer the original object f . Filtered Back Projection (FBP):
f̂ =

(
HtH

)−1
Htg is a common inversion methods.

Generally, the problem is ill-posed. To solve this problem, the
regularization theory and Bayesian inversion are widely used.
The regularization approach reconstructs f by minimizing the
criterion:

f̂ = argmin
f
‖g −Hf‖2 + λR (f) (2)

where λ is a regularization parameter andR (f) indicates the
criterion penalty, for exampleR (f) = ‖f‖2,R (f) = |f |.
Our Bayesian method uses a hierarchical model with proba-



bility distribution functions (pdf) for the prior on f , the like-
lihood function from the data, and relevant parameters.
The rest of this paper is organized as follows: in Section 2,
the Bayesian method is presented, Section 3 provides the new
hierarchical model. Different reconstruction algorithms are
introduced in Section 4. We present the experimental results
in Section 5, and conclusions are drawn in Section 6.

2. BAYESIAN APPROACH BASIS.

Using the forward model, Equation (1), and assigning the
likelihood p(g|f ,H) and the prior law p(f), the Bayesian
Rule provides the posterior law:

p(f |g,H) =
p(g|f ,H)p(f)

p(g|H)
(3)

where
p(g|H) =

∫
p(g|f ,H)p(f)df (4)

We proceed to infer the unknown f by using the MAP and
PM algorithms.

3. THE HIERARCHICAL MODEL.

Firstly, we assign a pdf for ε, the noise in Equation (1). We
consider a non-stationary noise, so we propose a zero-mean
Normal distribution, with unkown variance vε. In order to es-
timate the variance, we assign it a pdf. We choose an Inverse
Gamma (IG) with parameters α and β defining expected mean
and uncertainty.{

p(ε|vε) = N (ε|0, vεI)
p(vε|αε0 , βε0) = IG(vε|αε0 , βε0)

(5)

The image f can be expressed as:

f =Dz, (6)

where z is the sparse representation of f and D is the cor-
responding sparse transformation, for example, the wavelet
transformation. Student-t probability density function is as-
signed to z in order to enforces the sparsity and thus pre-
serves the edges of image. Many other distribution could also
be used to enforce sparsity. Those can be divided in 3 cate-
gories: Generalized Gaussian (GG), mixture of Gaussian or
heavy-tailed distribution. Student-t is one of the heavy-tailed
distributions, with the convenient that it can be expressed as
the marginal of a Normal-IG distribution.
In this paper, we estimate the edges z first, with the image f
following.
The Student-t distribution can be expressed as the marginal of
a Gaussian-IG distribution:

St(x|α, β) =
∫ ∞
0

N (x|0, v)IG(v|α, β) dv (7)

Assuming that z is separable, i.e. p(z) =
∏N
j p(zj), we can

easily represent the prior distribution for all the elements of
the vector z:

p(zj |αzj0 , βzj0) = St
(
zj |αzj0 , βzj0

)
=

∫ ∞
0

N (zj |0, vzj )IG(vzj |αzj0 , βzj0)dvzj
(8)
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Fig. 1: The Hierarchical Model.

Equation 5, together with the Student-t prior model proposed
to f which is expressed as in Equation 8, gives the proposed
hierarchical model. A graphical representation of this hier-
archical model is shown in Figure 1, and the corresponding
equations in Equation 9.
p(g|z, vε) = N (g|HDz, vεI)
p(z|vz) = N (z|0,V z), V z = diag [vz] ,vz = [vz1 , · · · , vzN ]

p(vz|αz0 , βz0) =
∏N
j IG(vzj |αz0 , βz0)

p(vε|αε0 , βε0) = IG(vε|αε0 , βε0)
(9)

The posterior distribution is obtained from Equation 9 via
Bayes rule:

p(z,vz,vε|g) ∝ p(g|z, vε)p(z|vz)
p(vz|αz0 , βz0)p(vε|αε0 , βε0).

(10)

From here we can apply various algorithms to solve the recon-
struction problem. In this paper, we will discuss the JMAP
method and the PM via VBA method.

4. RECONSTRUCTION ALGORITHMS.

The main Bayesian computational tools are: Maximum
A Posteriori (MAP) method [4], Markov Chain Monte
Carlo (MCMC) method [5], Expectation-Maximization (EM)
method [16] and the Variational Bayesian (VB) method.
In this paper, we will mainly consider the MAP method and
the VBA methods.



