Yann Leydier

Jean Duong
email: jean.duong@corenum.com

Stéphane Br Ès

Véronique Églin

Martial TOLA Frank Lebourgeois

libcrn, an Open-Source Document Image Processing Library

Keywords: document image processing, open source, library, toolbox

In this paper we introduce libcrn, a multiplatform open-source document image processing library aimed at researchers and companies. It is written in C++11 and has a non-contaminating license that makes it available for use in any project without legal constraints.

The features include low-level image processing (color format conversion, binarization, convolution, PDE. . .), document images specific tools (connected components extraction, recursive block description, PDF export. . .), maths (matrix arithmetics, linear algebra, GMMs, equation solvers. . .), classification and clustering (kNN, k-means, HMMs. . .).

The API is comprehensively documented and libcrn's architecture follows modern C++ guidelines to facilitate the handling of the library and enforce its safe usage.

A sample OCR, which is only 30 lines long, is described to illustrate libcrn's scope of possibilities.

I. INTRODUCTION

Implementing the most basic document image processing algorithm may be a good exercise for students. However, when focusing on high-level processing chains or complex methods, researchers as well as manufacturers rely on toolboxes and software libraries for low-level tasks.

Commercial software libraries are available (Intel IPP, Lead Tools. . .) and used in industry. They generally offer the basic tools needed to perform simple image manipulation and are well suited for non-specialist engineers. Specialists often prefer Open Source libraries as it is possible to check the details of the algorithms and modify and fine tune them when needed.

The most widely used image processing library is OpenCV 1 . Whereas is contains a great amount of algorithms, it is not originally meant for document images and lacks features and services that make it inconvenient.

Qgar 2 [START_REF] Tombre | Stable, robust and off-the-shelf methods for graphics recognition[END_REF] is an Open Source document image processing library created in the early 2000s. It features the most elementary tools to create document analysis software but also lacks some crucial features such as RGB images. Although Qgar can be easily extended, its development has been stalled since 2008. 1 http://opencv.org/ 2 http://www.qgar.org/ We introduce libcrn3 , licensed in LGPL (a noncontaminating Open Source license). Its aim is to allow both researchers and engineers to implement document image processing chains and algorithms. libcrn is available for Windows (Visual C++ 2015), Linux, MacOS and Android. It is written in C++11 using the "modern" guidelines issued by the C++ committee so that users can easily and safely use it (e.g.: no memory management is required from the users and no leak can happen). We implemented many image processing algorithm but also the mathematical tools needed to process the data that can be extracted from images.

II. FEATURES

A. General points

In order to facilitate the storage of data, most of the objects in libcrn can be serialized in XML files. Multiplatform utilities are packaged so that no overwork weights on the user to make applications run on any OS (e.g.: automatic file path format conversion, file manipulation, character set conversion, dynamically loaded modules. . .).

B. Image 1) Formats:

We provide built-in support for numerous pixel types (see tab. I). Any other type of pixel format (such as matrices!) is supported as long as it implements the basic arithmetic operators. All the color types are trivially convertible and multiple binarization methods are offered: Niblack, Sauvola [START_REF] Sauvola | Adaptive document binarization[END_REF], local min or max, Fisher, entropy and Otsu [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF].

2) Algorithms: Classical basic transformation algorithms are provided, such as rotate by shear, mathematical morphology, convolution, distance transform. . . Feature extractors can be combined to allow the comparison of shapes. Sample feature extractors are provided including profile projections and gradients histograms (see fig. 1). Shapes can also be compared directly with an FFT-based cross-correlation or gradient matching. The gradient matching is a double inclusion measure. A mask of significant gradients is automatically computed and the angles inside a shape's mask are compared to the angles on the other shape. If the location of the pixel in the other shape is out of its dilated mask, then a penalty is applied. The sum of both inclusion measures is the dissimilarity between the two shapes (see fig. 2). 3) PDE: Gradients can be obtained from both grayscale and color [START_REF] Lebourgeois | Content based image retrieval using gradient color fields[END_REF] images by different means (half derivatives, Gaussian kernel. . .) and can be isotropically diffused. From the gradients, a large number of transforms and descriptors are computed (see fig. rectangular blocks. Each block refers to a part of the original image that is instantiated only when needed. This structure is of course serializable.

