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16, Rue Atlantis - Parc ESTER - BP 6804- 87068 Limoges cedex, France
e-mail meghdadi, cances@ensil.unilim.fr

Abstract: In this paper we propose new simple precoding solutions to be used at the relay station in the context of a multi-
relay wireless network where the different mobile stations belong to the same network, i.e. we don’t consider the case of
competing users from different networks as in some recent works based on game theory. Our proposed algorithm is based
on the Gram-Schmidt Orthonormalization since our goal is to mitigate the multi-user interference at each mobile station.
The strength of this method is that it only requires the knowledge of all channel impulse responses from a given relay to all
the mobile stations. In other words, to compute its precoding vectors, each relay does not need to know the channel impulse
responses of the other relays. Using our algorithm, we find that, when compared to the centralized reference method where
each mobile station benefit from the same diversity gain, some mobile stations will improve their diversity gain whilst the
other ones will suffer from a loss. This constitutes a simple solution to supply different quality of service (QoS) in the case
of a multi-services network. We propose then an optimized power allocation strategy at each relay and we give complete
accurate performance derivations for the different studied contexts.

Index Terms: Cooperative Diversity, Diversity Gain, Gram-Schmidt Algorithm, Multi-User Interference Mitigation,
Expectation Maximization, Power Allocation Optimization.

I. Introduction
Emerging commercial multimedia applications require reliable wireless transmission links operating at high
data rates. However, the limitations such as multipath fading and time variations, make this a challenging
task. Cooperative relay combined with Multiple Input Multiple Output (MIMO) transmissions are attractive
solutions to both extend the coverage of existing cellular networks and to improve the quality of wireless
links. Recent relaying techniques, including cooperative relaying, show to be very promising in order to
increase the reliability of telecommunication links and consequently to extend the wireless network coverage.
That is why relaying schemes, especially cooperative networks, have become a very hot research area. In
general, the relaying protocols are divided into two main categories [1][2]: Amplify-and-Forward (AF) and
Decode-and-Forward (DF). In the AF case relay stations (RS’s) amplify the received signal (which is the
noised version of transmitted signal), and resend it towards its final destination [3][4]. In the DF case, the
RS’s decode the received signal then retransmit the information via a suitable processing to destination

[5][6]. In the case of successful decoding in a relay, the noise effect from the first link (base station to relay



stations) is removed. To improve the performance, maximum ratio combining together with distributed
beamforming are used to eliminate multiple access interference (MAI) and at the same time to maximize the
signal to noise ratio (SNR) at receivers [7].

In this paper we will concentrate on the link between relays and mobile stations (MS). Since base stations
(BS) and relays are fixed, we consider that it is easy to build reliable links between them using for example
optical fiber. We will study the configuration where the RS’s, using multiple transmit antennas, send the
information corresponding to all the mobiles at the same time and at the same carrier frequency to all mobile
stations using optimized precoding vectors. The objective is to maximize the signal to noise ratio at each MS
and to mitigate the MAI. Furthermore, we will consider the case of slowly non-frequency-selective fading
channels between RS’s and MS’s, enabling the MS’s to feed back the RS’s with their own Channel Impulse
Response (CIR) thanks to a low-rate specific channel.

A lot of works have been already published in the open literature concerning the optimization of precoding
vectors at relay places [8-12] for a single destination terminal. The optimization criterion is always the
maximization of the SNR at the receive terminal. Among them, the paper of Zhihang & al [8] constitutes an
outstanding reference since it copes with different realistic contexts including the case where only second
order statistics of the channel are available. However, it does not take into account the multi-user case and
one can remark that the majority of work is related to the AF context with only one destination terminal [9-
10]. The system in [11] uses the precoding vectors to maximize the system performance of a MIMO single
user system whilst [12] tries to use the same technique for the case of two distinct users. In fact, the literature
concerning the usage of precoding vectors for the case of arbitrary number of MS’s is not rich. One can cite
the work of Shu & al [13] where the authors try to maximize the system capacity using MSE based precoders
together with Particle Swarm Optimization (PSO) algorithm. However the proposed solution in [10] implies
a complicated receiver structure at the MS which limits the practical interest of the work by imposing
expensive structure to the end line users. At the same time, due to the complicated equivalent channel
equations, very little analytic predictions are produced. In a former version of this study [14], we have

proposed Zero-Forcing (ZF) equalization based precoders which offer always the same diversity gain at each



receive mobile station. This diversity gain is equal to the number of transmit antennas in the network minus
the number of interfering users. This system will serve us as a reference to compare our results with the
previous ones.

In the new presented work, we concentrate the complexity on the relay station side by computing precoding
vectors which aim at cancelling MAI at MS’s receiver side. This is done using the well known Gram-
Schmidt orthonormalization process. The strength of this method is that it only requires the knowledge of
CIR’s from a given relay to all the mobile stations. In other words, to compute its precoding vectors, each
relay does not need to know the CIR’s of the other relays. Using this algorithm, we carefully study the
potential diversity gain at the receivers and we show that, unlike in [14], the diversity gain is not constant at
the receiver side and depends on the ranking of the mobile station used in the orthogonalization process.
However, the diversity gain for the first MS’s can be equal to the total number of transmit antennas in the
network, i.e. it may be superior to the value we obtain in the reference system. Obviously this is obtained at
the price of some diversity gain loss particularly for the last MS’s included in the algorithm.

Furthermore, we study the power allocation policy to the relays when the total power is assumed limited. We
obtain a rigorous mathematical analysis on the Symbol Error Rate (SER) at each MS in both cases i.e. when
each MS benefits from optimized power and when the allocated power is chosen randomly. This
mathematical derivation is obtained thanks to an accurate approximation of the p.d.f of the optimized SNR
using an iterative Expectation-Maximization (EM) algorithm. The obtained results clearly demonstrate the
advantage of optimizing the allocated power at the cost of a centralized strategy. This means that, in the case
of optimized power allocation, each relay knows all the CIR’s from all the relays in the network, adding an
additional complexity in the signalling feedback channels. Hence, the contributions of this paper are
threefold:

- A detailed study of the diversity gain is given with the corresponding theoretical Symbol Error Rate (SER)
expressions.

- An accurate optimization of the allocated power to each relay is proposed with the corresponding BER

expressions thanks to an iterative E.M based algorithm to find the SNR distribution.



- In the case of randomly distributed power we are able to derive theoretical SER expressions which enable
us to compare with the optimized case.

The rest of the paper is organized as follows. The system model is described in part Il together with the
orthonormalization algorithm. The diversity gain is studied in Section Il and the power allocation policy,
together with the theoretical BER derivations, are given in part IV. Simulation results illustrating the
performances of the proposed system are discussed in part V. Finally the main results are highlighted in the

concluding part in Section V1.

I1. System Model

S R transmit
/ YIllay 1Y x, antennas MS;
Y1
Y > YYeoY
BS Y Relay i Y| MS;
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Relay L Y_ :
XL hLN MSN
Fig. 1: System Model W

The complete system model is depicted on Fig. 1. It includes one base station with M antennas which sends N
symbols s; to sy to N mobile stations MS; to MSy via L fixed relays each equipped with R antennas. A two
hop communication scheme is considered. In the first hop, the base station sends the signal to the relays. The
relays will then decode the received signal and multiply it by some precoding vectors before transmitting
them to mobile stations in the second hop. Since the base station and the relays are considered fixed, the
communication between the BS and relays is considered to be perfect. In fact a wide variety of low-noise
communication media such as optical fibers may be used. Moreover CRC may be employed to detect any
possible errors in relays and to ask the base station to resend the missing information. As a result BS to RS
link may be considered error-free. In the remainder of this paper we will focus on the second hop of the

communication where L relays cooperate in sending each of the N data symbols to their intended mobile



stations. The link from the ith relay to the jth mobile station is a flat fading Rayleigh channel

h;0C.N (0,1;) of size 1 x R. since each MS is equipped with one receive antenna. The channel state
information is assumed to be known at the transmitter. We define the vector s of transmitted symbols as
s=[s,,s,,...sy]" with s, to s, being N M-PSK unitary symbols (|sj |2=1). Since the BS to RS links are
considered to be error-free, we will assume that by the end of the first hop s is received correctly by all

relays. Each relay will then multiply its received signals by a set of precoding vectors w.! each of size R x 1.
N .
X; ZZW}\M'SHM i=1..,L (1)
j=1

The relays then will send these signals to the MS’s; the received signal at mobile station j can be written as:

L

_ T
Y, = Z h e Xy, + e

i=1

3 N )
yk‘lxl :th '(ZWI”M'S”M)J"nk ,k :1 ..... N
i=1 j=1

K| 1.q

By concatenating the different values y, in a vector form: y=[y1,y2,...,yN]T‘NX1, we obtain the following

writing form:

N N N
y, = rfl.(ZW}.sj) + hzT,l-(ZW,?-Sj) ot h[,l.(ijL.sj)
= = =i

N N N
Ve =h QO wis)+h, O wis)+..+h .O wis))
j=1 j=1 =

N N N
yn =hly .(Z{w}.sj) +hy .(Z;Wf.sj) +.o.+hl .(ZIW}‘.Sj)
j= i= i=
We can write it equivalently:
L
y=Q_ HW)s ()
i=1

With:

H, = |2 W =W, Wy, .., Wy Jo @ndi=1,....L (4)

LN _NxR



It is then possible to use a global matrix model since we can write:

- N _
1
ij.sj
T T T =t T T T 1 1 1
1 h2,1 hLl N 1 h2,1 hL,l Wy, W, e Wy S
T T T 2 T T T 2 2 2
y 2 hz,z hLZ ij 'Sj _ 2 h2,2 hL,z Wy W, e Wy S
= . N =] . . . . Ao
T T T T T T L L L
h1 N hz N hL N hl N hZ,N hL N Wy W, w Sn
L ‘N R.L ‘R.LxN ‘in
W-.S.
i
L =L i
y=HW.s+n (5)
With:
T T T 1 1
1 h21 hLl W, W Wy S
T hT hT 2 2 2
W. W W
H=| 1 2° -2 W= 7 N and s=| ’
T T T L L L
th hZN hL,N W W, W Sy
‘NXRL ‘R,LXN ‘le

2.1 The reference system:

In the reference system, using equations (3) or (5), the goal is to compute matrix W in order to obtain a
diagonal matrix for: HW . The jth element on the diagonal of HW determines the signal to noise ratio of the
jth MS. In this paper we focus at first on the case where all MS’s have the same SNR (i.e HW = g.ly with g
being a positive real). We have in fact two possibilities depending on the fact that each relay knows
completely the CIR’s from all relays to the MS’s or not.

Case 1: each relay knows all the CIR’s from all relays to the MS’s.

In this case, the system is mathematically equivalent to a relay with R.L antennas and we find the same behavior
as a MIMO system with R.L transmit antennas. As stated before, in order to cancel the MAI while imposing
equal received power for all MSs, we must find a precoding vector W that satisfies:

HNxL.R'\NL.RxN = g'IN (6)

For simplicity reason and without loosing any generality we assume g = 1 in the following. The solution to (6)

exists if and only if H is full rank (i.,e. RL>N) and it is the Moore-Penrose pseudo inverse of H.

W, . =HT(H.H)™. Then, if we scale the obtained solution to the available power P, we obtain:



Wi ren :\FM (7)

RCERy
In this case, the received vector y is written as:
_ _ HH'(HHH
y=HW.s+n=+P. HHT(H.HT)‘IH S+n
8
P Y
[HT(HHY

It is obvious from (8) that the jth element of y depends only on s;and not on other data symbols. As a result

the system can be considered as N parallel channels each one transmitting a symbol s;.

Case 2: each relay knows only its own CIR

When each relay knows only the channel coefficients of the links between itself and the MS’s, the precoding

vector of relay i W, must be calculated only as a function of the CIR between relay station RS; and mobile

station MS;. That means that for all i = 1,...,L we have:

HW =g.l, i=1.,L (9)
The equation (9) has a solution if H; is full rank (i.e. if the number of antennas of each relay is greater than
the number of receivers: R > N). Of course this criterion is much more difficult to obtain than its counterpart
in the first case, but, on the other hand, relays do not need to be inter-connected to each other. Precoding

vectors of the ith relay are given by:

_ HiT(Hi'Hi%)_l
Wi - \ﬁ HHiT(Hi'Hi%)%H (10)

L
With P; satisfying the overall constraint power: Z P =P. This time, we obtain for the received signal:
i=1

y=Yy+n Q1

i . I . . . . .. a/P. S
With Yij,, 18 the vector contribution of ith relay in the received signal and is given by:y, = ' .
g [RIHHD]



2.2 The new proposed system:
To describe better the new propose system we can begin by the simpler case of two RS’s communicating

with two MS’s a depicted on Fig. 2.

ML MS;
VY- YSS Y

Relay 1 N s

2,1

MS;

Fig. 2 : simplified relay
network model

In this particular case, the received signal at the MS’s can be written as:

Y= (th,l-Wll + h;,l'le)'Sl + (h1T,1-W; + hzT,1-W§)-52 +n (12)
¥, = (h,.w; +hy,wo).s + (h,.w; + hy,.wy).s, +1,

The goal, in order to compute precoding vectors w;, w’, w; and w; is to cancel interference i.e. that means
that : w, Lh,, w; Lh,, wy Lh/, and: w’_Lh,, while maximizing the SNR for the desired users i.e.
maximizing hl,w;+h,.w?, h,w;+h,w;. This optimization problem is solved using the orthogonal

projection theorem and yields to the following solution:

H:* .h; I .h; n& .h; I .h;

Wy = e B (1)
I h H - h H I h - h
hy; o 12 2 21 2 11 hy; 22

With: Ty, = 1 — X.(X"™.X)™. X" . Using definitions (13), it is straightforward to obtain:

hy " 12 (I_hl, ( , hl) dh ) -
hl,.w;.s, =h1T‘l.T.s2 =h. - j ———"h,s,
U th* .h12
T T ‘l * | T h* \-1 T o (14)
_ hl,l B hl,l'hl,l'(hl,l'hl,l)_ 'hl,l * -0
= . 'h1,2'52 =
‘H ¥ 'h1z

And similarly, we obtain: hy,.w;.s,=0, h/,.;.s,=0 and h,w s =0. Concerning the maximization of the



desired signals we have the following theorem.

Theorem: Among all vectors z satisfying |z]|=1 and X".z=0, the vector z=TIT;.y maximizes the quantity:
|2".y|. The proof is given just below.

Proof: If we take: TT; =U.U"™ with U".U =1 and if we consider the vector z =Up for a given vector p then
we have: ‘z”.y‘=‘y”.u.p‘ and: | z|=| p|. Thus, the quantity ‘yH.U.p‘ is maximized under the constraint:
| p| =1 for p=U" .y/H ut.y H or, in other words, we obtain: z=Up =TIT}.y/ H L.y H

Applying this theorem to equations (12) enables us to affirm that h/,.w;+h w’and h,w,+h,,w; are

maximized.
It is possible to generalize the former situation to our proposed cooperative relaying system of Fig. 1. We have

the following equation:

L
_ T
%= 2 i Kio,
k=1
T T T T
Y, =h. X +hy X+ +h X+ hpx+n,
T 1 1 1 1 h' 2 2 2 2
Y, = (WS, + W3S, +. + WS+ + Wi Sy ) + 0y (WS + WSS+ + WS + .+ WS )+ (15)
T k k k k T L L L L
+h (WS + W, S, + o+ WS o A WSy ) o+ N (WS + W, S, o+ WS L+ WS )
_ T 1 T 2 T j T L T 1 T 2 T j T L
Yy, = (hwy +hywy ++hpwy o+ hpwr)s, + (hywg +hywg ++hywg) + L+ hawg)s, +

+(hf,wi +hy w? .+ hlow! + L+ hlw)s o+ (hawy +hy ws + o+l w4+ h g ).sy + 1,
Mitigating the MAI implies: w, L vect(h’,,h',,.... 0\ s, qr-hy) for ke[L,N] and I €[1,L]. In the same

time, maximizing the received signal in the direction of vector: h ,, entails the choice:

W =R, =Prol,: (Ve 1Py s P s B ) =PIl (VR PPy )

Where the notation projhrk (vect(h;,h 5,y 0 B b)) denotes the projection of vector h, on the

subspace spanned by vectors: (h,,h,,..n ;0 )
The computation of this solution is easily done when we use the orthonormalization process of Gram-Schmidt.

