
HAL Id: hal-01403756
https://hal.science/hal-01403756

Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Libcrn, an Open-Source Document Image Processing
Library

Yann Leydier, Jean Duong, Stéphane Brès, Véronique Eglin, Frank
Lebourgeois, Martial Tola

To cite this version:
Yann Leydier, Jean Duong, Stéphane Brès, Véronique Eglin, Frank Lebourgeois, et al.. Libcrn, an
Open-Source Document Image Processing Library. International Conference on Fontiers in Handwrit-
ing Recognition, Oct 2016, Shenzhen, China. �hal-01403756�

https://hal.science/hal-01403756
https://hal.archives-ouvertes.fr

libcrn, an Open-Source Document Image Processing Library

Yann LEYDIER, Jean DUONG
CoReNum

F-69006, France
yann@leydier.info, jean.duong@corenum.com

Stéphane BRÈS, Véronique ÉGLIN, Frank LeBOURGEOIS, Martial TOLA
Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205,
F-69621, France

firstname.lastname@liris-cnrs.fr

Abstract—In this paper we introduce libcrn, a multiplatform
open-source document image processing library aimed at
researchers and companies. It is written in C++11 and has
a non-contaminating license that makes it available for use in
any project without legal constraints.

The features include low-level image processing (color
format conversion, binarization, convolution, PDE. . .), docu-
ment images specific tools (connected components extraction,
recursive block description, PDF export. . .), maths (matrix
arithmetics, linear algebra, GMMs, equation solvers. . .), clas-
sification and clustering (kNN, k-means, HMMs. . .).

The API is comprehensively documented and libcrn’s archi-
tecture follows modern C++ guidelines to facilitate the handling
of the library and enforce its safe usage.

A sample OCR, which is only 30 lines long, is described to
illustrate libcrn’s scope of possibilities.

Keywords-document image processing; open source; library;
toolbox

I. INTRODUCTION

Implementing the most basic document image processing
algorithm may be a good exercise for students. However,
when focusing on high-level processing chains or complex
methods, researchers as well as manufacturers rely on tool-
boxes and software libraries for low-level tasks.

Commercial software libraries are available (Intel IPP,
Lead Tools. . .) and used in industry. They generally offer
the basic tools needed to perform simple image manipulation
and are well suited for non-specialist engineers. Specialists
often prefer Open Source libraries as it is possible to check
the details of the algorithms and modify and fine tune them
when needed.

The most widely used image processing library is
OpenCV1. Whereas is contains a great amount of algorithms,
it is not originally meant for document images and lacks
features and services that make it inconvenient.

Qgar2 [1] is an Open Source document image processing
library created in the early 2000s. It features the most
elementary tools to create document analysis software but
also lacks some crucial features such as RGB images.
Although Qgar can be easily extended, its development has
been stalled since 2008.

1http://opencv.org/
2http://www.qgar.org/

We introduce libcrn3, licensed in LGPL (a non-
contaminating Open Source license). Its aim is to allow both
researchers and engineers to implement document image
processing chains and algorithms. libcrn is available for
Windows (Visual C++ 2015), Linux, MacOS and Android.
It is written in C++11 using the “modern” guidelines issued
by the C++ committee so that users can easily and safely
use it (e.g.: no memory management is required from the
users and no leak can happen). We implemented many image
processing algorithm but also the mathematical tools needed
to process the data that can be extracted from images.

II. FEATURES

A. General points

In order to facilitate the storage of data, most of the
objects in libcrn can be serialized in XML files. Multi-
platform utilities are packaged so that no overwork weights
on the user to make applications run on any OS (e.g.:
automatic file path format conversion, file manipulation,
character set conversion, dynamically loaded modules. . .).

B. Image

1) Formats: We provide built-in support for numerous
pixel types (see tab. I). Any other type of pixel format (such
as matrices!) is supported as long as it implements the basic
arithmetic operators.