4.1. The Joint MAP algorithm.

In JMAP method, we estimate f and the other parameters
involved in the model, i.e. the variances vε and vz , iteratively
by maximizing the posterior law:

(ẑ, v̂z, v̂ε) = arg max
(z,vz,vε)

{p (z,vz, vε|g)} (11)

As we have mentioned above, the size of data in our research
is so huge that we can not calculate directly the inverse of
matrix in the steps of updating z. Instead, we use the gra-
dient descent method to avoid the costly computation. The
updating rules are summarized below:


iter : ẑ(k+1) = ẑ(k) − γ̂(k)z ∇J (ẑ(k))

v̂zj =
βzj0+

1
2 ẑ

2
j

αzj0+
3
2

v̂ε =
βε0+

1
2‖g−HDẑ‖2
αε0+

M
2 +1

(12)

where


J (z) = 1

2 v̂
−1
ε ‖g −HDz‖

2
+ 1

2

∥∥∥Ŷ z∥∥∥2 , Ŷ = V̂
− 1

2

z

γ̂
(k)
z =

∥∥∥∇J (ẑ(k)
)
∥∥∥2

v̂−1
ε

∥∥∥HD∇J (ẑ(k)
)
∥∥∥2+∥∥∥∥Ŷ ∇J (ẑ(k)

)

∥∥∥∥2

and ∇J (·) is the gradient of J (·).

4.2. The VBA algorithm.

We compute the PM via VBA method. Firstly, the posterior
distribution p(z,vz, vε|g) is approached by a separable dis-
tribution q(z,vz, vε):

p(z,vz, vε|g) ≈ q(z,vz, vε) = q1(z)q2(vz)q3(vε). (13)

This approaximation is done by minimizing the Kullback-
Leibler divergence, defined as:

KL (q(z,vz, vε) : p(z,vz, vε|g))

=

∫
q(z,vz, vε) ln

q(z,vz, vε)

p(z,vz, vε|g)
dzdvzdvε

(14)

The details of this minimization are discussed in [17]. Thanks
to the conjugacy property of the prior model, we obtain the

conjugate distributions for z and the parameters.

q(zj) = N (zj |m̃zj , σ̃
2
zj ) where

m̃zj =
〈ṽ−1
ε 〉b̃j

〈ṽ−1
ε 〉hj+〈ṽ−1

zj 〉
σ̃2
zj =

1

〈ṽ−1
ε 〉hj+〈ṽ−1

zj 〉

q(vzj ) = IG(vzj |α̃zj , β̃zj ) where{
α̃zj = αz0 +

1
2

β̃zj = βz0 +
1
2

(
m̃2
zj + σ̃2

zj

)
q(vε) = IG(vε|α̃ε, β̃ε) where{

α̃ε = αε0 +
M
2

β̃ε = βε0 +
1
2

(
‖g −HDm̃z‖2 +

∑
j hj σ̃

2
zj

)
(15)

where 
hj =

[
DtHtHD

]
jj

b̃j =
[
DtHt (g −HDm̃z)

]
j
+ hjm̃zj〈

ṽ−1ε
〉
= α̃ε

β̃ε
,
〈
ṽ−1zj

〉
=

α̃zj

β̃zj

5. NUMERICAL EXPERIMENTATION.

Several experiments in 2D image analyse have been carried
out in order to demonstrate the properties of the proposed
model. The original image is the middle slice of Shepp-Logan
of size 128× 128. The sparse operatorD is the Haar wavelet
transform. The projection matrix H is only used in the ge-
ometry projectionHf and back-projectionHtg operators.
The reconstructed images presented in Figure 2 show that the
proposed hierarchical model can lead to results with more de-
tails and preserve better the edges of image.

The relative errors of reconstruction δf =
∥∥∥f − f̂∥∥∥2 / ‖f‖2

using different algorithms are shown in Figure 3. Figure 3(a)
corresponds to a projection without noise while Figure 3(b)
corresponds to a projection with 20dB noise. We compared
the JMAP and VBA method using the proposed model with
Least Square (LS) method, quadratic regularization (QR)
method with fixed λ parameter and Gauss Markov Potts
(GMP) methods. With the proposed model, both the JMAP
and VBA algorthms works better than the non-hierarchical
models, and their performance are as good as the GMP
method which also can be considered as a hierarchical one.
The JMAP method with the three-level hierarchical model
has a better convergence property than the other methods.

Figure 4 illustrate the influence of the noise and number of
projections in our application. Figure 4(a) shows that the error
of reconstruction is in inverse proportion to the noise value.
Figure 4(b) indicates that by using 180 projections and 90
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Fig. 2: Images reconstructed from unnoised projection using
different methods, with 180 projections and 30 iterations.
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Fig. 3: Comparaison of the convergency of different methods
using (a) a projection without noise and (b) a projection with
SNR=20dB.
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Fig. 4: Performance of the different methods as a function of
(a) SNR with a great number of projections and (b) different
number of projections. All the results are obtained with 30
iterations.

projections, the results won’t change a lot, but 45 projections
is not enough for a big data CT reconstruction problem.

6. CONCLUSION

We presented a three-level hierarchical model for the piece-
wise continuous tomography reconstruction problem. We
used a heavy-tailed Student-t distribution to model the sparse
representation of image and the errors in order to achieve the
sparsity property and model the non-stationality of the noise.
Experimental results demonstrate the advantages of using
the proposed three-level hierarchical model and a Student-t
distribution for the prior model. Future work is to apply this
method to the 3D CT problem where the GPU processor is
used to reduce the computation time.
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