The obtain the computation of projhrk (vect(h,,h,,.h 0 y)), we suppose at first that the vector



family (hohoehy o Gaea by is free; i.e. the subspace dimension of

V" =vect(h 05,0 B R y) i RX(N-D) or Det(hy, by, .o iy o 0y By ) 0. This is equivalent
to the condition: N-1<R or: N <R+1. In this case, we can always extract an orthonormal free vector family

(61,8 2118 41,8 o1 € ) from V, . The proof is done by induction by constructing the new basis using the

well known Gram-Schmidt theorem.

Proof: The first vector e,, is given by: e, = h,, /[jn,,|. Then, we take:

., - proj, () et |
e, = % _h, _M,em)/uh,,2 ~proj, (h,)
th,z _projell(hhz) <el,1’e|,1> ‘

€.2= (hl,z —<e|’1, h|,2>-e|,1)/Hh|,z _<e|,1’ h|,2>-e|,1H

And naturally, we obtain:

m-1
M —leroje” () 1 n-1
el,m: :;l :(hl,m_Z<el,j'hl,j>'el,j)/‘hl,m_Z<el,j1hl,j>'el,j
Mm—zmaxmp " .
=1 ’
N-1 k-1
eI,N :(hI,N _Z<el,j’hl,j>'el,j)/‘ hI,N _Z<el,j’hl,j>'el,j ‘
j=L j=1

Using this new vector family it is straightforward to express the precoding normalized vectors. We find in this

case:

WI|< = hl*,k - prth;k (VeCt(el,liel,2""'el,k—l’el,k+1""'el,N))/‘

hl*,k - projhl*,k (VeCt(eI,l’ €21 k1€ ki E ))

N

ha— 2. <h,fk,e,'j>.e,'j (16)
Tectia for VI [1,L] and vk €[1,N].
hl*,k -

1,

I _
W, =

i (heep)e

j=k

J

With this choice we obtain the received signal at MS;:



y = (W wi +hy, w4+ hlw +..+hlwh)s, +n,

N

N N
hll Z < e11> hz,i_ Z <h2,i’e2,j>'ez,j hL,i_ z <hL,i’eL,j>'eL,j
:]_ #i .:1,'¢i -:l,.;ti
Yi = (th. J NJ + h;,i- ) J NJ ) + h[,i' ) J NJ ) )-Si +,
hl. Z < ue11> hz,i - <h2,i’e2,j>'e2,j hL,i - Z <hL,i’eL,j>'eL,j
j=1, j=i j=1, j#i j=1, j=i
Using additional vectors to complement the subspace: vect(e, ;. ,,...€ 1€ .1:--€ y) » WE Obtain the complete

R
Dasis: VECL(E, 1,6, 5118 4 1€ € korserns Ein & ot € ¢) @ND We can write: R, =Z<h,fi,e|’j >.e,'j . We obtain then:

j=1
S (e Yo, - Y (e e, i<h; e e, - D (Woe, e,
Yi = (hL = N e +...+ h[l 1= . I=L i ).si +n,
i _j:lzj:¢i<rii’e1,j>'el,j ,1Z,< LB

And (assuming that each precoding vector has a normalized power equal to one for simplicity):

(Mo )e + Y (W, )e, (e e+ Y (e, e,
y; = (h.. - =N+ +..+h,. - =N+ ).S, +n,
hl Z <hl|’ lj> Z < |_|1 >
=1, j= j=1, j#i
R R
(e + 3 (e, )f Khweu>\2+ P KhL,weLJV
y, = - =N+ N - =N ].s, +n, (17)
fii—_Z_(hiwel,J-el,J - 2 (e e,
=1 j=1, j#i
w.—_i_(mi,el,j)el,,- 1+..+[h;, Z (hivec; e[S +n,
1=L]# j=1,j=i
Remark: To derive the precoding vectors we have supposed that the vector family

h ) is free. If this condition is not met, we can always extract a free family vector from

(o ho R R

the subspace: V" Denoting V%, =vect(h 1, .-y N Nngy) With N(I) <N this new free family

vector, we can build a new orthonormalized vector family using the Gram-Schmidt algorithm.

I11. Diversity gain study

3.1: Diversity gain study:

To obtain an accurate estimate of the potential diversity gain, we have to characterize the random variables:



2
N
A== Y (e e :K oy ‘ Z ‘ Neir8 ‘ To do this, we come back to the Gram-
=L j=i j=N+1
Schmidt algorithm, we have:
i-1 ]
h,, _melekj (he:) i
€= :1 = ﬂk,i-(hk,i _Z<ek,j'hk,i>'ek,j) (18)
. j=1
hkyi _zprojek . (hk,i)‘ .
=1 ’
R
with: 4, = ! - Then, using the orthogonal basis, we have: h,; =>"(e, ;,h)e, ;. Putting
-1

i-1
hk,i - Z prOjek ) (hk,i )
=1 !

this into (18) this yields to:

i-1 R

€i = ﬂk,i'(i<ek,j ’ hk,i>'ek j z<ek ki >'ekvi) - 'ukvi'z<ek'1 ’ hk'i>'ek'j (19)

j=i

Equation (19) means that: <ek1j : hk,i> =0 for j>i.Using this property, we can now simplify Af,

j=1

ﬂkz,i :/ukz,i'<hk,i’hk,i _Z<ek,j’hk,i>'ek,j>::uk2,i'[<hk,i’hk,i>_i_ZlKek,j'hk,i>‘ 1 (20

With equation (20) we can now obtain the characterization of ﬂf’i by induction.

h
h ., —
< HhmH>

complex Gaussian random components each having a null mean value and a variance equal to 0.5, the random

2

2 2
For I =1, we have: e, = hkyl/HhMH s0: A, :‘<hk,11ek,1>‘ = :Hhkylu . Since h, , is a vector of R

R . .
variable 4, may be written as: A7, = ‘h")‘ = [Re(h)? +Im(h)?1. It is straightforward to conclude in
i=1

this case that: 4, is a chi-square variable with 2.R degrees of freedom.

Forl=2,wehave: e ,=(h, —<ek,1, hk'2>.ek’1)/Hhk’2 _<ek,l’ hk12>.ek‘1H . Hence, we obtain:



<hk,2’(hk,2 _<ek,1' hk,2>-ek,1)/Hhk,z _<ek,1’ hk,2>'ek,1H> 2

Akz,2 = th,z 1€k 2 >‘2 =

= :uk2,2'<hk,2! (hk 2 <ek 1 hk 2> € 1)> = H ,2'[<hk,21 hk,2> _Kek,l’ hk,2>‘2] (21)
2
h...h
= ,Uk 2: [<hk 200 2> <hk,l /Hhk,lu’ hk,2> 2] = ﬂf,z-[(hk,z’ hk,2>%]
k.1
To calculate the term: ‘<hk,1’ hk12>‘2 , We can write:
(huhes) =S+ AL )+ TR 6]
i (22)

= i[h&(i,:)-h{fz (1,)) =he 1 (1) 0 (1) + G (1) 0o () +he 1 (5.0, (1,2))]
And this yields to:

(hoh ) ZINEING) LG R NN 0y T

I S iG] +]R

‘<hkl h, ‘ E[‘ h. hk2>‘ ]

Taking the mean of this expression and using the approximation [8]: E[
s el

arrive at:

() LRGN IR GIF R R0 -GG

[ E[Z[\hfl(u )+l

ZE[\h&(n 9,0, T+ ELh () hE, (9] T+ EDNS b, 69 1+ Elh (L) 08, ()]

(23)
ZE[\h“(n 9 1+ Elh, (. ]

=1
This entails that the random variable ﬂfyz is a chi-square variable with 2.(R-1) degrees of freedom. Let then
suppose that the random variable 4/, , is a chi-square random variable with 2.(R-(i-2)) degrees of freedom. In

this case, we have:



i— 2 i—2

2=l h) 2\ SILSYD VR (R VRN CHLNY s (CHNS h1 @9

=1

i-2 2
Taking into account the former hypothesis on 4., we know that <hkyi,hk'i>—2‘<ek’j,hk’i >‘ is a chi-square
j=1

variable with 2.(R-(i-2)) degrees of freedom, and subtracting the quantity KekH, hkyi>rwe will find exactly in the

same way as in equation (23) that ﬂf’i is a chi-square random variable with 2.(R-(i-1)) degrees of freedom.

Conclusion: We have proved by induction that the random variable ﬂfvi is a chi-square random variable with

2.(R-(i-1)) degrees of freedom.

It is possible to check this property using the EM algorithm [15]. We want to identify the pdf of random

variables Af’i and we guess that Gamma law will be the best approximation. In this case, the pdf of Aﬁi will be

approximated by:

_ J ﬁ]al aj—l —ﬁj.x_ J
fc(x)_jzl:ﬁj.r(aj) X e _;ﬁj.g(x,aj,ﬁj) (25)

@)
Wwith: g(x,a;, B;) = ad Xt e denoting a Gamma law with parameters: (c;,f;). =; represents the

[(a;)

J
weight of g(x,a;, ;) in the complete mixture. We have, of course: ;>0 and Z;rj =1. The maximum
j=1

likelihood (ML) estimate of the parameters Hz{ﬂj,aj,ﬂj,jzl,...,.]} based on the observations

E={&,i=1...,n} can be written s follows:

f=arg , max log p,(Z)
GZZﬁj:l

(26)
:argair maxZIogZﬂ g(ez.,ajy,g)

i=1 =1
=)

Direct solution to (26) is clearly of prohibitive complexity. The EM algorithm [16-17] is an iterative procedure

for solving this ML estimation problem. In the EM algorithm the set of observation data & is termed as

incomplete data. Starting from some initial estimate 8, the EM algorithm solves the ML estimation problem



(26) by the following iterative procedure:

Expectation Step (E-step): Compute

Q(B)6") =E,, {log p,(X)|5}  (27)
Maximization Step (M-step): Solve

6 = argmax, Q(e‘ 0"y (28)
We define then the following hidden data Z ={zi,i =1..., n} where z, is a J-dimensional indicator vector such
that:

Zij:{l’ si & =9(a;,5) (29)

0 otherwise

The complete data is hen defined as: X = (&, Z). We have:

005, 2) =T TT T[ 790, 8)] " (30)

i=l j=1

The log-likelihood of the complete data is then given by:

log pg(E,Z):Zn:Zzi,j.logﬁj+Zn:Zzi,j.[aj.log(ﬁj) — log(I'(@;)) +... -
+(a; -1).log(&) - B;.& +C

Where C is some constant. The E-step can then be calculated as follows:

Q(6)0") = E, {log p, (=, 2)| =}

[

>

> 12i‘j.logzzj+21:‘ 2, .[a;.log(B;) — log(I(a;))+...
i=l j= 1=l ]

+(a; =1).log(5) - B;.¢; +C

Q86 = 32)

I
4N

With :

Zi; = Eé{zm ‘59} =P, {z,,=1l¢}
_ Jp“’(é‘zmzl)-Pe(zm =1) (33)
2 Po(&i[z, =D Pz, =1)
— 7(5,,aj,ﬂj)ﬂj
> r(&ia; B




For the M-step, we have to compute the following derivative functions:

ologp,(£.2) _ or(a)oe,
oa, Zz., log()~—F=n—++log(&)] (4
With:
o .t L gy Tt 6e("‘1‘1)-'”(u) g
ar(aj)/aaj _(%xj[}[u du]_ OT IIn(U)U du
He) T“ e T Tetdu _F Tedu
= pSi(O!aj) = C(aj)
And:
logpy(£.2) _ izkxi_ﬂ_fé%‘”gé%
ﬁﬂj & i ﬂj

Setting the above derivatives to zero, we obtain the set of non-linear equations:

MIDE2) g s tog() 32, = 3 (¢er) - loa(E D3,

oo,
]
N (35)
oogp,52)_, P
] n
% >,
i=1

D (&(a;)—log(£)) 4,
Using the first equation in (35) we can express f; as : log(f;) = = - , SO We obtain:

zzi,i
i=1

z(g(a )—109(5)) Z; ;
5

i (36)

log(5;) =

=

ﬂ, 25. ij

.M: H

Zi

i=1

Substituting the value f; from the first equation into the second one, we obtain the following equality:



fixédy eplE(a) X, - 2I0gE)2 1/ 24,) 364,
aj=—p ——= = =1L (37)
1 i=1

S
S

We obtain an equation of the equivalent form: x= f(x) which can be easily solved using the well known

Newton-Raphson method.

For example, we test the E.M. based algorithm with J = 1 (Gamma pure law) to test the behavior of variables

A%, We take R = 10, N = 5 and we found the following result for 47, on Fig. 3 and for 4, on Fig. 4 (green

points denote experimental trials while blue ones represent the EM based approximated pdf). The curve on the

right is obtained in log-log scale to compare the slopes of the two curves.

0.14
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220}
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L I -25
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Fig. 3: p.d.fof 2}, forR=10,N=5

20+

L L L I I I
0 5 10 15 20 25 -2 15 -1 -05 0 05 1 15

Fig. 4: p.d.fof 2}, forR=10,N=5

We obtain in this case: « =10 and g =1 for Fig. 3 and ¢ =9 and g =1 for Fig. 4. This means that we have



validated the fact that Akzyi follows a chi-square law with 2.(R-(i-1)) degrees of freedom (since each degrees of

freedom contributes to 0.5 in the diversity order D, the diversity order is equal to D =R—(i—1)—1). Using this

result, we are now ready to compute the potential diversity gain at each MS. We have the relationship:

i =IY A+ (38)

L

[ZL:/%]Z Gt DD i

The SNR is then defined as: p, =L —="2 < . It is clear that the random variable

(o3 (o}

L L
Z = Zﬂf, Is a chi-square variable with 2.L.(R-(i-1)) degrees of freedom. The variable Z= ZAM Is a sum of

k=1 k=1
independent identically distributed (i.i.d) Rayleigh variables and it is difficult to obtain an accurate estimate of

its p.d.f [18], so the study of the p.d.f of o is a complicated task too. In appendix I, we give a proof by

induction that p. has a diversity order equal to: L.(R-(i-1))-1. To confirm this, we use the E.M based algorithm

ﬁ(l
['(a)

described just before with a pure gamma law with p.d.f : g(x,a, B) = X“e”*. For example, we obtain

L
D A,
for R=10,N=5,L=>5and: p, =—1—— the values: o =44.5, 3=0.2 on Fig. 5 just below which yields to a
(o)

diversity order of: 43.5. This confirms that the diversity order is nearly equal to: L.(R-(i-1))-1 = 5x%(10-1)-1 = 44
in this case. In fact, for each scenario we tested with the E.M algorithm, we found a diversity order very close

to: L.(R-(i-1)).
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Fig. 5: p.d.fof p forR=10,N=5,L=5
and its approximation with E.M based algorithm

IV. Optimized Power Allocation and theoretical performance derivations

4.1 Power Allocation optimization:

When we assume the solution exhibited in (17), we can define the average transmitted power of each relay as:

<P >=E[x".x]= E[(iw‘j.sj)H (iw} SN=ED.D s;w" w.s,]
N T - @
<P >=>"E[sw," w,.5]1=> E[w," W, 1E[s;.s]=> E[w," w,]=N

Hence, when we normalize the transmitted power of each relay to one: <P >=1, the precoding vectors are

written as:

i (e e

' 1 | 1 i=1 j=k
w, = w, = (40)
JIN «\/N N
-2 < ,k,e,1>e”
j=1, j=k

Hence, we obtain: Ak, (see equation (20)).

J—ﬂy.