Category Subcategory Types
Color RGB-based RGB, HSV, YUV (television)

Perception-based XYZ, L*a*b*, L*u*v*
Monochromatic Grayscale double, int, byte

Binary bool
Other 2D vectors Cartesian and polar coords

Angles radian, degree and byte
Custom any type with arithmetic ops

Table I
PIXEL TYPES SUPPORTED BY libcrn.

All the color types are trivially convertible and multiple
binarization methods are offered: Niblack, Sauvola [2], local
min or max, Fisher, entropy and Otsu [3].

3https://github.com/Liris-Pleiad/libcrn

2) Algorithms: Classical basic transformation algorithms
are provided, such as rotate by shear, mathematical morphol-
ogy, convolution, distance transform. . .

Feature extractors can be combined to allow the com-
parison of shapes. Sample feature extractors are provided
including profile projections and gradients histograms (see
fig. 1).

Figure 1. a,b) Angle histograms computed inside zones (rectangular or
radial). c) 9 angle histograms computed with all pixels, weighted by their
distance to automatically centered anchors.

Shapes can also be compared directly with an FFT-based
cross-correlation or gradient matching. The gradient match-
ing is a double inclusion measure. A mask of significant
gradients is automatically computed and the angles inside
a shape’s mask are compared to the angles on the other
shape. If the location of the pixel in the other shape is out
of its dilated mask, then a penalty is applied. The sum of
both inclusion measures is the dissimilarity between the two
shapes (see fig. 2).

Images A ⊂ B B ⊂ A
Mask Angles Mask Angles

A

B
Figure 2. Two-ways inclusion measurement of two shapes.

3) PDE: Gradients can be obtained from both grayscale
and color [4] images by different means (half derivatives,
Gaussian kernel. . .) and can be isotropically diffused. From
the gradients, a large number of transforms and descriptors
are computed (see fig. 3):

• first and second derivatives along Cartesian axes,
isophotes and flowlines;

• edge and corner;
• Hessian eigenvalues κ1 and κ2, Hessian corner;
• flowline, isophote, Gaussian and gradient curvature;
• divergence, Laplacian.
4) Document image processing: libcrn provides a way to

describe a document’s layout structure with nested lists of

Noisy image Angles κ1 κ2

Divergence Hessian corner κ1 Lvv

Figure 3. Sample of differential features (σ = 1.5 on the first line,
σ = 4.5 on the second).

rectangular blocks. Each block refers to a part of the original
image that is instantiated only when needed. This structure
is of course serializable.

The fast connected components extraction [5] directly
feeds the aforementioned block structure.

Simple line and word segmentation algorithms are im-
plemented and more can be easily added to feed the block
layout structure.

Other useful algorithms specific to document images such
as stroke thickness estimation, text line height estimation and
skew estimation are offered.

C. Maths

1) Algebra: libcrn’s math toolbox includes matrices of
integers, reals and complex numbers and provide all arith-
metics. Two system solvers (Cramer and Gauss-Jordan) are
included.

Fundamental linear algebra methods such as diagonaliza-
tion and inversion are implemented. Effective computation
procedures will be added4 for tensor computation [6], [7]:
Higher order structure tensors [8] are proposed as extensions
of classical structure tensor used in image processing [9].
Since they are tricky to compare (e.g. for clustering, feature
extraction, etc.), their glyphs are to be used for analysis [10].
Thus, Zernike moments have been implemented and should
be soon added to image analysis toolbox.

2) Data analysis: Multidimensional data may be pro-
cessed using Principal Component Analysis (PCA). Further-
more, Gaussian mixture models are also supported for both
uni and multivariate samples. In particular, the Expectation-
Maximization fitting procedure (EM) is implemented.

3) Interpolation and regression: The math module con-
tains tools for linear interpolation, cubic splines interpolation
and polynomial regression.

4) Geometry: libcrn provides angle arithmetics and tools
such as circular mean and variance, but also circular his-
tograms utilities: circular earth mover’s distance [11], kur-
tosis, trigonometric moments. . .