The fast connected components extraction [START_REF] He | Fast connectedcomponent labeling[END_REF] directly feeds the aforementioned block structure.

Simple line and word segmentation algorithms are implemented and more can be easily added to feed the block layout structure.

Other useful algorithms specific to document images such as stroke thickness estimation, text line height estimation and skew estimation are offered.

C. Maths

1) Algebra: libcrn's math toolbox includes matrices of integers, reals and complex numbers and provide all arithmetics. Two system solvers (Cramer and Gauss-Jordan) are included.

Fundamental linear algebra methods such as diagonalization and inversion are implemented. Effective computation procedures will be added 4 for tensor computation [START_REF] Nelson | Tensor analysis[END_REF], [START_REF] Simmonds | A brief on tensor analysis[END_REF]: Higher order structure tensors [START_REF] Schultz | A higher-order structure tensor[END_REF] are proposed as extensions of classical structure tensor used in image processing [START_REF] Zenzo | A note on the gradient of a multi-image[END_REF]. Since they are tricky to compare (e.g. for clustering, feature extraction, etc.), their glyphs are to be used for analysis [START_REF] Schultz | A maximum enhencing higherorder tensor glyph[END_REF]. Thus, Zernike moments have been implemented and should be soon added to image analysis toolbox.

2) Data analysis: Multidimensional data may be processed using Principal Component Analysis (PCA). Furthermore, Gaussian mixture models are also supported for both uni and multivariate samples. In particular, the Expectation-Maximization fitting procedure (EM) is implemented.

3) Interpolation and regression: The math module contains tools for linear interpolation, cubic splines interpolation and polynomial regression.

4) Geometry: libcrn provides angle arithmetics and tools such as circular mean and variance, but also circular histograms utilities: circular earth mover's distance [START_REF] Rabin | Circular earth mover's distance for the comparison of local features[END_REF], kurtosis, trigonometric moments. . . 5) Signal processing: FFT can be applied on complex matrices and vectors.

D. Pattern analysis 1) Clustering: libcrn provides clustering algorithms for both vectorial and metric data:

• k-means • k-medoids (PAM and fast [START_REF] Park | A simple and fast algorithm for k-medoids clustering[END_REF]) • Outliers: LOF and LoOP [START_REF] Kriegel | Loop: Local outlier probabilities[END_REF] • Spectral Clustering (all formulas from [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]- [START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF]) • Affinity Propagation [START_REF] Frey | Clustering by passing messages between data points[END_REF] 2) Classification: Many data classification problems can be addressed, using a wide variety of tools from a highly generic kNN implementation to discrete or Gaussian semicontinuous HMMs.

3) Other: Other "combinatorics oriented" algorithms are also available in libcrn, such as Kuhn and Munkres' "Hungarian" bipartition algorithm, the A* path finder or the disjoint set forest distribution.

E. GUI

Custom widgets are provided to create applications with Gtkmm -Gtk's C++ wrapper -versions 2 and 3. This include displaying and browsing the block structure of an image, image overlays and the automated generation configuration panels. A Qt widget library will be available soon.

A demonstration application is included in libcrn. It allows to test some features of the library on any image (see fig. 4). This tool is very handy to run simple algorithms over a given image without writing a new program.

III. 30 LINES FOR AN OCR

To illustrate libcrn's ease of use, we present a very simple OCR engine that is only 30 lines long. It works on a medieval manuscript excerpt written in capital letters with no spacing between words (see fig. 5). An occurrence of each letter in the alphabet was manually extracted and put in a folder named data, where each file name corresponds to the image's label. The source code is displayed in fig. 6. The first step (fig. 6.1) is to create a feature extractor that will be used to compare each character to the database. To do that, we use a FeatureSet, which can contain multiple elementary feature extractors. The FeatureSet will concatenate the feature vectors extracted by each FeatureExtractor. For simplicity, we use the four profile projections and the horizontal and vertical black pixels projections.