In the case where each relay k has a transmit power P, the received signal is written as:



Yi = [ZI::’\/ﬁﬂ'kl]sl +n (41)

NGB

The signal to noise ratio is equal to: p, =~ . Using this and the approximation of the symbol error

62
probability (SER) given in [19] by:

F)ei (P.) = 2-}/-erfC(1 ffpl ) —[y_erfc(\/a)]Z

(42)
P. (p) = 2.yerfc(, /g.pi) at the considered SNR's

We have y=1-1/{M,&=3/2.(M —1) for M-QAM constellations with M =2* and erfc(x) = 2 4t is

2 +0
2 e
N
the complementary error function. We can optimize the average SER for the complete set of mobile stations. In

this case, the Power Allocation (P.A) problem can be described as:

min P, =(1/ N).i P.(p)=/ N).Z.y.ierfc(@)

) (43)
subjectto : > R, =P, =C*
k=1
Consequently, the cost function can be obtained as:
_ L
J(P,P,,...P) =P +77-(Z P - PTJ
L
J(R. Py R) =271 N).Y erfe(JE.p,) +n.[z R - PTj
i=1 k=1
We calculate the derivative : 63 /6P, , we obtain :
N L
03 19R, =2.(yIN).>  derfc(\JE.O. P A o)1 0P +1
i=1 k=1
(45)

= (2.7 & IN.o.[zP, ).sz',i .exp[—g.(Zﬁ A2 1o +n

Setting this derivative equal to zero, we obtain the equation:

77=(2.7/\E/N.a.,/ﬁ.F’k).Zﬂ;yi.exp[—ﬁ.(z\ﬁ.%yi)z/02] vke[L L] (46)

This yields to:



J_oczﬂk.exp[—f(m_z )2 lc?] (47)

So, we can write:
2 - ' S ' 2 27112
Ro= ALY A el Py Ay ) 1 O°TF (48)
i=1 m=1
Rewriting equation (47) for each relay station and summing all the different equalities, we arrive at:

NGO WAL SO W

m=1 m=1 i=1
Using equation (47) we aim at first at calculating: X, Z/ /1 . X is the solution of the equation:

L N

X; =AY D A% exp[-£X216?] (50)

m=1 i=1

L
The constant A may be expressed as: Z P, = R and so this yields to:

k=1

iAZ [Zik.exp[ (S(Z\/_z V1T =
ALY expl cf(z\Fzm,) 16°]F =

k=1 i=1

(51)
AZ.Z[Z A exp[-EXE 1?1 =P,
A= /Jz[zz;,iexp[—:.xf o TF

Finally, we obtain the equation:

X, :ﬁ.ZZ%ﬂ.exp[—f.Xflaz]/\/Z[Zﬂl;yiexp[—ﬁ.xf I’ i=1..,N

m=1 i=1 k=1 i=1
It is possible to solve this set of non-linear equations using the primitive function fsolve. As soon as the
quantities X, are found it is possible to compute the optimum power Py:
N
D> A expl-&. X7 1 o?F

- i:lN (52)
2D A expl=¢.XE 1 o? ]

k=1 i=1

R =P.




The calculation presented here is complicated to implement. To simplify it we can use an approximation at low

SNR’s. The solution found for the low SNR regime can be generalized at high SNR’s as the simulation results

L
highlight it on Section V. If we consider the low SNR regime we have exp[-&.(> \[P,.4;)* /o] ~1and

k=1
equation (48) reduces to:

2 - .
Po=A D AT (53)
i=1

And the constraint on the overall transmit power yields to:

ZP N[ AT =P A= (5a)
k=1 i=1 ;[Zﬂkl]z
And we found:
Ro= ALY AT = [ AT (65)
= YD A ™

k=1 i=1

In this case, the received signal at MS 1 takes the form:

i = (Z ﬁj’l;,i)'si +n

4.2 Theoretical SER performance derivations:

We consider here two cases: the first one corresponds to the case of equal uniform power allocation whose
diversity gain has already been studied at the end of Section Il and the second one concerns the case of power

optimization just given in the last section.

lBa a-1

In the first case, we have demonstrated that a gamma law with p.d.f: (X, a, B) = =—.x*".e”* was a good

T(e)



L
approximation of the random variable:[»_ 4, .1* with: ¢ —1=Lg,-1=L(R—(i-1))-1 and g=1/L. The SNR
k=1

[ﬁﬂ; T

is given by: p, = with % = P10 and: P, = E[(Z/ik )?]. We have:

k=1

R = /- -TX e X dx=—L— P Tx e dx=—="F—— B —. Iu e'.du
[(a) 9 [(a) 3 ().

= 1 I+ =La
I'(a).p

Its p.d.f can be well approximated by:

2 2 _O_Z-ﬂa 2 a1 —ﬁ.o-z.x_o_za' Y aa ~B.o?x
h(x)=c“.y(c" X, a, f) = @) Jo“x]“ e _—F(a) Xe (57)

The average Symbol Error Rate (SER) at a given SNR or o value is then given by:

P, =Tpe(u).h(u).du = 270( )ﬁ ju “Le 7 erfc(Jéu)du  (58)

We have y=1-1//M,&=3/2.(M —1) for M-QAM constellations with M = 2% .To calculate (58) we can remark

that o -1 is an integer value i.e. o —1=n,. We calculate at first:

5= +_fou“‘1.e‘ﬂ"’2'u .en‘c(\/ﬁ ).du

0

We set at first: t = f.o°uU, i.e. dt = S.o°.du; we obtain:

ﬂ=T[ .t al gt
[ﬂ 7] j tet, ‘terfc(«/g.t/ﬁ.az).dt

dt

Etl B.o’).

(59)

Then, we integrate by parts, setting:

e §t/ﬂo‘

V= erfc(«/‘ft/ﬂa)dv—_ N ﬁ e tVie dt=— f«/flﬂ ol N dt

and dw =t“".e".dt . The primitive function of w is defined as: w(t) = Z (ak_ll) t“.e™'. We obtain then:



To calculate integral form: J'tk*l’ze*t(l*f’ﬁ'az).dt ,we set: x=(1+&/ .ot ie dx=(1+&/ o)At

j t e erfe(yEt/ f.o?).dt

1
| =—.
a,p [ﬁ 2]0: ]
La-1-5 l:T(“_l)!tk et NEIT” e e (60)

[ﬂ 1 ki~ Wt
(05 1) . v K-1/2 —t(+&l f.o?)
o —[ z Bl \Fk' j t“2e dt]

[tze e D de= [ [x/A+&1 fo™)] 7P e dx i1+ &1 f.o’)
0 0

=1/(1+ &1 B.o?)<2, j X2 o7 dx
0

=1/(1+ &1 o2 I'(k+1/2)

oo
With: (F(z) = [t le™ dtj we have the following particular values:
0

This yields to:

1, 1, 3 _2(n-H+1 2(n-1)+1, (2.n)!
F(n+§)_(n 2).(n 2)...(n = )T(n- ; )= o .“/’?

And, finally we have:

g = E; 1)! [—Z = J_lklItk_l,z_e_t(hl,gz).dt]
E; 7 [_Z /30 \/_k'(l+§/ﬂ >(22kk):*/;] (%0)
o B S o T s 21y
po2ra B,
F(a) a

(2.k)!

=2y[1- /
& \/m o 22k.k!2.(1+§/ﬂ_o-2)k]




§lpo’ Zﬂ

§lpo+1 «/1+0' plé

At high SNR’s it’s possible to simplify the expression of: F—’e we have:

1 ﬁk .GZk

and ~ , this entails the new expression:

(&1 p.o” +1) £

B =2y[1-0-Z ﬂ)Z(szz)kﬂk,z (62)

Conclusion: In the case where the relay radiates the same power, we have:

1 (2.k)!

 =2.7.[1- 2k | 12 2)k
Pecaua =271 «/ mkﬂ k¥.(1+S&1 o) :

M.—

i%]}

1

A4 T

k=1 j=1

=
Il

In the case of power optimization, we have: p, ={ . The p.d.f of p is difficult to track; we give

N

in Appendix 2 the characteristics of the p.d.f of the product of two independent Rayleigh variables. Using this
result, we give an approximate characterization of the p.d.f of o*.p, in Appendix 3. However, it is possible,
once again, to use the E.M. based fitting algorithm to find, with a good precision, an approximated distribution

2D A1 A

for the term: ¢, = Ll = } . For example, using Gamma pure laws at each time, we have obtained the

22 A

k=1 j=1

following result. In the case where L =2, N = 3 and R = 8, we obtained the result just below for &,: = 15.81,

£ =1, i.e. we obtain a chi-square law with diversity order: D, = R.L-1.
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Fig. 6: characterization of the p.d.f of &, with: L =2, N =3 and R =8 (in log-log scale on the right side)
In the case where L = 2, N = 3 and R = 9, we obtained the result just below for §,: « = 17.81, f=1; i.e. we

obtain a chi-square law with diversity order: D, ~ R.L—1.
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Fig. 7: characterization of the p.d.f of &, with: L =2, N =3 and R =9 (in log-log scale on the right side)
In the case where L = 3, N = 4 and R = 8, we obtained (Fig. 8) for 6,: ¢ = 23.71, f = 1, i.e. we obtain a chi-

square law with diversity order: D, = R.L-1.
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Fig. 8: characterization of the p.d.f of &, with: L =3, N =4 and R =8 (in log-log scale on the right side)

In the case where the ranking of the MS’s is equal to two,

= 3 and R = 8, we obtained for &,: ¢ = 13.83, = 1;

D, ~(R-1).L—1.
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we found the following result on Fig. 9. WithL =2, N

i.e. we obtain a chi-square law with diversity order:
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Fig. 9: characterization of the p.d.f of &, with: L =2, N =3 and R =8 (in log-log scale on the right side)

With L =3, N =4 and R = 8, we obtained (see Fig. 10) for &,: = 20.69, =1, i.e. we obtain a chi-square law

with diversity order: D, = (R-1).L-1.
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We can conclude experimentally that the variable & is a chi-square random variable with diversity order:

D ~[R—(i—1)].L—-1=q; . Its mean value is equal to:

1 Fo q! :
TR R T

_[ xX% L exp(—x).dx =

u

(9 1)'
In this case, it is straightforward to obtain the theoretical BER performance of this scheme. We have now:

a-1

£ 1 (2.k)!
P . =27[l-.]>. . 63
e,opti 7/[ 0_2 \/5/0_24_1 ;22k.k!2.(1+§/(72)k] ( )

P

e,equal *

It’s in fact the same expression as in (61) but with: B =1. Obviously, it’s easy to check that: P,

eoptl
Remark: There is still an interesting case to study. This situation is related to the case where we consider

precoding vectors which are no more normalized. We have then:

“h - Y (W e,

j=1, j=k
R N
=z<hlk’elj>e Z < K |j> L
=1 =1, j=k
:< Ik’elk>elk+ z < e ,j>-e|,j
j=N+1

We have: (I,.e ;)=0 for j>k.Hence: w, =(l, e, )€, and the average transmitted power of one relay

N N
station is written as: <P >=> E[w," w,]=>Y E[<h,e  [>]. Since each random variable |h,,e [ is a
k=1 k=1



chi-square random variable with 2.(R—(k —1)) degrees of freedom, we have:

O, |
_[ x%.exp(—x).dx = —*—=q,

[xﬂ“emendk= (G -1!

E[<‘h:k.€.,k‘2 >]= q 1—1)!

(qk _1)|

With: g, =R—(k—1). Finally, the transmitted power is equal to:

<R >= qu Y [R-Kk-Dl=p(R.N) (64

k=1

In this case, to have an average transmitted power equal to one, we have to use precoding vectors of the form:

hl*k’elk 'elk hl*k’elk 'elk
o ede fiads
\/i[R—(k—m WRN)

Considering a non-uniform power allocation between the different relays, the received signal is equal to:

[\F‘hl. 1."" +\F‘hk|ekl‘+ +\/:‘ Liv L|‘]]S+n (66)

(65)

h= (R Jv(R,N)
Since the derivations are heavy to obtain, we will simplify at first the studied context and we’ll take: L = 2. We

have then to characterize the p.d.f of the random variable: Z, =\/51.‘<hl,i,elvi>‘2 +\/§.‘<hzyi,e2'i>r. This is equal

to the convolution product of the pdf’s of \/ElKhl, € >‘2 and \/P_Z'Khz,i €, >‘2 ;
P2, () = (W JR.I(@).(x/ {[R)*.exp(=x/ {[B) * (U [P, T (@) (x/ [P,)* “.exp(-x/ [F,) ~ (67)
With: g, =R—(i—1).

It is easier to use the Fourier Transform to calculate (67); we have: (setting: ®, =1/ \jﬁl 0, :1/\/P_2)

_ (©,0,)" Gy
TF[pzz(X)]_gZZ( )= (q ._1)|2 (O, +j.22V)" (0, + j.2.77v)"
: (68)

(® 2) g 8]
(O, + [.22V)% (O, + [.2.1V)"

The decomposition of this fractional function yields to:



1
(O, + j.2.73)" (O, + j.2.7V)"
bk

9z, (V)= (®1'®2)qi .

0,0,)"
=(6.9,) [Z(® +127rv)qk (0, + j.2Vv)* +
We found:
a = (_1)k q.(q| +1)---(qi +k_1) — (_1)k (q| +k—1)! _ (_l)k'C(:i;&—l
< (0,-0,)%" k! ©,-0)%* (g -DIk! (©,-0,)%"*
( l) Cq+k -1
T (0,-0,)""
Remark: if: ®, = ®, = ©, we obtain direct @2 L d gra X &
emark: if: @, =®, = ©, we obtain directly: g, (v) =09, and: = SAN—
2 1 y: 9, (v) @+ j.2.72v)" P, (X)=© “2q -1)!

In the case where: ®, = ®,, we suppose that ®, <®, without any loss of generality. This gives:

(D Cq' s (-D".Cqiy
92, (V) = (0:0,)%, [Z (@, -0) (0, + ] 220" (0, -0,)7 (0, + j 229"
1 1
=(6.0,)" [Z( DG l((®2—®1)q‘+k.(®1+j.2.7z.v)q“k +(®1—®Z)qi+k.(®2+j.z.n.v)qi-k)]
and:
. g1 K 1 Xqi_k_l.e_®1'x 1 Xqi_k_l.e_Gz'X
Pz, (X) =(0,.0,) -[Z( D -qu+k_1-((® _®)qi+k-(qi_k_l)!+(®l_®2)q+k- (qi_k_l)!)]
. X —k-1 e—®1 e—®2
P, (X) =(0,0,)" [Z( D*C qm( D 1),((® @)M ©. @)q+k)]

We have to calculate the p.d.f of: p=2Z2/57, this yields to:
f,(u)=p,, (0lu).0? I(2.5:u) = p, (ou).c/(2u)
f,(U)=p,, (ou).o/(2-u) (68)

q-—k u(q~—k)/2—1 —®l.a.f e—@)z.a.\ﬁ

f,0)=(©,0, XV T e 1),((@ o7 o oy ©

The computation of the average symbol error (SER) probability yields to:



P = T 2.aerfe(y[Eu). f,(u).du

—k la-kyra-1 e g @zl

P,= jzaerfc(ﬁ)(@)@)% [z( n“C le(ql o 1),((@ “o) (@, ®)q+k)]

. ok 2@k o Q00
P=0.0.(0.0 )“-Z( 1)~ qu+k1( —k—1)l[ © 0)" erfe(JEu).du+...
G "0
u(q, —k)/2- 1 —0,0Au (70)
+ erfc(y&.u).du
| 6,-0,) (V&u).du]
q s q i Iql 0,.¢ 3_2
P =0.a.(0,0,)%") (-D*Cd + = 71
A O'O{( 1 2) ;( ) g +k-1° (q _k— 1)|[(® 0 )q,+k (®l_®2)qi+k] ( )

To obtain the final result, we have to calculate integrals of the form:

9% = j U@/t g7l erfe(\JEu).du
0

We set: x=+Ju =>dx = L du=>du=2xdx: 50 we obtain:

2.u

+00

1974 = [ X792 677 erfe(fZ.x). 2. x.dx

0

=2 J'xq : le’“”erfc(\/gx) dx=2.J7%,

We have now to calculate integrals of the form: J7'. = .[ X" e .erfc(\/g .X).dx ; we integrate it by parts with:

dv v —Z (- 1)k x“.e**and : u=erfc(\/£.x), hence : du = 2¢ £ dx
AT Nz

J7. = I x”"l.e’“.erfc(\/g.x).dx
(m 1) k 7/1 X +OO & (m 1) k —AX q—EX
=[- erfc(\Ex)Zk%mk e - Okok'lmk x“.e e dx

(m 1) -2. (m 1)lml e T K s0r2129" gy
2. kl/l’” - : :

With: z=/&.(x+A/2.&), it comes



Txk.eg.(xu/z.;)? dx = T —2/2. g)k —7? £
0

A/Z\fT \/6?

1 z R AN 2
— [ (=-2/128)¢e  dz= ClL(-)" . ———e " dz
\/gilzﬁ \/E SZA/J\E”Z(; ‘ 2.8 g(k e

+00

Kk ﬂ,n +o0

n k—n —22
ZC 2n é(k+n+l)/2 ) '[ z € .dZ
n=0 ' 2. ¢

~+00

And finally, the integral [ 2™ .dz can be expressed in terms of incomplete gamma function.