4Code is already available on demand. Full integration will be done for
the next release of libcrn

5) Signal processing: FFT can be applied on complex
matrices and vectors.

D. Pattern analysis

1) Clustering: libcrn provides clustering algorithms for
both vectorial and metric data:

• k-means
• k-medoids (PAM and fast [12])
• Outliers: LOF and LoOP [13]
• Spectral Clustering (all formulas from [14]–[17])
• Affinity Propagation [18]
2) Classification: Many data classification problems can

be addressed, using a wide variety of tools from a highly
generic kNN implementation to discrete or Gaussian semi-
continuous HMMs.

3) Other: Other “combinatorics oriented” algorithms are
also available in libcrn, such as Kuhn and Munkres’ “Hun-
garian” bipartition algorithm, the A* path finder or the
disjoint set forest distribution.

E. GUI

Custom widgets are provided to create applications with
Gtkmm – Gtk’s C++ wrapper – versions 2 and 3. This
include displaying and browsing the block structure of an
image, image overlays and the automated generation of
configuration panels. A Qt widget library will be available
soon.

A demonstration application is included in libcrn. It
allows to quickly test some features of the library on
any image (see fig. 4). This tool is very handy to run
simple algorithms over a given image without writing a new
program.

Figure 4. Titus, libcrn’s quick testing tool.

III. 30 LINES FOR AN OCR

To illustrate libcrn’s ease of use, we present a very simple
OCR engine that is only 30 lines long. It works on a

medieval manuscript excerpt written in capital letters with
no spacing between words (see fig. 5). An occurrence of
each letter in the alphabet was manually extracted and put
in a folder named data, where each file name corresponds
to the image’s label. The source code is displayed in fig. 6.

Figure 5. Sample medieval manuscript.

The first step (fig. 6.1) is to create a feature extractor
that will be used to compare each character to the database.
To do that, we use a FeatureSet, which can contain
multiple elementary feature extractors. The FeatureSet
will concatenate the feature vectors extracted by each
FeatureExtractor. For simplicity, we use the four
profile projections and the horizontal and vertical black
pixels projections.

In step 2, we open each pre-labelled character image. As
it is often impossible to know whether an image file contains
RGB, grayscale or binary pixels, we directly store the
image in a Block object. A Block automatically converts
the input image to the format desired by the user (the
default grayscaling and binarization methods can be changed
programmatically at anytime). Is also contains named lists of
sub-blocks that will be used later. The extracted features are
stored in a list of shared pointers5 to the base class Object.

The line segmentation is performed in 6.3. The document
image is opened in the same way as the database images.
We create a temporary BlockTreeExtractor that will
extract the text lines and store them in a sub-block list named
Lines.

Just before we actually extract the characters (fig. 6.4),
we get an estimation of the mean stroke width. This will
help us filter the noise. Connected components are extracted
within each line. After that, each Block in the Lines sub-
block list will contain a sub-block list named Characters.
The recursive sub-block lists can be used for more complex

5Shared pointers are memory management objects that deletes pointers
when they are not referenced anymore.

purposes and can even match an XML Alto’s structure.
Finally, connected components smaller than the mean stroke
width are removed and the remaining ones are sorted from
left to right.

The 5th and last step is the actual recognition. Each
Block remaining in the Characters sub-sub-list rep-
resents a letter in the text. Its feature vector is extracted
using the same FeatureSet as the database. We search
its nearest neighbor in the database a retrieve a class number
that can be used to compute the character’s transcription.

Now that our homemade OCR is fully described, we
shall not discuss its performance: profile projections are
not known to be the best features for medieval manuscript
recognition! The purpose here was to illustrate the easiness
of designing applications with libcrn. Variety of document
analysis problems can be addressed, not restricted to ancient
scripts: Printed pages or manuscripts may be considered.
Historic or business documents may be processed. Even
more borderline tasks are feasible (e.g.: text extraction from
scenes, plate recognition, mobile applications, etc.).

