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Abstract
We analyze the D1Q3 lattice kinetic model, which is the simplest kinetic model
representing the isothermal Euler equations. We show that it is entropy unstable
but that it can be made stable if the transport step is solved with an implicit
numerical scheme.

1 Introduction

Lattice kinetic models are essential in computational fluid dynamics. They are the
key ingredient of the Lattice Boltzmann Method (LBM). The idea is to construct a
kinetic interpretation of a hyperbolic system of conservation laws with a minimal set
of velocities. In this report we analyze the D1Q3 lattice kinetic model, which is the
simplest kinetic model representing the isothermal Euler equations. We show that
it is unstable but that it can be made stable if the transport step is solved with an
implicit scheme. The unknown of the D1Q3 model is a three-dimensional distribution
function f(x, t) ∈ R3, where x ∈ R and t ∈ [0, T ] are respectively the space and
time variable. The distribution function satisfies transport equations with a BGK
relaxation source term [1]

f it + vif
i
x =

1

ε
(M(f)i − f i), i = 1 . . . 3, (1)

where we have noted partial derivatives with indices (ft = ∂tf for instance). The
kinetic velocity takes only three values

v = (−λ, 0, λ),

where λ is a positive real number. The fluid macroscopic variables are the density
ρ(x, t), the momentum q(x, t) and the momentum flux z(x, t). As usual the fluid
velocity is defined by

u = q/ρ.

The macroscopic variables are recovered by computing discrete moments of f ρ
q
z

 = P

 f1

f2

f3

 , P =

 1 1 1
−λ 0 λ
λ2 0 λ2

 .
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The constant sound speed of the isothermal fluid is denoted by c > 0. The discrete
Maxwellian state M(f) is then given by

M(f) =
1

λ2

 ρu(u− λ)/2 + c2ρ/2
ρ(λ2 − u2 − c2)

ρu(u+ λ2)/2 + c2ρ/2

 (2)

in such a way that

PM(f) =

 ρ
q

ρu2 + c2ρ

 .

Multiplying the kinetic equation (1) by P we obtain

ρt + qx = 0,

qt + zx = 0, (3)

zt + λ2qx =
1

ε
(q2/ρ+ c2ρ− z).

When ε → 0, then formally f = M(f) and from (3) we see that ρ and u satisfy the
isothermal Euler equations

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + c2ρ) = 0. (4)

The model (1), (2) is thus a minimalistic abstract kinetic interpretation of the isother-
mal Euler equation. It is also denoted as the “D1Q3” model in the lattice-Boltzmann
community [3]. It can be extended to higher dimensions. For instance, in two or three
dimensions it becomes the D2Q9 or D3Q27 models.

2 Numerical method and asymptotic expansion

A traditional method for solving numerically (1) is the first order Lie splitting algo-
rithm. For applying one time step of the splitting algorithm, we start from a state
that is close to equilibrium: f = M(f) + O(ε). We first apply the free transport
equation for a duration of ∆t

ft + v · fx = 0.

Then in a second stage of the same duration ∆t we apply the local BGK return to
equilibrium

ft =
1

ε
(M(f)− f).

In the case of the D1Q3 model, this approach can lead to instabilities that are some-
times observed in LBM simulations [2]. Therefore, we replace the exact transport
step by a first order implicit solver in time. Assuming high precision of the solver in
the x variable the effect of the implicit solver can be modeled by

f(x, t)− f(x, t−∆t)

∆t
+ vfx(x, t) = 0. (5)

By a Taylor expansion, we find the equivalent equation of the implicit solver (5)

ft + vfx −
∆t

2
v2fxx = O(∆t2). (6)
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In a second step, we solve the differential equation exactly

ft =
1

ε
(M(f)− f) =

M − I
ε

f.

This is easy because during the relaxation step ρ, q, and thus M(f), are constant.
In the following, ε is a small parameter, but we assume that the vector field M is
restricted to a manifold of f ’s on which

M − I
ε

f = O(1). (7)

In the literature this hypothesis is often formulated by saying that f remains close
to a Maxwellian state and that the initial data are “well-prepared”. Hypothesis (7)
is crucial because it will allow us to apply the Baker-Campbell-Hausdorf (BCH) for-
mula with the good ordering for estimating the equivalent equation of the splitting
algorithm. Let us also point out that we assume that (7) remains true even if ε ∼ ∆t
or ε ∼ ∆t2 for instance. For a more precise analysis of this hypothesis, we refer to [4]
(Section VI.3 pages 388–392).
In the Lie formalism, one time-step of the splitting scheme can be written

ϕ(τ) = exp(τ
M − I
ε

) exp(τ(−v∂x +
1

2
τv2∂xx)) +O(τ3).

Now we apply the BCH formula

exp(A) exp(B) = exp(A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + · · · ).

We obtain
ϕ(τ) = exp (τL) +O(τ3),

with
L = −v∂x +

1

2
τv2∂xx +

M − I
ε

+
1

2
τ

[
M − I
ε

,−v∂x
]
.