A2.JE
+90 ) +00 dX l +00 12/4.5
k-n 02" 7 = J‘ xk-miz g=x 27 = J‘ X (D12 0=y [j x(D/2 o= gy J‘ X(k—n—l)/zle—x.dx]
Al2.JE %14 2-\/; 2 2214.8 0

21

=TIk -n+1)/2)-T, [A214.£,(k-n+1)/2]}

Iinc

With: T, [X, n]=J‘un ~.e7*.dx ; we obtain:

an, = (m 1) \/7(m -’ &3 e Zﬁ:ck“,(_1)“,ﬁ;mm {TI(k—n+1)/2] ch[ﬂz/4.§,(k—n+1)/2]}

0 k'/”tm
" m-21D! mlel/4§lk
ap, =1 lm) .[1_ e G (km),z ATT(k—n+1)/2]-T, [4214.£,(k—=n+1)/ 2]}
k=0 n=0
And finally:

g1 Zqu_k Jq- Gi—k

P,=a.(0,0,)%> (-)*Ci . — STty 00f

e 05( 1 2) é( ) q;+k—1 (qi —1—k)![(®2 ®1)q'+k (®1_®2)qi+k] ( )

With:

= (m-D!, 1 j e icu-mL (IT(k—n+1)/2]-T,

o NP | 3 [4%/4.£,(k—n+1)/2]}
k=0 - n=0 .

Inc

We need to calculate the average power at the receive side which is equal to: P, =E[ZZ] with

Zy =Rt )| +Pef(ea)]



q Xqi—k—l e—®l. e—®2.
E[Z.]= | (©,0,)% X -1 + adx
[ ] I( ) [2( ) qﬁkl(i_k_l)!((®2_®1)qi+k (®1_®2)qi+k)]
gi-1 qu_l 1 +00
= (0,0,)% Y () —E [ 3O dx
kz(; (0, —k-1)!(0,-6,)"" !
1 +00
4+ Xqi—k+le—®2.x .dX
(®1_®2)qi+k f[
0.0, 3 (L1 ce K).(0 —k +1 L L
=(0,. i (g —k +1). +
( 1 2) g( ) +kl(q| )(ql )[(®2_®l)qi+k ®qifk+2 (@l_®2)qi+k.®gi—k+2]
< 0,03 + (=) .0, 6]
= (D Cir (g —K).(q —k +1).[F—= - L]
kZ:(; o (®2_®1)qI “
g-1 k-2 (0" g +k k-2 q;
E[Z2]= 3 (- Ot (g —K)(q —k+1).[ 222+ 0 074 g
k=0 I (®2 ®l)

with: ©,=1/,[R,0, =1/,P, .

It is possible to generalize this result for a number L of relays. We have in this case the random variable:

2= e s s Fo ) 08

The Fourier transform of the p.d.f p, (x) is equal to:

G 1
TFLP; (01=9;, (1) =(6,6,-0.) (O, + j.22V)" (O, + [.27V)%..(O, + [.2.7V)" (79)

with: ©, =1/,[R,0, =1/\[R,,...0, =1/\[R

We have now:

1
& ak ak

(O, + j.2V) (@ +j.2.V)5 et (O, + j.2.Vv)"

9z, (V) =(0,.0,..0,)". [Z =] (76)

To obtain the decomposition of g, (v) into simple elements, we use the following property. If we consider the

following function (obviously x = j.2.z.v in our case)

1
O, +X)".(0,+X)"..(0, +x)"

=R (77)

We have:



1

(©, +X)%.F (%) = , _ .
(O, 4 %)% (O + 0V (O, +X)* (@ +X)

O =G (x) (78)

Using the Taylor expansion of G, (x) for x around —@, , we obtain:

(x+0,)’

G, (X) =G, (-90,)+ (x+0,).G, (-0,) + o .GL(—G)i)+...+M.Gﬁn)(—®i)+... (79)

with: G (-©,) =[d dGXLn(X)]X:@i . in this case, we obtain:

G(®) G(O) G(e) G'®) 6*0)

FL(X)= y 1 — t... — +...
O,+x)% (O,+x)"" 2L(O,+x)% nL(®, +x)%™" (9 -D'(O, +x)

To calculate these derivative values, we can use the following writing form:

UG (X)=(0,+X)*..(0;, + X)*.(0;,, + X)*...(0, +X)* =[P (¥)]*
=[(®, +X)...(0, ; +X).(O,,, + X)...(O, +x)]* (80)

= [XL71 +0; (®k:].'L,k¢i)'XL72 t..+ 0y (®k:1:L,k¢i )-XL?H +..+ GL—l(®k:1:L,k¢i K

With: ©,_, i =(0,,0,,...,0,,,0,,,..,.0,) and 6,0, ,.)= D, 6,0, .0, . Using (80) it is not

1<y <y <..<iy <L, i #i

difficult to obtain the derivative values G (—®,) . We have, for example:

GL(-0))= : )
[(®1 _®i)"'(®i—1 _®i)'(®i+l _®i)"'(®L _@i)]q.
6 (0]~ 0 [Pl
[(®1 _®i)"'(®i—l _®i)'(®i+l _®i)"'(®L _@i)]qI
D'q. Y [0,-6)..0,-0)..(0,, -6)]

' _ 1<y <y <.y <..<ip 4 <Lij #i
G (-©))=

[(0,-0))..(0,_,-90,).(0,,-0,)..(0, -0,)]*"

For the derivation of G (-®,), we have the following relationships:



6. () =L/[R. (01", G, (X) = [‘Ffj‘('x%,exx) - —qi.[[PEf)xlﬂ,+l 6+ [PLF}X(SZQJ

609 =-0 .0 ).

6200 b W@ B ) 1 -2 AR

6 (x) = .6, +1.(q, +2). [PLF}X()X]EEQ +2.,(q, +1) [PLF}'X‘SZEQ - [PP;;)(]X)
GF%mz—qxq+n(q+aiﬁ§%%$g—mﬁe>ﬁ§§%$z+2q(q+niﬁﬁz$lqu+2yﬁ§%%$ﬂ
Gﬁwmquq+n<q+a<q+3142$lM—3qxq+n<q+a[ézglg+&q(q+nﬂ§$§32—rﬂgggﬁl

5 () — P.(X) P_(x)
G (x) =—q,-(q, +1).(q; +2).(q; +3).(q; +4). [P OO +4.0..(q; +1).(q; +2).(q; +3). [P ()" to
P (%) P () P (%)
-6.9..(g +1).(q. +2). 4.0.(a +1). -q.
ql (q| + ) (q| + ) [PL (X)]qi+3 + q| (q| + ) [PL(X)]qi+2 i [PL(X)]qi+l

It is not difficult to obtain, by induction, a general expression:

R0 (9

n-1
G"(x) = Ch..(-D""q,.(q, +1)...(q; +k). = (81)
: ; ' [P ()]
with: P™(x) = > [(©, +X)...(0, +X)...(®, +X)], taking into account (76), we arrive at:
1<) <ip <.y <<y <Li#i
al = GY(-0) 1 P (-0,)

E-kz:(;,cnfl-(_l) ’ 'qi'(qi +1)"'(qi +k)-W

Z [(®i1 _®i)"'(®ik _G)i)"'(@il_,mk _®i)]

) 1 n-1 S n .
I . Ck . _1 k+1. (a. 1 (a. k 'K|1<|2<..|k<...<|L_n+k£L,|k¢|
% k!g;md )74+ D) k) [(©,-9,)..(0,_,-6,).(0,,-0,)..(0, —6,)]"*

X k!

(81)

z [(@)i1 _®i)"'(®ik _®i)"'(®ibn+k _®i)]

n-l .. . - ..
a-i — qi. C:, .qu+ .(_1)k+1.K|1<|2<..|k<...<||_,n+kSL,lk;:l -
K kzz;‘ 1"~ g;+k [(0,-0))..(0,_,-0,).(0,,-0,)..(0, —-0,)]%**

It is now possible to derive the p.d.f p, (X) :

—-k-1 ,—0,.x i—k-1 A—0,.X i—k—1 4—O .
2 L qu e L

(0= S S e X e
p, (X)=(0,0,.0)"[) a. ' + ' +a..
2 0= OB B A T (g —k-D)!

1 (82)

And we eventually obtain:



-1 g —k
P, =2.0.(0,0,. @)%Zﬁ[aﬁawﬁa &K r+aldik ] (83)
k=0 T -

With:

md o27/4¢ 4k
” (m-nt 1 Z /1
A" 7Z'k0

Zc D §(k+n),2 ATI(k—n+1)/ 2] T, [4% 1 4.£,(k—n+1)/ 2]}

V. Simulation Results

5.1 The reference System:

The reference system has been described in part 2.1 and in a former paper with a detailed study of the obtained

diversity gain. We have the following equation:

~ _ s HH(HH) '
y_HW.s+n—\/_HH THHY H
_ Ps
S rCTHR

When we calculate the signal to noise ratio, using: || A||” = trace (A A"), we obtain :

| HIL(HLH)T = trace (H[.(H, . H) ™ (HLL(H, . H)™))
| HI(H, H)| = trace(H].(H, .H)™.(H, .H) ".H,)
| Hf.(Hl.Hf)"HZ = trace((H, .H,).(H, .H)"(H, .H)™)

2 & _ —
| HLGHHD | = trace((H, . HY(HLH) T (H,HD)
n_1l] 2 _
| H(HH)Y| " =trace((H, .H)™)  (84)

For the signal to noise ratio, this yields to:

1
o’ trace([H, .H/T™")

(85)

Since H, is a matrix with N rows and R.L columns, we have naturally H, =H,_ ., with: N <R.L.The p.d.f of

the signal to noise ratio in (85) is difficult to track, particularly when N > 2. However, using the well known

Wishart distribution, it is possible to accurately obtain it in the case: N = 2.



-If N =2, we have the p.d.f of the non-ordered eigenvalues of the Wishart matrix: H, .H, .
1 - n-2 —(A4+
PUss &) =5 Ko () . ) (3= 1) (86) (n=RL)

The normalization condition: [[ p(4,4,).d4,.d4, =.”%.K;.(ﬂi.ﬂz)”_z.e"%%).(ﬂl —A,)%.dA.d2, =1, yields to:

K,,=(M-DL(n-2)"

We have: Z ! _ At [ ]‘1 so the first task is to obtain the p.d.f of : U =1+i .To do
Ctrace((H, H) ) A+4 A4 /12 A A
. 1 1 . . .
this, we set: x = Z y = —; the Jacobian of this transform is:
o4 04 1oy
1 1 oX oy x? 1
J(A4, =—,4, ==)=|Det = |Det =—— (87
(4 Xﬂfz y) e(%%) e(O _i) leyz()
oXx oy y’
The p.d.f of the couple (i,i) =(x,y) isthen equal to:
A A
1 .,1 0 e 1 1 1
pl,ﬂiyl,%(x,y)z—.KZ;.(—) 270 (Z -2y
X.y X2y (89)
1 -1 n —llx+1/ 1 1
T e R
2 X.y Xy
. 11 . i 11 1 1
Then we calculate the probability that: —+-—=21 or x+y=4; this entails that: (—,—)=(—,41-—)=(x,4A-X).
R Ak A A
The corresponding p.d.fis:
1 i) oL 1
Py s 00, (XA — X)_— Ko me At )-(;—m)z (89)

To obtain the p.d.f of U =%+% , we have to average (89) over all the possible values of x. This yields to:

1 t 1
by (A) == Ko [ = = )2 &7 dx
2 X".(A=x)""x (1-X
2 ( )X (A-X) (90)
1 (A-2.x)° e Ax(=) 1 -
A) ==K} dx ==K} M,
pU ( ) 2 _(.). Xn+2 (ﬂ X)n+2 X 2 2

To compute this integral, we use the new variable: u=A/x.(1 —x); the graph of this function is given just below:



25

20

15

10

5
T

412 s — A

=10
0

Al2
We obtain:
Al2 _ 2 +0 n+2
Mn =2J' n(f 2X) _ 2.671/X‘(lix).dx=2.‘[ 12_4.2/u. Un i ot ledu
5 XL (A=-x)" i A" u
+0 n (91)
=4.[ 22 —4.ﬂ/u.%.e’”.du
4/ 2

We set now: u = %.x , to obtain:
4 T 4 4 224+ 1
M =—— | ()" X" [NA? =2 /x]e™* —dx=——.| x"..1-=e**dx (92
i [l Jet = T [ XS (©2)

To evaluate (92), we expand /1—1 for: x>1, this yields to:
X

a-1xr=1-y - @n=at 1

: for 1/x/<1 (93
22" (n=Dln! X" X ®3)

In this case, we obtain:

22n+4 +o0 ) 1 i 22n+4 +00 ] 400 (2k—2)| 1 i
M, = [l 0= [ B

1 1 k=1

22n+4 +o0  aia o0 (2k—2)| +o0 il
_W[J. X'.e dX—ZmI X e .dx]

1 k=1 1



+o —4.x/A

2n+4  +o n +00 +o0
M =2_[J. x”.e_"'XM,dx—ZM j X" e dx— (2k=2)! I © —.dx]

B =22 (k-1Lk!y G 22k =DLkY Y x 04)
224 n (2k-2)! & (2k-2)!
i LA - =G (4
=7z TR kz;zzkl(k ~1LkY P () kzn;lzz-k*l.(k—l)!.k! n()]
With:
F (l) J‘Xm e—4x/l dx = I(1+u)m e-4(u+1)m du = e—4//12cp J‘u e—4um du
p=0
2l Ax AT AT
=e4”ZCnﬁ.£[T’} e*.—dx=e4”ZCnﬂ’.[4} _[x edx= e“”ZC“[J I'(p+1)
o4/2 m! AP I— g4/ m! ﬂ«pﬂ
gp'(m oy a7 P Z(m p)l 47
And:
k m-1
G, (1) =e"""[ 1 4 +ot (-1 — 4 +...]+(—1)m*1.44—.E|1(4/,1)
m-1 A.(m-1).(m-2) A".(m-1).(m-2)....(m—k -1) A" (m=1)!
With:
Teldt FeMdt _ Te™ e X F e™ & (=)t
El = -, dt=—. dt=—Inx— ~—
(9= J -[ -° -([1+t X £1+t/x nx 7+Z;‘ n.n!
This gives the following result:
pu(l)— KoM,
1 22"+4 N (2k-2)! & (2k-2)!
= F, -y ——— T _G (1
2 2”/12””[ ()= Z‘zz“(k —)tk! P () kglzz-k*l.(l(—l)!.k! en (2]
With: K, = (n-D)L(n-2)1, F, () =e 23— 27 ond
Iin: =(n-1)L(h—2)}, =€ ) . an
2,n m parc (m—p)' 4p+l
1 4 4 4t
G (1)=e*". -~ et (D" L ED)T ——EL (414
n()=e [m—l i.(m—l).(m—2)+ D i".(m—l).(m—Z)...(m—k—l)+ I+ A" (m=1)! (44
e dt +00 —xt +00 —xt —>< +00 e— ( 1)n—llxn
El X dt=—1I ~7 =
1= -[ J. -[1+t X -!.1+t/x e 7+Zl nn !

However, the target p.d.f is those of 1/U, not those of U; we have immediately: p,,, (1) :%.pu (%) . This gives

the final result;



1 n2ns3 g2 - (2k-2)! <« (2k-2)!
Py () =K, 27 AR AU A) - ;2“ Tk 1)IKT Fo @/ )—kzn;lm G, (/)]
1. & m 1
Fn(Z)=e ‘S(m—p)l 4P (%5)
1) g 4.7 v 4x px i 4mt g
Gn(Z)=e [m 1 mom2 Y moymonmokoy T Y T B

Using (95), it is straightforward to deduce the diversity order of the random variable 1/U , this diversity order is
due to the term A*"“.F (1/A) and is equal to: 2n—1-n—-1=n—-2=R.L—N. The corresponding term in the

sum giving p,,, (4) gives the approximate law which can be used to obtain the Symbol Error Rate (SER)

performances. We have here:

—. n+ .- . 1
Py (A) ~, Koy 2227, M-W
1 1 2
ﬂ, ~ ) 2I’H—3l 2.n—l.e—4.ﬂ. — .ﬂln—z.e—4./l
Puv (D) =0 (3D 2772 0 (n_2)1L(n—1)!

-If N =3, we have the p.d.f of the non-ordered eigenvalues of the Wishart matrix: H,.H,".