IV. CONCLUSION

In this paper we introduced libcrn, a multiplatform (non-
contaminating) open-source document image processing li-
brary written in C++11 and aimed at researchers and compa-
nies available for Windows (Visual C++ 2015), Linux, Ma-
cOS and Android. Its API is comprehensively documented
and libcrn’s architecture follows modern C++ guidelines to
facilitate the handling of the library and enforce its safe
usage (e.g.: no memory management is required from the
users and no leak can happen).

libcrn includes low-level image processing (expandable
pixel formats, binarization, PDE. . .), document images spe-
cific tools (connected components extraction, recursive block
description. . .), maths helpers (algebra, data analysis, geom-
etry, signal processing. . .) and pattern analysis algorithms
(classification, clustering. . .).

We described a short code example that provides OCR
capacities in only 30 lines. This illustrated the use of feature
extractors, segmentation providers and classification tools.
Many other applications may be designed for research or
industrial needs. libcrn has been useful in several projects
and remains constantly improving.

REFERENCES

[1] K. Tombre, C. Ah-Soon, P. Dosch, A. Habed, and G. Masini,
“Stable, robust and off-the-shelf methods for graphics recog-
nition,” in Pattern Recognition, 1998. Proceedings. Four-
teenth International Conference on, vol. 1. IEEE, 1998,
pp. 406–408.

[2] J. Sauvola, T. Seppänen, S. Haapakoski, and M. Pietikäinen,
“Adaptive document binarization,” in International Confer-
ence on Document Analysis and Recognition (ICDAR), vol. 1,
Ulm, Germany, 1997, pp. 147–152.

[3] N. Otsu, “A threshold selection method from gray-level
histograms,” Automatica, vol. 11, no. 285-296, pp. 23–27,
1975.

[4] F. LeBourgeois, “Content based image retrieval using gradient
color fields,” in International Conference on Pattern Recog-
nition (ICPR), Barcelona, Spain, 2000, pp. 1027–1030.

[5] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-
component labeling,” Pattern Recognition, vol. 42, no. 9,
pp. 1977 – 1987, 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0031320308004573

[6] E. Nelson, Tensor analysis. Princeton University Press, 1967.

[7] J. G. Simmonds, A brief on tensor analysis. Springer-Verlag,
1994.

[8] T. Schultz, J. Weickert, and H.-P. Seidel, “A higher-order
structure tensor,” July 2007.

[9] S. D. Zenzo, “A note on the gradient of a multi-image,”
Computer Vision, Graphics, and Image Processing, vol. 33,
pp. 116–125, 1986.

[10] T. schultz and G. Kindlmann, “A maximum enhencing higher-
order tensor glyph,” in Eurographics/IEEE-VGTC Symposium
on Visualization, vol. 29, no. 3, 2010.

[11] J. Rabin, J. Delon, and Y. Gou, “Circular earth mover’s
distance for the comparison of local features,” in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference
on. IEEE, 2008, pp. 1–4.

[12] H.-S. Park and C.-H. Jun, “A simple and fast algorithm
for k-medoids clustering,” Expert Systems with Applications,
vol. 36, no. 2, Part 2, pp. 3336 – 3341, 2009.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S095741740800081X

[13] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek,
“Loop: Local outlier probabilities,” in Proceedings of the
18th ACM Conference on Information and Knowledge
Management, ser. CIKM ’09. New York, NY, USA:
ACM, 2009, pp. 1649–1652. [Online]. Available: http:
//doi.acm.org/10.1145/1645953.1646195

[14] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in ADVANCES IN NEURAL
INFORMATION PROCESSING SYSTEMS. MIT Press, 2001,
pp. 849–856.

[15] M. Meila and J. Shi, “A random walks view of spectral
segmentation,” 2001.

[16] J. Shi and J. Malik, “Normalized cuts and image
segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, no. 8, pp. 888–905, Aug. 2000. [Online]. Available:
http://dx.doi.org/10.1109/34.868688

[17] L. Zelnik-Manor and P. Perona, “Self-tuning spectral cluster-
ing,” in Advances in neural information processing systems,
2004, pp. 1601–1608.