Therefore at second order in time, the equivalent equation of the scheme is

ft + vfx −
∆t

2
v2fxx −

1

2
∆t

[
M − I
ε

,−v∂x
]
f =

M(f)− f
ε

.

For expressing the Lie bracket in a more convenient way, we introduce the matrix

V =

 −λ 0 0
0 0 0
0 0 λ

 .
Then the Lie bracket becomes

[M − I,−v∂x] f = −V ∂xM(f) +M ′(f)V ∂xf

= (M ′V − VM ′)∂xf

Now we go back to variables (ρ, q, z). After some computations, we find that

P [M − I,−v∂x]P−1

 ρ
q
z

 =

 0 0 0
−c2 + u2 −2u 1

0 c2 − λ2 − u2 2u

 ∂x
 ρ
q
z

 .
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We obtain the equivalent equations solved by the splitting algorithm at order 2 in ∆t

ρt + qx −
∆t

2
zxx = 0,

qt + zx −
∆t

2
λ2qxx =

∆t

2ε

(
(u2 − c2)ρx − 2uqx + zx

)
, (8)

∂tz + λ2∂xq −
∆t

2
λ2zxx =

1

ε
(q2/ρ+ c2ρ− z) +

∆t

2ε

(
(c2 − λ2 − u2)qx + 2uzx

)
.

On this equation we will now assume that 1 � ∆t > ε. We freeze ∆t and perform
a Chapman-Enskog expansion when ε → 0. The second equation implies that when
ε→ 0

zx = (c2 − u2)ρx + 2uqx = (q2/ρ+ c2ρ)x +O(ε)

and is thus redundant with

z = q2/ρ+ c2ρ+O(ε).

The third equation in (8) gives

z = q2/ρ+ c2ρ− ε
(
∂tz + λ2∂xq

)
+

∆t

2

(
(c2 − λ2 − u2)qx + 2uzx

)
+O(ε∆t).

We need to rewrite the factor in ε:

∂tz + λ2∂xq,

with only spatial derivatives. At leading order we have

∂tz = ∂t
(
q2/ρ+ c2ρ

)
+O(ε+ ∆t)

=
2q

ρ
qt −

q2

ρ2
ρt + c2ρt +O(ε+ ∆t).

But qt = −zx +O(ε+ ∆t) and ρt = −qx +O(ε+ ∆t) thus

zt = −2uzx + u2qx − c2qx +O(ε+ ∆t).

Then
zt = −2u

(
2uqx + (c2 − u2)ρx

)
+ (u2 − c2)qx +O(ε+ ∆t).

Finally

zt + λ2qx =
(
−3u2 + λ2 − c2

)
qx − 2u

(
c2 − u2

)
ρx +O(ε+ ∆t).

We then obtain the equivalent viscous equation of the splitting method

ρt + (ρu)x = κ
∆t

2
zxx,

(ρu)t +
(
ρu2 + c2ρ

)
x

= κ
∆t

2
λ2qxx +Dx,

with κ = 1 (effect of the implicit solver) or κ = 0 (exact transport solver) and

D = (ε+
∆t

2
)
((
λ2 − c2 − 3u2

)
qx + 2u

(
u2 − c2

)
ρx
)
.
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3 Stability analysis

Now we want to analyze the entropy stability of the second order term when ε→ 0.
For this, we define

w =

(
ρ
q

)
, F (w) =

(
q

q2

ρ + c2ρ

)
, A(w) =

(
κ(c2 − u2) 2κu

2u
(
u2 − c2

)
(1 + κ)λ2 − c2 − 3u2

)
,

and thus second order equivalent equations become

wt + F (w)x =
∆t

2
(A(w)wx)x (9)

An entropy of the Euler equations is

S(w) =
q2

2ρ
+ c2ρ ln ρ.

We know that with this choice there exists an entropy flux G(w) such that

S′F ′ = G′.

Multiplying (9) on the left by S′(w), integrating by part in x and neglecting boundary
terms, we obtain the entropy dissipation balance

d

dt

∫
x

S = −∆t

2

∫
x

wx · S′′(w)A(w)wx.

A sufficient condition for entropy dissipation is thus that E(w) = S′′(w)A(w) is a
positive matrix. The D1Q3 model is generally used for subsonic flows. When κ = 0
(no numerical viscosity) E(w) has always a negative eigenvalue and the scheme is
thus unstable. The negative eigenvalue has a minimal modulus if λ =

√
3c and is

then of order O(u6). It justifies the fact that the scheme can, however, be applied in
practice on relatively coarse meshes for low Mach number flows. When κ 6= 0 Taylors
expansions in u show that

ρ2 det(E(w)T + E(w)) = −4 c6 + 8λ2c4 +O
(
u2
)
,

ρTr(E(w)T + E(w)) = 2 c4 − 2 c2 + 4λ2 +O(u2).

If λ is large enough, the scheme is thus stable for low Mach flows.
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