3

U o 2) = 5r— T[4 e [T -2
3n i=1l i<j (96)

"3 e (4~ A,).(A = A4).(A, = )

31K,

The normalization condition yields: K, =(n-3)!.(n-2)L.(n-1)!. We want to calculate the p.d.f of the random

variable: Uiz[i+i+i]‘l. To do this,

4

we first calculate the p.d.f of the random variables:

X =%,Y = i,Z = i the Jacobian of this transform is:

4
0 ok Al | [ 1 ‘
ox oy oz g 0 0
1l Y pe( % %R Oh ) 1 _ 1
e xﬂz_y' z) Det( ox oy az) Det( 0 y? 0D x*.y*.z°
o on o o o L
| ox oy oz | L z° |

The joint p.d.f of (X, Y, Z) is thus:



1

—1 1 n-3 ~—(1/x+1/y+1/z) 1 1 2 1 1 2 1 1
—)"*e (= (E-D)E - ———
Pug iz (XY, 2) = | Ksh- (xy.z) ( y) (y Z) (X Z) X2.y2.72
zl.K—ll( 1 )n 1e—(l/x+1/y+1/z).(1_1)2.(1_1)2.(1_1)2
31" xy.z x y' Uy 720 "x 1z

Lt Y X2 Z7Y o (LT X\ 1 o sy

plui’wz'll%(x’ 4 Z)_3!. anl X.y A y.z )« X.Z ) .(X-y.Z) ©
1 —(1/x+1/y+1/z) (98)

_ -1

Puia 112,202 (X% y,2)= 3 Kan (Y- X)*.(2=y)*(z—x)". (xy.2)""

To obtain the p.d.f of U we have then to calculate: Proba(X +Y +Z = A1) =J' Pyyz (XY, A—Xx—Yy).dxdy ie. we

have to average p, ., ,(X,Yy,A—Xx—Y) over all possible values of (x,y). This may be written as:

1 A A=X —[l/x+(l—x)/y.(l—x—y)] d d 99
N==K3 o) (=- g X
Py (2) = {OX4 %»«—w*( )& — Xy)& Toxoy) drdx (99)
We begin to integrate (99) with variable y; this yields:
A=X e—[llx+(ﬂ—x)/y.(i—x—y)] 1 1 1 )
A, X S (=-— - d
P ()= 3iKan | e y)4( )(y oy o)
L XA*X @~ (4A=01y.(2-x-y) 1 1 1
pqu»- Kane ™. fy4u,x yylo"~a(§—ﬂ pv il v s
(100)

—(A=-x)1y.(2-x=y)

1 Ay
Py (4, X) == .K;e — — (Y=X)"(A—x=2y)".(A-2.x—y)*.dy
U | .(l). 4 3(1 X — y) 3°
A

4K, 1 g lx e—ﬂ/y(ﬂax y)

. (Y =Xy = 2,/2)%.(y - ,)°d
3!'X4 |y (Y=2"(y=4/2)"(y - 1)"dy

pU (A,X) -

With: 4, =4-x and g, =A4-2X. To obtain the result in (100), we use once again the new variable

u=A41y.(4, —Yy); we obtain:

A KL plx A gAY (h-y)

pU (ﬂ’!x)z , ! n-+
3t YA - Y)
4KEe M A2 gy y)
3t Ty, —y)

A A1y (A—
e A1y (A=)

— (Y= X)2(y = A4, 1 2)°.(y — )2 dy

— (Y= X)*.(y = A4, 1 2)%.(y — ) dy +...

— (Y- X2 (YA, 12 (y - u) d
ZLWﬂa—w“(yx)w 200y = 1) dy]

4K3’i‘ e 9 +j3° un+1_e—u.([ﬂ“‘_’/23‘22_4'/1X/u]—x)2.\/m.([&_1//13_4'2“‘/u]—yx)2.du

3 A, 2

Py (l,X) =



nAR =2 BKspe /1“+2X [T un+1leu'([/1x—«//1x LY '=(z§—4.ﬁx/u).([lx_‘ux “4a AUy o,

X 4/ 2, 2 2
+ +jio un+1 -u ([A'X"_\]ﬂ“z 42,)(/U flz 42,)(/U ([ﬂx"—\jﬂ"x 4A'X/u] /,lx)z.dU]
aj i,
P (1) - 2 1304 301

3| 4 /'Ln+2

With: I, = jw U””-e‘“-([ﬂx_Jﬂfz_‘l'l*/u]—x)z.a/(zf-4.@/u).([i*_\//15_4'}”X/“]—ﬂx)2.du and a similar

4/ 24 2

definition for J{2. Of course, the derivation of J() is a complicated task; however we are only interested in the

diversity order estimation. To obtain it we proceed with integral J; (1) ) setting: u = = .Z; it comes:

X

19 :(/Ii)mz_Tznﬂ_eA.zmx ([ﬂ,x \Mx A /Z //:ﬂy 2Z17) ([ﬂx \Mx — X /Z] 1)z

1
n+2 +o _ _ _ —
o s \'121/2]—x)2.«/1—1/z.(/1x.[1— “21“]— 1) dz

, l:+l ' :
To further proceed with J¢, we can expand the quantity: v1—1/z for |z|>1; we have:

(1-1/2)"2 =1- Z%i for |z]>1
~ n n! z

Hence, we obtain:

(0 = 2 e € s graani, (L N T (3 Y R )
1

3| 4./12 n+3
X

+00

P [ et FE Z]—x)?«/l—l/z.(/lx.[lJr— Vl2_1/Z]—uX)2-dz]
1

2.n+5 —l —1/x +00
pu(/1,><)=2 s [j zm —“’ﬂx[ X([1 JA-172])* - A2 - *’1 1/2 2 P N1-1/72.dz

3| X 22 n+3

e A 1+ 1-1/z
+ .!‘ z"e™ ”*.[T([lh/l—llz] 2—/15.%+ X1, ]2 1-1/7.0dz]

To obtain the diversity order it is sufficient to study one integral form:



22n+5 K—l -1/x  +© f
pL(Jl)(/llX)_ 3 [J' 7M. —42/1»x [ﬂ'x ([1 /1 1/ 2 _ [1 1 1/2 a/]_ 1/z.dz

3| 4 /12 n+3

92145 |« -1 e—l/x +00 /%( (2m 2)I
@ R LA n+l —4Z/ﬂx 2
Py’ (4, X) = 31x* 42773 [I [ (Zzzm—l(m ~Dim! z" )
(101)

(i S T Z em-2! 1,4

22m l(m 1)| m 22m1 )Iml Z

(2m-2)!

We note: a_ =
" 22" (m-1)lm!

k
and b => a4, (101) is rewritten as:
p=0

22.n+5 K—l e—l/x ~+00
3,n

pél)(ﬂ’x):W'[J‘ AR [ (Z 7K
1 (102)

(Zak k)+></1x] (1- Zak k)] dz
Looking carefully at equation (102) it appears that we have two kinds of integral forms; the first one
corresponds to the case of a positive exponent for z and the second one to the case of a negative exponent for

z*. To study the diversity order it is sufficient to take the term corresponding to the lowest exponent degree of

A . Hence, we have only to consider the following integral form:

2.n45 -1 4-1/x
2 K

e +00
1, 3, 2 1 4.2/
15 n)(x):3|4—ﬂnzn+3'[x'ﬂx] f 2" e dz
LXT AL 1
22 N+l K—l e—l/x +o0
_ L,n) = " ™nr n+1 42//1X
1 IU (X) 3| 2 22 n+3 J‘ .dz

1

For the diversity order study, it is sufficient to keep on working with: 15" (x). We have thus:

+00 n+1 1 p+l
J‘ Zn+l —4.21 2 dZ n+1(ﬂf ) =e—4/ix. (n+1)' .ﬂ’zﬂ
1 o (n+1-p)! 4

Plugging this expression into the definition of 15" (x), we arrive at:

2.0+l -1 A-1/x +<>o
I(l,n)(X) 2 K3n € n+1 —4 z/ A, dz
u a 31.x a2 j2043 22 n+3
1
2n+l -1 A-1/% 1
187 (x) = 27 Ks 8 2 s (N4 AT
U =

A T S (n+1-p)t 4P

For the diversity order expression we only work now with the term:



2.n+1 1 ,-1/x p+l
2 K3n € 2 412, ﬂ’x

347700 =

W' X" Y ap+l
22n 2.p-1 K 2 —1/>< —4//1 (103)
JL(,l’n’p)(X) _ 3n .ﬂx =
3! G

To conclude it is then necessary to integrate J&™ (x) over the set of possible values for x. We have:

/122-n—2-p—1K 2 —l/x —4Mx
*T¥3,n

JL(JLKYP) :.[ 3l ﬂx /12 n+2-p dx
0 !
2n-2.p-1l -1 4 -1/ 4/ A-
Jakp) _ 2 'K3,n' /ux ” v dx
v 3! ! X .(}b—x)z”*z’p

2X)2 —l/x 41/(/1 X)

X (ﬂ X)Zn p+2

We keep on working with the last integral form: K(n, p) = J'(;L .dx. To study it, we use the

. 4 1 3x+4 . .
new variable: u = +=—= ; this gives:
A-X X X(A-Xx)

_u.1—3+/—\/9—10.u.ﬂ,+u2./1 i_i /_1,1\/ 109
2.U 2 2u 2 Au A2u?
And:
dx = 32+/_1' A ' 1-02_ 1-83)
2u 4 J1-10/ Au+9/A2u% A°U® A%
Using the decomposition:
2 —1/>< —4/(/1 X) A13 2 —1/>< —4/(/1—x) 2 —1/x —4/(1 X)
K(n p) J.(ﬂ 2X) 2.n-p+2 ' - I (/1 2X) 2.n-p+2 I (l 2X) 2.n-p+2 'dX
X2.(A=X) x2.(A=X) s X2.(A=X)
=WWmm+Kmmm)
13 2 —1/x —4/(1—)()
KO (A-2x)e .
(nv p) I X (ﬂ, X)zn p+2 dX
u[3/u+/1\/1 10/ 2U+9/ 22 WP PLud+3+9-10u2 + U222 P2 3 1 1 9
= =—-= (5-3)].du
o2 (2u)P 2" ?[uA —3-J0 10Ul +UZA? T 2U° 2 yJAu?-10Au+9 u
_ J o [1+(uﬂ/3)x/1 10/ Au+9/ A2 W P[ud +3+9-10U.A +u?.22]" 22" [ 1 1 (5—9)]du
o1 (2.U)" 2" [uA —3—0—10u.2 + U222 20 2 y2Pu?—10au+9 0 U
Then we use the new variable: u = %x ; this gives:
K9 (n p)=9/1p‘2'“t|goe‘9'x” [143.XA1-10.X+9.X% J.[9.x + 3+ 34/1-10.X + 9.x* ]P 2" E[ 2 A (5—1)]gdx
A R (2.9X)P 2" [9.X —3—31-10.x+ 9.X2 ] 2721 27xa1-10x+9x2 XA



Using this expression we can see that the lowest exponent for A is : A°>". Then, using the classical expansion:

g ox/2 =Z-(_1)—, En'x ; it is then straightforward to conclude that K®(n, p) and p, (1) can be written as:
n:o n--

K®(n, p) <1/ A*"". However, the target p.d.f is those of 1/U, not those of U; we have immediately:

P,u (A) =%. oy (%) . This gives the final result: p,, (1) oc%./iz'”" oc%./lz'”(”*l’ oc A" (when we take the highest

value of p which is equal to n + 1). Hence we have proved that for N = 3 the diversity order is equal to: n - 3.

As we showed for N = 3, it is very difficult to find the exact law of the SNR when N > 2. However, we can
approximate it by a mixture of Gamma laws following the expression given

of Nakagami laws. In appendix 5, we give the maximization step to determine the parameters of the Nakagami
law mixture. For example, we found a mixture of six Nakagami laws for R.L = 10, N = 3 with the following

results:

- 3§ ‘ | - M/\

We found:
7 =[0.0630 0.1084 0.1721 0.3285 0.1149 0.2132] ;w =[4.1830 5.0961 5.9405 7.2067 6.5736 7.1543];

# =1[5.5000 5.9000 6.2800 6.0700 5.9800 3.1872].

Theoretical SER derivation:

We suppose u#=n+¢& with ne N, we have to calculate:



ot

o u A4y e _HO 2
P = J P (u).h(u).du :4'7'”—'0-#,]' ut*te o erfc(£u).du
0 L(p).o" 4
(96)
_Ayutott L

[(u).0"

u.ot

With: L= J' ut#le o " erfc(y/&u).du; We have to find the primitive of:
0

4
Ho' o

f(x)= Xz.y-lle’T‘X _ X2.(n+g)—1.e—l.x2 _ y2N142e .e—i.xz _

This primitive can be written as:

tooni2e g AEOWTYE e gw 1 1
F(X) =t e t dt= (—) —_—_—_—= — W o™V dw .
‘([ ‘[ A «f 244 24 {

0

X

The calculation of 1, = [u™* e .du yields:
0

m-1

X
um et du =[-u" e S + (M =1+ &). .[ u™ e du

O ey <

m-l+e —x

I, =—X""e*+(Mm=-1+¢)l , =—x"""e*—(M-1+¢).X e +(m-1+¢).(m-2+¢)l__,

| =—X"" e —(m=1+&) X" 2 e . —(M=1+¢&).(M=2+¢)... (M=K +1+&) X" e ..

m-1

m-2+¢

—(Mm=-1+¢&).(m=2+¢)..(m=-(M-2)+&)x" e +(M-1+&).(M-2+¢&)...(m—(M-1) +g)ju“’.e‘” .du

In this case, we can express F(x) as:

F(X) — 2 /’UHS j'( n 1+é —w
0

1

- W.[—(ﬂ.xz)m’“g.e’“ —(M=1+&).(AX)" e —(m-1+¢&).(M-2+&)... (M=K +1+ &).(Ax7)" e .

A2

—(M=1+¢&).(M=2+¢&)..(m=(M=2) + £).(AX2)** e +(m-1+¢&).(M=2+¢)..(m—(M—-1) +&). j u®.e™.du]
0
The last integral is equal to:
A.x2 A.x2
Iug.e’“.du: f ue du =T (A%, e +1) with: T(x,m) = ju e tdu.
0 0

Using these preliminary results, we can integrate (96) by parts:



ZJ‘ 2n-Lrae g-iu? erfc(\/gzu)dU—[F(U)erfC(ﬁ)] \FIF(U)—du

\/7 j F(U) e_(:u . = ET 1 _[_(ﬂ“uz)m—l-h?.e—ﬂuz _ (m 1+ g).(/fLUZ)m—Zhs.e—iuz T
Ju 'y 20

—(Mm=1+&).(Mm=2+¢).. (M=K +1+&).(Lu>)" e + .

—(M-1+&).(m=2+¢)...(m—(M=2) +&).(Au?)" ™ + ..
a

+(M=1+).(M=2+&)...(M— (M =1) + &) T(A?, & +1)]. eJ_ du]
u

With:
s ) e‘”'“ d(erf( §u))
LO:_([F(AU e+1).—— \E jr(/zu */_
- \E.[[F(/iuz,ﬁl).erf NED) = j E(ﬁuz,ﬁl).erf (JEu).du
= %.[r(g +1)—TZ.A.U.(ﬂ.uz)g.e’“zerf (JEu).du]

= \/% [T(s+1)— 2./1“1T uztt g orf (\/a).du]

To keep on calculating L,, we expand the function erf (ng):

U o 2.n 400 N gn+l/2 | n+l/2
e 2 n X 2 D" &
dx=——=. [ D(-D)"——.dx=—= §j :
X ./ﬂ -([n=0( ) ~ nl  (2n+)

erf (JEu) =—=

o «_.ﬁ

Hence:

+00 n §n+l/2 +0

i 2.641 f-AU2 2.641 f-AU% | n+1/2
Iu e erf(\/gT).du_ Z(; 2T ) Iu e U2 du

:i < (-D)" §n+l/2 Tun+2.g+3/2 e-z.uz du
T < nl '(2.n+1)'0 o
:i_+oo (_1)n §n+1/2 J'( )a+n/2+3/4. —X dX
Jr & nl (2n+)) f 2.40x
1 + (_l) §n+1/2
=ﬁ. o @n ) AT T I'(n/2+&+5/4)
Thus, we obtain:
+0 e—é.u . 1 ( 1)n é:n+l/2
= | T(u? e +1).— e+ -2 — . I'(n/2+&+5/4
L= [T o) S du= [F e+ ) 22 38 e T/ 246+514)

To complete the result, we have to calculate:



_ " 2(m—k)+2¢ e e YAmK2e - d(erf ({J.u))
L, = j u —d I e S NET  dy
5 Ju du
T m—k)+2& n—Au? +o0
= /E.[[uz( <2 g orf (JEWL +..