[18] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” science, vol. 315, no. 5814, pp. 972–
976, 2007.

/ / 1 . F e a t u r e e x t r a c t o r
auto f e a t u r e E x t r a c t o r = c r n : : F e a t u r e S e t {} ;
f e a t u r e E x t r a c t o r . PushBack (s t d : : make shared<c r n : : F e a t u r e E x t r a c t o r P r o f i l e >

(c r n : : D i r e c t i o n : : LEFT | c r n : : D i r e c t i o n : : RIGHT | c r n : : D i r e c t i o n : : TOP |
c r n : : D i r e c t i o n : : BOTTOM, 10 , 1 0 0)) ;

f e a t u r e E x t r a c t o r . PushBack (s t d : : make shared<c r n : : F e a t u r e E x t r a c t o r P r o j e c t i o n >
(c r n : : O r i e n t a t i o n : : HORIZONTAL | c r n : : O r i e n t a t i o n : : VERTICAL , 10 , 1 0 0)) ;

/ / 2 . Database c r e a t i o n
auto d a t a b a s e = s t d : : v e c t o r<c r n : : SObjec t >{};
f o r (auto c = ’A’ ; c <= ’Z ’ ; ++c)
{

c o n s t auto charF i l eName = ” d a t a ” p / c + ” . png ” p ;
auto c h a r b l o c k = c r n : : Block : : New(c r n : : NewImageFromFile (cha rF i l eName)) ;
d a t a b a s e . push back (f e a t u r e E x t r a c t o r . E x t r a c t (∗ c h a r b l o c k)) ;

}
/ / 3 . L ine s e g m e n t a t i o n
auto p a g e b l o c k = c r n : : Block : : New(c r n : : NewImageFromFile (imageFileName)) ;
c r n : : B l o c k T r e e E x t r a c t o r T e x t L i n e s F r o m P r o j e c t i o n {U” L i n e s ” } . E x t r a c t (∗ p a g e b l o c k) ;
/ / 4 . C h a r a c t e r s e g m e n t a t i o n
c o n s t auto sw = c r n : : S t r o k e s W i d t h (∗ pageb lock−>GetGray ()) ;
auto s = c r n : : S t r i n g {} ;
f o r (auto n l i n e = s i z e t {0} ; n l i n e < pageb lock−>GetNbChi ld ren (U” L i n e s ”) ; ++ n l i n e)
{

auto l i n e = pageb lock−>G e t C h i l d (U” L i n e s ” , n l i n e) ;
l i n e−>Ext rac tCC (U” C h a r a c t e r s ”) ;
l i n e−>F i l t e r M i n O r (U” C h a r a c t e r s ” , sw , sw) ;
l i n e−>S o r t T r e e (U” C h a r a c t e r s ” , c r n : : D i r e c t i o n : : LEFT) ;
f o r (auto n c h a r = s i z e t {0} ; n c h a r < l i n e−>GetNbChi ld ren (U” C h a r a c t e r s ”) ;

++ n c h a r)
{

auto c h a r a c t e r = l i n e−>G e t C h i l d (U” C h a r a c t e r s ” , n c h a r) ;
/ / 5 . R e c o g n i t i o n
auto f e a t u r e s = f e a t u r e E x t r a c t o r . E x t r a c t (∗ c h a r a c t e r) ;
auto r e s = c r n : : B a s i c C l a s s i f y : : N e a r e s t N e i g h b o r (f e a t u r e s ,

d a t a b a s e . b e g i n () , d a t a b a s e . end ()) ;
s += c h a r 3 2 t (U’A’ + r e s . c l a s s i d) ;

}
s += U’\n ’ ;

}
CRNVerbose (s) ; / / d i s p l a y t h e r e s u l t

Figure 6. Minimalistic code for an OCR