In step 2, we open each pre-labelled character image. As it is often impossible to know whether an image file contains RGB, grayscale or binary pixels, we directly store the image in a Block object. A Block automatically converts the input image to the format desired by the user (the default grayscaling and binarization methods can be changed programmatically at anytime). Is also contains named lists of sub-blocks that will be used later. The extracted features are stored in a list of shared pointers 5 to the base class Object.

The line segmentation is performed in 6.3. The document image is opened in the same way as the database images. We create a temporary BlockTreeExtractor that will extract the text lines and store them in a sub-block list named Lines.

Just before we actually extract the characters (fig. 6.4), we get an estimation of the mean stroke width. This will help us filter the noise. Connected components are extracted within each line. After that, each Block in the Lines subblock list will contain a sub-block list named Characters. The recursive sub-block lists can be used for more complex purposes and can even match an XML Alto's structure. Finally, connected components smaller than the mean stroke width are removed and the remaining ones are sorted from left to right.

The 5th and last step is the actual recognition. Each Block remaining in the Characters sub-sub-list represents a letter in the text. Its feature vector is extracted using the same FeatureSet as the database. We search its nearest neighbor in the database a retrieve a class number that can be used to compute the character's transcription. Now that our homemade OCR is fully described, we shall not discuss its performance: profile projections are not known to be the best features for medieval manuscript recognition! The purpose here was to illustrate the easiness of designing applications with libcrn. Variety of document analysis problems can be addressed, not restricted to ancient scripts: Printed pages or manuscripts may be considered. Historic or business documents may be processed. Even more borderline tasks are feasible (e.g.: text extraction from scenes, plate recognition, mobile applications, etc.).

IV. CONCLUSION

In this paper we introduced libcrn, a multiplatform (noncontaminating) open-source document image processing library written in C++11 and aimed at researchers and companies available for Windows (Visual C++ 2015), Linux, Ma-cOS and Android. Its API is comprehensively documented and libcrn's architecture follows modern C++ guidelines to facilitate the handling of the library and enforce its safe usage (e.g.: no memory management is required from the users and no leak can happen).

libcrn includes low-level image processing (expandable pixel formats, binarization, PDE. . .), document images specific tools (connected components extraction, recursive block description. . .), maths helpers (algebra, data analysis, geometry, signal processing. . .) and pattern analysis algorithms (classification, clustering. . .).

We described a short code example that provides OCR capacities in only 30 lines. This illustrated the use of feature extractors, segmentation providers and classification tools. Many other applications may be designed for research or industrial needs. libcrn has been useful in several projects and remains constantly improving.

Figure 1 .

 1 Figure 1. a,b) Angle histograms computed inside zones (rectangular or radial). c) 9 angle histograms computed with all pixels, weighted by their distance to automatically centered anchors.

Figure 2 .

 2 Figure 2. Two-ways inclusion measurement of two shapes.

Figure 3 .

 3 Figure 3. Sample of differential features (σ = 1.5 on the first line, σ = 4.5 on the second).

Figure 4 .

 4 Figure 4. Titus, libcrn's quick testing tool.

Figure 5 .

 5 Figure 5. Sample medieval manuscript.

https://github.com/Liris-Pleiad/libcrn

Code is already available on demand. Full integration will be done for the next release of libcrn

Shared pointers are memory management objects that deletes pointers when they are not referenced anymore.

/ / 1 . F e a t u r e e x t r a c t o r a u t o f e a t u r e E x t r a c t o r = c r n : : F e a t u r e S e t { } ; f e a t u r e E x t r a c t o r . PushBack (s t d : : m a k e s h a r e d <c r n : : F e a t u r e E