- j erf (JJEu).e ™ [(2.(M—K) +2.6).u™*2 _2 2 uu2™*2] du]
0

L, =2 % [erf (JEu).e ™ [(m—k+g) P2t gy 02et] q]
0

This can be separated into two integral forms:

N (m—k)+2¢&- 1 —Au _ 2(m—k)+2&- 1 —lu ( 1)” §n+1/2'un+1/2
fu erf (JEu).du= ju Z . ).du
0

Jr & nt (2n+))

0 n n+l/2  +©
S (_1) ég i J‘uz(m—k)+25—1un+1/2 eﬁwQ du

2
Jz& nt@n+’y

" 12 o
_ 2 .+ (—1)n. & lj‘u2(m—k)+25+n—1/2.e—lu2.du

i +o0 (_]_)n éx:n+ll2 JA( )m “kgn/2-1/4 o-x
TS 0 @ni) V7

i +o0 (_1)n éx;n+l/2 I“(m_k+g+n/2+1/4)
\/;.n=0 n! (2n +]_) ﬂvm*k+£+n12+1/4

dx

240%

And:

u2(m k)+2£+1 —Au err (\/ﬁ) dU J‘uz(m k)+25+1 —ﬂu i 1) .é:n-v-lIZ n+1/2)du
no Nl (2.n+1)

o‘—.+

0 1/2 0
— 2 i (_1)n _ §n+ ]‘ uz(m-k)+2g+1_u n+1/2_e-/1u2 du
=0

0

00 / 00
i (_1)n fnﬂ 2 ] u2(m—k)+28+n+3/2 e%uz du
=0 0

dx

2.0%

— .+OO (_1)n §n+l/2 1 J‘( )m k+g+n/2+3/4.e—x

Jr &t @ne) 7 g

im (_1)n é;n+1/2 r(m—k+g+n/2+5/4)
\/;.n=0 n! '(2.n+1)' ﬂm—k+s+n/2+5/4

We can now deduce L, ,:

D" &2 T(m—K+s+n/2+1/4)
= Z\F[(m k‘*‘g)fz @n+l) ko2l *

n!

Z( D" &2 T(m—k+e+n/2+5/4)

\ﬁ = nl (2n+1) Jm-k+een/2e5/4 ]
L =23 s I(M—Kk+&)T(M—Kk+&+n/2+1/4)~T(M—k +&+n/2+5/4)]

n=0 n! (2n +]_).ﬂm*k+€+n/2+1/4



Finally, we obtain:

by’ .ot L
T(u).o"

u _Au
4? &”)U# . /é.z j [A L —(n=1+&) A" L, +..
H).0 T 2.

—(n-1+¢).(n-2+¢)..(n—k+1+&).A" L _, +.. 97)
—(n-1+&).(n-2+¢&)...(n—=(N=2)+&).A"".L, +...
+(n-1+¢&).(n-2+¢)..(n—-(n-1) +¢).L,]

Il

2 Ul
I

With:

L =-2,[i’° (—i})' @D ;:ikww [(n—k+&)I(N—k+&+i/2+1/4)-T(n—k+e+i/2+5/4)] (98)
i:o - . .

Using the well known formula: T'(z +1) = zI'(z) , we can simplify (98) into:

_ oY £ ) ) _ )
B [;:‘ il (2'i+1)'/1n—k+e+i/2+1/4'[(n k+e)I'(n—k+e+i/2+1/4)

(n—-kK+e+i/2+1/4)T(n-k+¢e+i/2+1/4)]]
()" ET(n—k+e+il2+1/4)
=-2. .
[IZ: (2|+l) ﬂn k+e+il2+1/4
Z( ) Er(n—k+e+i/2+1/4)

ln k+e+il2+1/4 ]

(99)
I(n—k+e&)—(n—k+e+i/2+1/4)]]

For (n—k)>1 and :

o 1 1i i+1/2 .
L, = jr(/zx g+1)—du \f[r(gu) 2. .Z():(i!)'(2.i+f)./1””2*5’4'r(|/2+8+5/4)]

( 1) §|+1/2 .
\/7[1“( +1) - ﬁ.o T (2'”1)'1”%1,4.F(|/2+g+5/4)] (100)

L, = \/?[r(g +1) _ﬁ;(__fi)m i il)li!.r(i/zw +5/4)]

Remark: If u=¢, we obtain:

=  2yATF +°0( " &
R ) [\F (€) - no - (2.n+1).4"'2+1/4'F(”/2+8+1/4)] (101)

Remark: At high SNR’s, due to the high number of terms in the series expansion of P, it may appear some
divergence cases. To avoid this, we have developed an other bound for the SER working at high SNR’s. This

bound is obtained as follows:



u.ot

_ +00 H Ap +© O 2
P = I P (u).h(u).du =M_I u>te o erfc(a/@u).du
0

['(u).0"
_ 4}//,! O' ( 1)”.,Lln.0'4'n 2(y+n)
P="— : erfc «/ u
¢ T (w).* ; nle" 2.(u+n) Vel
+oo n n 4.n +00 —c.u
b e \/E L uzen E g,
— No 7w 2.(u+n) Ju

2 (p+n)

Jyutot ()" "ot
e S S
+§ (—1)”.,unr;0'4'n \/g 1 ]‘ QRWY2 g-fu g

n=0 nLo 2. (/,l + n)
_ 4 7/# O' ( 1) ,Ll G4n u2(y+n)
PR=—"""" [ [ erfc(\/g‘u)]
()0 Z;‘ 2.(u+n)
+Z (_1) J no‘ 4 \/g 2l(#+n)+::ll_/2 J' t2,(/1-*-n)—1/2.e—t dt
= No T 2< (u+n) 5
4o (_A\N ,,n __4n 2.(u+n) /1.704. 2
We have: Iimu%z( Vuo” U erfc(,/gu)—nmm(j > e o dt)erfc(yZu)

~  nle" 2.(u+n)

With:

u e u
m,.,.( j t2te o ' di)erfc(yEu) <lim, ( j t2472 dt).erfc(\/Eu)
0 0

2.u 2.u -&.u
=Iimu%u—.erfc(ﬂ/éu)zIimu%u— L A A R R g
2.1 TR X ET KR Y ey
Finally, we obtain the following bound at high SNR’s:
_ 4 ) ,u.o_4.,u +00 _1 n. n.GA.n 1
Pe,high SNR's — VA PR ( ) # n F 2.(u+n)+1/2 F(Z(ﬂ + n) +l/ 2)
IN'w.o" = nlo T 2< u+n) (102)

5 2y &) et T2+ n) +1/2)
e,,high SNR's \/;F(,U) — n !.a)(n+,u) ) 52.(/1+n).(lu + n)

5.2 Simulation set-up and results:

In this part, we give some simulation results to illustrate the accuracy of the proposed SER bounds and to test
the efficacy of the optimization power allocation algorithm given in Section 4.2.
We consider at first the simplest case where we have N = 2 mobile stations in the network since it corresponds

to a scenario where we have been able to completely characterize all the p.d.f’s. We suppose that the total



available power of the relays Pt is normalized equal to 1 and that the relays have perfect CSI estimates. We
consider the following cases:
1- Uniform power allocation between each transmit relay
2- Optimized power allocation (see Section 4.2) with two sub-cases
2.1- Optimum algorithm (see Section 4, equations (51-52))
2.2- Approximated solution (see Section 4, equations (55-56))
3- Zero forcing with complete CSI knowledge at each relay station (Section 5.1)
Each time the theoretical SER bound is available, we compare it with Monte-Carlo simulation results. We study
the cases of QPSK and QAM-16.

3Zero forcing with complete CSI knowledge at each relay station (Section 5.1)

10 e e : : T
£ H ] ; | =&~ Uniform power allocation |3

—+— Optimized power allocation |

—~— Unequal power allocation

2 4 6 8 10 12 14 16 18 20



Appendix 1: Characterization of the square of the sum of i.i.d Rayleigh random variables
- We consider at first the case of the sum of two Rayleigh independent distributed random variables U; and

U,. Each of one has a p.d.f: (g, =R—(i—1))

gﬂw(x)=ﬁ 4L exp(-x) (L)

We calculate then:

X

Py, (0=0, (0*g, (=]

u”9 = exp(—u®).(x —u)*%*.exp(—(x —u)?).du

2 (0 1) ¢
__4 : e _[ uat (x —u)2at e 2l xl gy
(g; -1! 0
- ( 41) |z‘-e_X2 -I.UZ'G“ (X —u)24t g 22 gy
g -1
X (1.2)
__ 4 -e 2 [P (x—u)? e Pl dy
(qi _1)! 0
4 Y x/2 i 201 22
- 7| (4 x/ 2P (x 1 2-1)* e dt
(qi _1) !2 -;[/2
4 . x/2 2
(qi _1)' -x/2

We use the development: (x*/4—t*)" = Cx (-1 t™*.(x*/4); with m=2.q, -1, hence we obtain:

k=0
(2) _ * _ 4 —x2/2 “¢ 2/4_ 2\2.-1 52t d
P, (9=0, (079, (9=r—pge™” [ O¢ra-t)Pae ™ dt
i : —x/2
4 2.0-1 x/2 .
_ ( 1) 5 Z . _1( 1)k+1 (X /4)k -x2/2 J‘ t2.(2.qi—l—k).e—2.t dt (1.3)
O -1 = I —x/2
8 2.0,-1 x/2 "
— ) ) ( 1)k+1 (X /4)k -x2/2 tZ.(Z.qi—l—k).e—Z.t dt
(qi _1) !2 kZ 2t !

x/2

We denote: F,, ., (x)= jt (2614 g2t dt_22q —_ ju““' 2 o724y . We want now to compute the p.d.f of

(U, +U,)?. We have the relationship: p@ , (x*).2.x.dx = p$ ..., (x).dx; this yields to:

(U, +U,)? (U, +Uy)

1
p(‘jim) () =——7= 2% p(%iwz)(f) (1.4)

Hence:



@
p(U1+U )? (X)

2 \/— p((53+u2) (\/;)

Jxi2

1 8 2ot 2
> Chy (DN (x/4) e, [ 1200 g2 gt
0

T2 (@ -)P e

(1.5)

i k12
-_¢ > .ZilCzk g1 (_lk)k X2 g2, I $22a-k) g2 g
(q-DFf =z 7 4
4 e (D e e
“aopr & G X R (%)
i 1
With: Foq 1k (x) = qu - J'u2(2 41K) g-u?2 g 22 B J‘tz q1kAI2 o ~t12 gy R Gyq 1 () and
Gk (X) — ](.tkl/2.et/2.dt
0
4 2g-1 (_l)k X
@ _ k k12 g-xi2 “1-k-1/2 4-t/2
p(U1+U2)2 (X) - (q _1) !2 ' g CZ,qi—l 4k X . 22 G 1K J- e ! dt
4 aan 1) i (1.6)
p((jiJrUz)2 (X) - (q _1) 12° kz C;-qifl 22.qi+k+l ')(k%L/Z'eiXIZ'GZ.qi —1-k (X)
i~ k=0

To obtain the diversity gain, it is necessary to obtain the Taylor expansion of function: G, (x). We have

obviously :

~ 1)n X 2k +00 (_1)n.xn+2.qi—k—1/2
X 20 Ak12 o2 g < (- t2ak=82 gt —
Caqa4(X) = I Z2n IJ Z2“.(n+2.qi—k—1/2).n!

n=0

And :

( l)n Xn+2.qi—l
52".(n+2.g,—k-1/2).n!

Xk 1/2 7x/2 qu i (X) efx/Z Z

Hence, the diversity order in this case (for the convolution of two Rayleigh random variables) is equal to:
D2 = Z-Qi -
We will assume now that we have, at rank n, the following assumptions: the diversity order is equal to:

n.g, —1 and the p.d.f around x ~0 may be well approximated by:

P, (x) = K,.e X" x4 with: Z_ ZU.

(z ) i



We calculate then: pf”(x)=p . (x*).2x, i.e.: P (x) = K .2.X[EM e/ =2 K x4t e/" Tq obtain

the result at rank n +1, we have now to compute the convolution product of p(”) (x) with the p.d.fof U_,

which is equal to : 2 x4t exp(—x?) . We obtain then:

(qi _1)!
2.n.G-1 ~— 2 2.g-1 %2
pI D (x) = 2.K X2l na £ y2a-l g
Zya ( |_l)!
— 4Kn .X2.n.qi—1.e—x2/n*Xz‘qi—l'e—xz (17)
(qi _1)!
_ Kn+1 2n.qi—1.efx2/n *Xz.qi—l.e—x2
1 2nG-1 - 2 2.0
pI Y (x) = Mju nGLgutn (y _y)2at e tev* gy

0

X
—K e-x2 J‘uz.n.qi—l (X_U)Z.qi—l e—(l+1/n).[u2—2.n.x.u/(n+1)] du
1 : : : :

n

0
(L8)
_ Kn+l.e7 zlex n/n+l J'u2nq,—1 (X U)Z 41 —[(n+l)/n].[u—n.x/(n+1)]2 du
0
x/(n+1)
i - - 2

=K, e, J' [t+nx/(n+ D" [x/(n+1) —t]>% Le /e gt

—n.x/(n+1)

We can calculate the polynomial function: [t+n.x/(n+D)J*"%*.[x/(n+1) —t]*%™". We set: «,,

Boa = Ll =1-«,,,, We obtain in this case:
n+
P, (t,x) =[t+nx/(n+D)]*" % .[x/(n+1) —t]>%
= [t + ﬂn+l_x]2-n-f1i 71-[05,”1-)( _t]z.qi -1
2.n.g-1 ) 2.1 )
2.n.q;-1- K +k 2.0 —1—
=[ Z C2nq, 1 (B )" ][Z Czq, LD (e X)) ]
2nqI 2.0,-1
.n.g;—1-k n. k Kk Kk K
_[ Z C2nq, -1t nz+1qll t XZ ot ][ZCZq 1( 1) arijl t qu' - ]
2.n.qI 2.g-1
=[ D a t oML b X
k=0 m=0
With: a, =C;,, ,.frs" " and b =(-D)".C], .oz ; we obtain:

2.(n+1).g-1 m

P.tX)= > [D.adb, Jtn ez (1)
k=0

m=0

1
=—— and:
n+1



Plugging this result into the calculation of p‘””’(x) (1.8), we have :

x/(n+1)
(”+1) g 2/(n+1) “[(n+1)/n] 2
Zna (X) Kn+1 . J. Pn+1(t, X)e dt
—n.x/(n+1)
) 2.(n+1).g;-1 m x/(n+1) i (110)
=Kpa 8 DA, JaeEn [ e i gy
m=0 k=0 -n.x/(n+1)

We want now to compute the p.d.f of (Z,.,)?. We have the relationship: p(”*l’ (x*).2.x.dx = p{z ' (x).dx;; this

yields to:
PO (X) = =PI (VX)  (1.11)
(Zn+1)2 Z\F (Zna) )
(n+1) (n+1)
p(z 1)2( ) Z\F p(Zn 1)(\5)
I(n+1) 2'(n+21)':qi71 Zm: (n+1).,-1-m/2 ﬁlf+l) [(n+1)/n].42
=——K, e, [> a.b,  ].x"ame tM e HMINIE dt
Z.ﬁ ' m=0 k=0 e —nAfx(n+l)
K 2.(n+1).g-1 m
%”.e‘x’(”“’. > D lab, J XD IR X I(n+1) - F (-n/x /(n+1))]
m=0 k=0
We have :
JXI(n+1) ,
F(Wxin+n)= [ trelomim gr
0
¢ du
m —u/n(n+1) (112)
! PN
l h (m-1)/2 -u/n.(n+1)
=——————|u 7™M du
2.(n+1) 1’“{
And :

-nafx/(n+1) ,
F(—n-«/;/(n+1)): j tm g D)/l gt

0
¢ du
u m —n u/(n+1) n . 113
l\} +1 Ie n+l 24u (L13)

X
=£ [L m/2+1.J'u(m—1)/2.e—n.u/(n+1).du
2 n+l

It is then straightforward to obtain the Taylor expansion of F(\ﬁ /(n+1)) and F(—n.\/; /(n+1)) ; we have :



1 X

F(ﬁ/(n +1) = — g(MD/2 g-uin(nsD) g
2.(n+1) 1)’2-£
( 1)k h k+(m—1)/2
) (n+1)(m+1)/2 Z N (N+ 1) k'-[ .du (1.14)

B 1 i (_1) .Xk+(m+l)/2
2.(N+1)™ 7 &K (1) KLk +(m+1)/2]

And:

F(-n/Xx/(n+1) = 1.[L]m/ﬂl_Ju(m—l)/Z_efn.u/(nu)_du
2 'n+l

0

1 m/2+1 ( 1)k n ¢ y(m-D/2+k
== du 1.15
2 Z(n +1) |<|I (1.15)
_1 [ n ]m/2+1+z‘O (_1) n 'X(m+l)/2+k
2'n+1  E(+D KLk +(m+1)/2]

So, finally, we obtain :

(ne) e 2.(n+1).g;-1 [Z a‘k 'bm—k] ( DA (meD)/2 ( 1)k Xk+(m+l)/2
n+1 , X) = n+1 —x n+1 k=0 n+1).q; —=1-(m+
P,y (9= 1 n; 2.(n+1)mV12° [Z “n*.(n+1)* kLK +(m +1)/2]]
(1.16)
2.(n+1).g;-1 nm/2+l[z ak 'bm—k] ( 1)k nk Xk+(m+l)/2

I

_ Z k=0 . X(n+1) g —1-(m+1)/2 [Z

o, 2.(n+1)m “(n+D)*kL[k+(m+1)/2]

The power of the current term x' is equal to:
(n+1).g -1-(m+1)/2+(Mm+1D)/2+k=(n+1).g -1+k (1.17)
In this case it is clear that the diversity order at rank n +1 is equal to: (n+1).q, —
Conclusion: The diversity order of a square sum of n i.i.d Rayleigh random variables, each having a

diversity order equal to 2.g, -1, is: n.q, —



Appendix 2: Characterization of the p.d.fof: Z=4 ;.4 , =

- We deal at first with the general case: i #].

At first, we calculate the p.d.f of 4, ;. Assuming that each real or imaginary part of each coefficient channel has

a power 0.5, the p.d.f of 47, can be written as:

X% ‘l.exp(—iz) (2.1)

1
f,(X)=—r———.
EA o%.2%T(q,) 2.0

with : 67 =0.5, thisyieldsto : (g, =R—-(i-1))

fo(X)= : 1 X571 exp(=x) =

(L/2)* 2%(q, -1)! G " P (22

Denoting 9, (x) the pdf of A ;, we have the following relationship:

fo (0.dx=g, (f)df— 9, (f)

Nkt
which entails: g@i(\ﬁ)zzxﬁ.f%(x) and gj«(x)zz.x.fﬁ_(xz)zﬁ x4~ exp(—x?)
So, we have demonstrated that:

g, (0="—x"%"exp(-x") (2.3)

(@ -—1>'

In the same way, we would obtain:

9, (x):ﬁ.xz'qil.exp(—xz) (24) with: g; =R—(j-1)

We have now to find the p.d.f of the variable: 4, ;.4 ;. To do this, we use the cumulative density function (c.d.f)

and we set: U =4, ; and V =4, ;. We have:

+0 X[V

Proba(UV < X) = jProba(u<X/v[v)pv(v)dv j[jpu(y)dy]mv)dv (2.4)

A

X
Setting y=z/V in the first integral, we obtain: [ p, (y).dy= [ p, (z/V).% and (2.4) changes into:
0



R, v (X)=ProbaUV < X) =T[T Py (z/V).%].pv(\/).dV
0 0 (25)

+o X

[T @V Ern w8y = [ o, e 2o

40 X (/I)
This can be expressed as: F,, (X)== [ [] p, (z//i).dz].pVT.dﬂ.
0 0

We calculate at first:

2
(qi _1)!.
2

XZ
1
== u/A)>%* exp(-u/A?).——=.du
(@ ] A expulah o
1 Xf udt
(g, Dt g A%
y) X2/2%
= | x%hexp(—x).dx =
(Qi _1)! '([

X X
[ pu (21 2).0z = [(@12)*%  exp(-2° 1 4%).dz
0 0

(2.6)
.exp(—-u/A%).du

3, 4(X2122)

_A
(Qi _1)!

With: J (x) = jt".e*‘.dt . Then, we use the classical result:
0

J,(x)= J't“.e“.dt =[-t"e™']; + n.J.t”‘l.e“.dt =—x"e*+nl,,
0 0

=— X [X"+nxX""+n(n=D.X"2+...+nl]+n! (2.7)
n n-1 n-k

x X X
=nl[l-e .(H+ (n—l)!+m+ (k)1

+..+ X+1)]

This yields to:

/1 2 2
q.Jql_l(x 127)

(q
(q —1)!.[1—e‘Xz”Z.[(X(q_//jl;‘;i +(X(q_/:12))q; +...+(>((q_/_/113q;<)! +o.+ X222+ (2.8)

(X2/AT + (X212 +..t (X2 A7) o+ X222+
(-1 (@ -2)! (g, ~1-k)!

X
[ py (21 2)dz =
0

_ 2
(qi _1)!

=A[l-e X

And finally, we obtain:

+0 X

_ p (1)
Ry (X)= ![! py (2/2)d2]) =7 dA

+o0 - 27 22vq-1 27 227G -2 2 ) 227G -1k
e (ZIAT A TN X2 1A )2 AP exp(-27).d
0 (g, —1)! (0, —2)! (g, —1-k)! (g; -D!



2.q;-1 2.0;-1 —[X%/122+4%] 27 22\g-1 27 22\G-2 2 1 22yg-1-k
_I[zz eXp(_Az)M_z.z e (OCL2E LA (XA
;D! (q; —D)! (g, -1)! (0, —2)! (g, —1-k)!

+o+ X222 +1]]dA

—1+0 zq,—l —[x 2122427 (X //Iz)q -1-k

Ry (X) =1 j2

k: o (q; D! (g 1=k
zl_qifl 2.X a0 T/12-(qrqi)+2-k+1_e—[x2/42+42]_dl (2.9)
oo (0, —DL(a; -1-k)! g
1

i — 2X2(q “1-k)
21_Z(qj—1)'(q —1- k)' 2(q, q)+2k+1(x)

—+00
ith- 2.(95-0;)+2.k+1 [X2/2%2+22
With: |2.(qj-qi)+2.k+1(x) = _[/1 : el #lda
0

We suppose at first that: g; > g, . The probability density function is the derivative of function: F,, (X). In order

to calculate this derivative, we have to compute at first:

—X2/22

al2-<q;—qi)+2-k+l(x) le(qj —g)2kst O e (47X uz)] di= J‘lzm, )2kl 22 2.Xe di
OX oX A
=—2.X. [ AHO WA N 47 = 22 Xl g ayiana(X)
0
We obtain then:
y 00 2'XZI(qiil)'IZ.(quqi)Jrl(X) ) 2.X 2.(qi72).|2.(ql7qi)+3(x) o 2.X 2'(qi717k)'|z_(qlfqi)+2.k+1(x) o 2.|2_qul(X)
oX (9; -D'(q, —1)! (@, -D'(q; -2)! (@, -D'(q, -1-k)! (9, -D!

~ 4.(g, -1).x*a (X) 2.X*%P2X. Lo q)1(X) 4.(q, —2).XHa 27 g, q)3(X)+2X2(“ 22X, Lo, q)1(X)+

- (a; -D'(q, - 1)! " (a; =D'.(q; - 1! (a4, —D¥(q, —2)! (a4, ~D¥(q, —2)!
4-X2'(M)1-'z.(q,m+ 4'Xz.qiil'IZ.(qﬁq,)*l(X) M'Ia(x) . Py z.qi—slll(x) )

(@, -DuE - 2)! (@ -Da, -0 (a,-DXg -3  (a,-DN&-2)!

20, -0)+1

4.X%% Laa-apa (X)

2.10
(@, =D'.(q, ! (210

Py (X) =

We have: |

2(a;-4;)

L(X)= J.ﬂz(ql W g DI 7 setting u =A%, we obtain:

I\)lH

|2.(quqi)—1(x)= I qJ at _[X fus] .du (2 11)
0

2 2
To compute this integral we set: z=u +X— , the graph of function f(u)=u +x— is drawn just below:
u u



20 25

2

. X . .
When we solve the equation z =u+-— => u*—u.z+ X? =0, we obtain the solutions
u

21 1
[z—x/z —4.X*] for ue[0,X] and du ==.[1- ———=].dz
2 2 \/z —4.X?

1 1
== [z+z22=4.X?] for ue[X,+oo[ et du :—.[1+—
2 27 J2—ax?

].dz

Then, we obtain:

1% 1 / q;-g;-1 o 1 z
Iz.(quqi)—l(x):E'J‘W'[z_ 2* -4.X* ] 2 [1—ﬁ].d2+...

1 oo L
= j PTE=t [z N2 —ax?] o, S+ 1.0z

22 —4.X?

201 (X) = P [j[z—x/z —4.X2]" q..\/7d2+j[z+x/z —4.X2]" m.—,_Z T

| dz]

This yields to:

IZ-(qJ—qi)—l(x):ﬁ'[J‘ [2—4/22_4.X2]q;qa.ﬁdz+ j [Z+\/Z -4, xz]q, - 4(12]

2.X NP —4.X?

2q - Z Cz"ql Izq' R P ey [ S

= 22 -ax?
2.p<q;-

= qulqi : Cqul I 20T [22 4. X 2PV e dz
p=0

The final variable change is when we set: z=2.X.u, so we have:



1 2.p<g; -0

+00
2. 0;—4-2.p r,2 29p-1/2 -
g, a2 (X) = qufqi.j z" Jz7—4.X P e ".dz
2.X

2q1—Qi' ~

1 2.p<q; ¢ +00 )

o 2 Coly [ @XU)PEER2IAXE (U e 2 X du
1

p=0

I
M4

+00
L Q. —2. ! _
Czj'f i'X a; q..J' TR p.(uz _1)p U2 g-2Xu g
1

Il
(’)\’_.

qj._qi X q,——qi.J‘ uq'_q'_l.(l—lluz)p'llz.e'z'x'“.du
1
_ I 2. q;—Gi
N qugqi X 'qu,-fqi (X)
To conclude, we have to express integral values of the form:
Ky (X) = [u" -1’2 e du (2.12)
1

Since we have 1/u® <1 for u e[l,+oc[ , it is possible to expand the function : u——[1—-1/u?]""? over the

integration interval:

p-1/2) N (p-1/2).(p-3/2)

p-1/2).(p-3/2)..(p-1/2-q+1)
u? 21u* i

+...+(—1)q( PV

[1_1/u2]p—112 :1_ (

With :

(2k-1).(2k -3)..(2k —2.q+1)
2q

_(2k).2k-1).2k -2).(2k =3)...2k —2.9+1).(2k - 2.q)

- 29.(2k).(2k —2).(2k —4)...(2.k — 2.0)

_(2Kk).2k-1).2k -2).(2k =3)...2k —2.9+1).(2k - 2.9)

- 229 | (k=1).(k = 2)...(k —q)

(2k).2k-1).2k -2).(2k =3)...2k —2.9+1).(2k —2.9).(2k — 2. -1)!.(k —q -1)!

N 2290k (k=1).(k=2)...(k = q).(k =g —1)1.(2.k —2.g =1)1.

__ (2k)L(k—g-D)!

22k (2k —2.9-1)!

(k-1/2).(k-3/2)...(k -1/2-q+1) =

Thus, we obtain:

29p-1/2 _ - n 2.p). —n-1)! 1
1-1v] _Z;‘(_l) 22'“+$.n!r.);)‘.)!.((g.pn—2.r)1—1)!'uz'” (213)

Plugging (2.13) into (2.12), we obtain:



K™ (X) = [u ™ [L-1/u’]P % e > du
1

< r (2.p)L.(p-r-1)! Tl gl axu
:2(—1) — .j—z uii e .du
T | | _ _ | .r
27" rlpl(2.p-2r-0ty (2.14)

<~ r (2 p) (p r— 1)' v q;-¢-1-2r _—2.X.u
= -1 ult e du
Z( ) 221, pl.2.p—2r— 1)I j

&y @p(p-r-!
=2.(-) 22'”1.r!.p!.(2_p_2,r_1)!'Lqﬁqu—2.r(x)

+o0

With: Lo, q12r = Iu

1

B8 g2 X4 du . Then, considering whether g, —g, —1—2.r is positive or not, we have:

-1if g, —q,-1-2r=>0:

+00 Hoo
LqJ g1 Z.T(X) — J.qufqiflfz.r.e—Z_X.u 'du — J (1+t)quqiflle"e,z_x_(t{l).dt
! 0

q] =0 -1-2r +0 quqi—l—z.r 1 40
Z Cq -0 -1~ 2-r'J.tk'eizix't'dt:eiz'x' Z Cc;(,-—qi—l—z.r'—m _[ z“e7.dz (2-15)
0 k=0 [2.XT" ¢
=e_2.XIQj7qi7172.l' ) F(k+1) =e_2|x Qng.er kl
— q;—gi—1-2.r [2.X]k+l — ;-0 —1-2.r 2k+1.xk+1
-2if g;—q -1-2r<0:
T oagar ax oex ax g 2Xt
qu—qi—l—z.r(x): -!ju i e du= !Wdu =e " !Wdt (216)

Using an induction process, it is possible to express this last integral with the exponential integral, we have:

+o —2.X.U
L (X)= j du
1
k k
I 2.X +o+ (=D 2. X +
n-1 (n-1).(n-2) (n-1).(n-2)...(n-k-1)
n-1 v n-1 o (-2.X.u
+ (=) 2_X [ E—du]
(n=1.(n-2)...(n—=(n-1)) ¢ 1+u
k y k n-1 v n-1
=e [ 12X o+ (DK 2 X Foeeen +(—1)”‘1.i.EI1(2.X)]
n-1 (n-1).(n-2) (n=-1).(n-2)...(n—k-1) (n=1)!
—t +o0 —Xt +o —X.t -X +o Xt n-1 n
With: El,(X) = je dt - [ & dt_ox [ g8 JE—dt=—Inx - yi S EDXT
X 4 5 1+t X ¢ 1+t/X = hn!

In conclusion, we obtain:



4. 2%+ L(X)

B (X) = R (2.17)
(g, -D(q, - D!
2.p<q; -0 , -
g a2 (X) = Z; C2P, XU K L (X)
p:

With:

q;-q; _ - r (Zp)'(p_ r_l)!
Kp (X)_g(_l) 22'”1.r!.p!.(2.p—2.r—1)!'Lqi’q"1’2'r(x)

- Yy 2.p)!.(p—r -t Lyan 00+ S (2.p)L.(p—r -t Ly o 10r(X)

e P 221 pl(2.p—2r =11 HE? 0 —2.<0 221 pl(2.p—2.r =11 HE
We have:
Forn=>0:
Ln(x) e72X ch kl
— 2k+1 Xk+l
Forn<0:
ki yk n-1 y/ n-1
L (X)=e?*[ 12X +..+ (=D~ 2. X Fo k(D™ 2_X EL(2.X)]
n-1 (n-1).(n-2) (n-1).(n-2)...(n—k -1) (n=1)!
—t +00 —Xt +oo Xt -X +o —-X.t n-1 n
With: EI,(X) = je e [Ty L e S P T e
X 1 o 1+t X 91+t/X . nn !

With » denoting the Euler’s constant: y ~0,5772.
Using the development of L (X) ¥n=>0 ; it is easy to show that the diversity order of the product U.V is

equal to: @ +qg;-1 (we have: Vnx0, lim_g x"In(x)=0); and that we have for X =~0:

x—0

Puv X) = K,Xq‘+qi‘1.e—2.x .
The case where j = i is addressed now.

- Characterization of the p.d.fof: Z=4, .4, =UV

At first, we calculate the p.d.f of 4 ;. Assuming that each real or imaginary part of each coefficient channel has

a power 0.5, the p.d.f of 47, can be written as:

1 X
f,(X)=————X""exp(-—) (2.1
2 () o".2%T(q,) xtexpl 2.6§) 1)



with : 67 =0.5, thisyieldsto : (g, =R-(i-1))

1

W2 2 (q D1’ x4 Lexp(-x)  (2.2)

X4~ exp(—x) =

e 00 (G-

Denoting 9, (x) the pdf of 4 ;, we have the following relationship:

1 1
fo (0dx=g, (x).dx= N (\ﬁ)-ﬁ.dx

2
(Qi _1)!.

which entails: g%_(\ﬁ)zz.\ﬁ.fﬂf(x) and gﬂkv(x)zz.x.fﬁ_(XZ)z x4 exp(=x?)

So, we have demonstrated that:

2

@ _1)!.x S exp(—x?)  (2.3)

9, (x)=

We have now to find the p.d.f of the variable: 4 ;.4 ;, assuming that 4,4 ; are two independent identically
distributed (i.i.d) random variables. To do this, we use the cumulative density function and we set: U =4, ; and

V =4;. We have:

+o0 X[V

Proba(UV < X) =TProba(U <XIVN).p,(V)AV = [T [ py(y)dylp, V)V (24)

XV X
Setting y=1z/V in the first integral, we obtain: J' p, (y).dy =_|' Py (z/V).% and (2.4) changes into:

0 0

+o0 X

Fuy (X)=ProbaUV < X) = [[[ p, (z/V).%].pv(\/).dV
0 0 (25)

+o X

[T v Ern w1y = [ o, 2o

+oo X (ﬂ,)
This can be expressed as: F,, (X)== [ [] p, (z//l).dz].pVT.d/i.
0 0

We calculate at first:



i([pu (z/4)dz = j(z/z)z% exp(~z*/ 2%).dz

(; 1)'

= j(\/_//m)zq L exp(—u/ A2).——du

(q -;1)| . Z.x/i 2.6)
) (a; —1)!'I ;Z-qi—l .exp(-u/2%).du
1 X212 - o .
:(qi—l)!'l X .exp(—x).dx—m.lw(x 14%)

With: 1, (x) =J't".e*‘.dt. Then, we use the classical result:
0

I(x)= .[t” etdt=-t"e'] + n.jt"‘l.e“.dt =—x"e*+nl_,
0 0

=—e X" +nx"" +n(n-1).X"% +...+nl+n! (2.7
i Xn Xn—l n-k
=nl[l-e .(ﬁ+(n_l)!+...+(n_k)!+...+x+1)]
This yields to:

f _ ﬂ' 2 2
!pu(zm).olz_ﬂ 1, 1(X?12%)
_ A _ e X 2j2 (X /ﬂz)q B (X /iz)q N (leiz)qi&fk 2742
_(qi—l)!'(qi Di[1-e I @ D! @ -2) ot @ 11! +..+ X227 +1]]  (2.8)
:i.[l—e’xz"z.[(xz/iz)ql_l+(X 125" +...+(X /ﬂz)ql_l_k+...+leﬂz+l]]

(qi _1)! (qi _2)! (qi _1_k)!

And finally, we obtain:

+o0 X

Fou (0= [ 2/ 0 222 B2 gy

+00 ) 2yq;i-1 2\q; -2 2 2\q;-1-k
= [p-e [(X( //11;. (X(q/’lz))' +...+—(>(<q ”Il)k) 'S /12+1]]( 2 oy A5 exp(=2%).d A

0 i

+0 2.g-1 2.0-1 o—[X?122+42] 27 22\q-1 21 22\Gi-2 2 1 22\gi-1-k
=j[2’1 exp(eA?)da—2A ¢ (A ) A X222 4 1]1dA
( _1)' (qi _1)! (qi _1)! (qi _2)! (Qi _1_k)!
Fov k=0 1)! (q; —1-k)!
g-1 2. x2(q -1-k) le'k‘*l_e_[xz/lhﬂz],dﬂ (29)

=1—
Zc‘i(OI. -DL(q -1-K)!yg

- 2X2(Q—1—k)
X
& (g -1)(q -1~ k)' zua(X)




The probability density function is the derivative of function: F,, (X). In order to calculate this derivative, we

have to compute at first:

() _

da
oX

0

oX 0 A2
=2 X[ AP I 4 )= 2 X0, 4 (X)
0

We obtain then:

2(g;-) 2(4-2) 2.(qi-1-k) 2]

0, (X) =i[1— 2.X .|12(X) 22X 1(X)  2X Jpa () 2,qi_l(X)]
oX (g -)! (4 —DL(q; - 2)! (9 —DL(q —1-k)! (o —1)!

A —1). X @D (X) . 2XMED 2 XA, (X)  4(g —2). X2 (X) . 2.X 2072 2 X1, (X)

(q,-)¥ (@ - (@ -1\ (g - 2)! (@ -1\ - 2)!
__4.X2'(qi’1)’1/ll/(X) N 4.X%571 ) (X) _4.x2/“41.|3(x> 4X* (X))

@ G -2 (qi—l)!z/@—1)!(qi—3)!+(qi\%i—z)!

4. X% (X)

X) = 2.10
Py () == (2.10)
2 q s s ) ) 1 +«>e—[X2/u+u] )
We have: 1 (X)= I—.e‘[x X1 d A4 setting u=A%, we obtain: 1 (X)==. du. To compute this
' o A ' 27 U

2 2

integral we set: z=u+-— the graph of function f(u)=u +X— is drawn just below:
u u
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When we solve the equation z =u+-— => u®>—u.z+ X* =0, we obtain the solutions:
u
1
U=tz ax?]for ue[0,X] and du==[1-—2  Jdz
2 27 J72-ax?



[z+x/z —4.X?] for ue[X,+od et du_ [1+\/7
7° —4.X?

].dz

Then, we obtain:

+oo e_z
1L(X)= | -—=.dz
(0 Jm/zz—4.x2

The final variable is we set: z=2.X.u, so that yields to:

+o00 e—Z.X.u +o0 e—2.X.u
I .(X)= du= | —————du
0 Jl. u?-1 '!.u.«/l—llu2

With:

d-x)" =1—a.x+$_xz 4ot (D" a-(a—l)..r.](la—n+1)

x"+.. pour |x|<1

With « =-1/2 , we obtain:

a(a-1).(a—n+1) _-1/2.(-1/2-1)(-1/2-2)..(-1/2-n+1)

n! n!
1.35..(2n-1) 1.23.45..2n-2).2n-1) (2.n-1!
=) —————=CD". - =D —
2".n! 24.6....(2n-2).2"n! 2. (n=1)!n!
1 < (2n=1)! 1
—2:1+Z 2n-1 "2n
J1-1/u =27 .(n=D)!ntu
And:
e - & (2.n-N! 1
I, (X)= | —/——=du=| ——.[1+ = .——-].du
' !uﬂfl_l/UZ -! u ;22 L(n=1)!n! u*
+oo 2. X.u +00 _ 1 +oo -2.X.u
= [E—dusY (2n-D! e 4, (2.11)
L u =20 .(n=DInt { u”
< (2n=1)!
=K,(X)+ ————K X
1( ) Z;Zgn,ll(n_l)!n! 2.n+1( )
We have:
+o —2.X.u k k 2.n 2.n
K,,..(X)= j%.du :e'z'x.[i—LJr...Jr(—l)k. X +..]+ (D)%,
Y 2n 2n(2n-1) 2n.(2.n-1)...(2n-k) (2.n)!
. +0 —t +0 —xt i e —x +0 e—xt +00 _1)n—1.Xn
And: Ell(x)=£ j !1— == .£1+tlx.dt=—lnx—y+;T

In conclusion, we obtain:

EI(2.X)



4.X*5] L (X)

XY =
o 00 = "y

e e & (o=t 1
du= | [+ (2n-Y) —_].du

L (X)= [ —du= 1+ .
.!.U.\fl—lluz 1 U n=1 2° l_(n_l)!n! u

+00 e—Z.X.U +00 (2n _1)| +o00 e—Z.X.u
= du+ : du 2.12
J; u nzzl: 2" (n-1)!n! Jl. uz" (12)

— 2.n-1)!
=K,(X)+ 3 Ko (X)

+o0 e—Z.X.U 1 2X zkx k 22.n'x 2.n
Kppa(X) = | 5 du=e?* [-———————+ . +(-D)". S R EL(2X
zna(X) Jl.uz'n+l H=e [2.n 2.n.(2.n—1)Jr = 2.n.(2.n—l)...(2.n—k)+ ey (2.n)! (2X)
etdt ‘Ferdt e*F e =)™’
K,(X) = El (2.X) with: EI dt=—In
,(X)=EL(2.X) ()= J I X £1+t/x *~ 7+;‘ n.n!

With y denoting the Euler’s constant: y ~0,5772.

Using the development of K, .(X) V¥n>0 ;itis easy to show that the diversity order of the product U.V is
equal to: 2.g, —1; and that we have for X =0 : p,, (X) ~ K.x*%"e>*,

This result is confirmed by the E.M fitting algorithm; for example with R =5 we have the following result for

the variable: 4,,.4;,.

035 T T T 0

We found: ¢ ~7.6 and S =2.0; this confirms our theoretical derivation, i.e. a=8.0 and £ =2.0 in this

case.
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k=1 j=1

Appendix 3 : Characterization of the p.d.f of: &, = { =

Yi>ar U

k=1 j=1

L N L N
-First, we characterize the diversity order of the numerator : V, =Y [> 4 14 =D [A%+ D A ;4.]. Using
k=1

k=1 j=1 J=1, j#i

appendices 1 and 2, we know that each term 4% has a diversity order equal to: g, —1 and that each term
A ;-4 has a diversity order equal to: g, +q; —1. However, due to the fact that the random variables in Vv, are

highly correlated, the diversity order study is difficult. It is easier to begin with a simpler case with L =1 and

N = 2; i.e. we have to study the distribution of : V,, = A2 + 4,,.4,, . First of all, we calculate the c.d.f defined

by:
R, (X) =Proba(V,, < X)=Proba(4; + 4.4, < X) = Proba(4,. 4, < X - 4})
+o0 +0 X/2-2
= [ Proba(d, < X/ Ay = Ay |Ay).p,, (h) A2, = [[ [ b, (V)dylp, (02 (3.1)
0 0 0
+o0 X/z-2
= [T [ p,(ndylp, (2)dz
Xlz-z
We calculate at first : 1(X,z) = _[ p,, (¥)dy, with: p, (y)= qQ 1)|.y2'°‘2’1.exp(—y2) and g, =R-1.
0 27 ¢
X/z-z X/lz-z
1(X,2)= | P (N == [y exp(-y*)dy
0 q2 - ) 0
2 2 (3.2)
2 [X/z-2] dU 1 [X/z-2]

f u®*edu

Rc=HE MW rif i

n-1 n-k

Using : Jn(x):jt".e“.dt with : Jn(x)=n!.[l—e‘x.(x—+ X +...+X+1)], we have :
0

n! (n—l)!+'"+(n—k)!

1 [X/z-zT B 1 ,
I(X,z)=(q o [ e .e‘“.du:m.qu_l([X/z—z])
2 - 2 -
(3.3)
, IO P XCA) O
=1/ .([X/(Z 2]1)1 +[X/(Z 2]2)| +...+[X(/Z Zl] o1 +..+[X 2= +1)
g, —1): 4, —4): 0, —1—K):

Plugging (3.3) into (3.1), we obtain:

[X/z-z]*®™ LIx/z- 7] L Ixia- )
(9, -1)! (9,-2)! (q, —1—K)!

R, (X)= T[l—e’[x’z’”2 ( +..+[X1z=2P +D)p, (2).0z (3.4)



With: p, (z)= 7*%" exp(-z%) ; we obtain :

(ql_l)!'

[X/z—z]" ™ N [X /72— 2] %? L [X /72— 7P
(q, -1)! (q, - 2)! (q, —1—k)!

+..+[X/z2=2] +1)].p, (2).dz

R, (X) = [lL-e ™ (
0

e 2 ¢ 2 2
F, (X)=1- X 1z =z @0 g X 22t o g7
he kz;‘ (0, —D'(q, ~1-k)! {

g1 2
Fvl‘z(x) :1_2 Kk(x’ql’qz)

= (0, -D)!(q, —1-K)!

With:

K. (X,q,0,) = j [X [z— 7] %0 20t g X2 o2 g7 (35)
0

The p.d.fof V,, is the derivative of F, (X) ; we have:

“ 2 K, (X,9,,9,)
X)=_ Pt S B S 3.6
OO=2 g or ax O
With:
K, ()5()’(% %) _ 2.(q, ~1- k)J‘ [X /7 — 2P0 g202 gbxizaf g2 g
B 0 ...(3.7)
o 2._[ [X/z- Z]z.(qz717|<)+1.22.qrz.ef[x/H]2 .8722 dz
0
This yields to:
R 2 oK (X, q,
A ()= . K, (.0,
S (0Dl -1-K)! X
02 l

=-4.)"

( 1) | ( 2 k) I-J]io [X / 77— Z]Z-(qZ—l—k)—llz 2.0,-2 .ef[)( 12-2]2 .e_zz dz
ko (¢ —1)*.(Q, —2— e

+4.qzz_1 1 .T[X | 7 — 7P 7262 X Izaf g2 gy
k=0 (ql _1)!-(q2 _1_k)! 0
q272 1 +00

_ —4.2 . I [X /7 -zt 7202 g (X2l o2 gy
o (4, —D(q, -1-(k+D)! g

g1 l
+4.)"
k=0 (q1 _1)!-(q2 -1- k)!

+00

2 2
j [X [z -z %7 72072 g X/22) @72 g7
0



g1 1

X)=-4.
pvl'z( ) = (G -1)(q, -1-m)!

+00

2 2
I [X [z —z]?% ™ 7202 g XI22) @72" gy
0

+4.q221 1 .T[X |7 — 70t g2 2 g X Il o2 g
k=0 (ql _1)!-(q2 -1- k)! 0

Finally, we have:

4 I [X |z — 2]2.qu.22.q1—2.e_[x/Z_Z]z .e_zz dz
(ql _1)'(q2 _1)| 0

4
G, . (X
(g, -D'.(q, 1! ., (X)

Py, (X) =

(3.8)

Py, (X)=

To obtain the diversity order, it is necessary to study the behaviour of G, , (X) around zero. To do this, we set:

u= X/z-z, the graph of function f(z)=X/z—-z isdrawn just below:

i
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We have: du=-[X/z*+1].dz and: z= %.[—u ++Ju? +4.X] ; so we obtain:

8.X +2u?—2uAlu® +4.X
du=- dz
4.X +2.U%-2uAu? +4.X

(3.9)

We can rewrite G, , (X) :

+00

Gy o, (X) = -[ [X [z —z]%t 7202 g X/22F e % dz
0
_ TUZ.qzll 1 [-u+ /uz L AX ]z.qrz.e—u2 .e—[u2/2+X—u/2.\/u2+4.X]. [-u+ Ju?+4.X ]2 _
4 2t 8.X +2u2 —2u~Ju? +4.X
1 TUZ.qZ—l [-u+ Ju? +4.X ]2'q1 e—[3/2.u2+X—u/2.\/u2+4.X] du

C2red 8.X +2.u% —2.u+lu? +4.X

du  (3.10)




Of course, it is very difficult to calculate this integral but remember that we are only looking for the

diversity order of the random variable V, , ; i.e. the first non-null derivative of p, (X) around zero. To

NuZax] e—u2

. . . . _| 2 i .
do this, we use the following approximation: e ¥/ +X-v/2 Ry o and we use the following

development:

[CU+U2+4 XY w11+ 4. X U]
8.X +2U2—2uAu+4.X 8.X +2u?—2u1+4.X [u? (3.12)

U2'q1.[2.x /U2 +9(X)]Z'ql 3 4q1—l.x 2.1 + l9()( 2.q1—1)
8.X +2.U2—2.U2.[1+2.X/U2+19(X)] y>e

It’s then straightforward to deduce the diversity order of variable Vi: D, =2.q, —1. At this stage it is
important to compare this result with the case where we consider independent variables. Using
appendices 1 and 2, we know that each term 2’ has a diversity order equal to: g, —1 and that each
term A, .4, has a diversity order equal to: ¢, +q; —1. So, if the terms 2> and A,,.4, were independent,
they should exhibit a diversity order: D=gq, +q, —1+q, =2.g, + 0, —1. Compared to this ideal case on
can see that we encounter a diversity loss of: AD=D-D, =q,.

It is possible to generalize this result, considering the random variable:

Vi, =5 +AgAy + g A+t A, (3.13)
We calculate the c.d.f defined by:
R, (X)=Proba(V,, < X) =Proba(4 + 4.4, +...+ Ay Ay, < X) =Proba( A, A, +..+ Ay Ay, < X = 47)

+o0 X/z-2

= [PrObA(A, + A ot By S Xy )P, (A= [ [ Dy (DY) D, (D)0 (3.14)

+oo X/z-2

=0 Pars, (AY1p, (2)2

We have demonstrated in Appendix 1 that around zero we have:
pﬂiz+___+ﬂln (y) ~ Kn.y2.[CI2+q3+...+qn]*1.exp(_yZ) and qi _ R —(l _1) -

We set: r, =q, +0,+...+0, ; we obtain thus (similarly as in equation (3.8)):



P, (X)= K,.|[X/z — 7Ptz g e e dz
,n ! (3.15)

p,, (X) =K, G, , (X)

We can write G, , (X):

G, (X)= 1 T oo [FU+NUT+4XT [ar2utex-u2 it ax] (319
QIlrn( )= 222 I u : 2 > € au
o 8.X +2.u? —2.uAu? +4.X

It is clear that the diversity order remains equal to: D, =2.q, —1.

In this case, it is straightforward to obtain the diversity order of the numerator (V,)* since the quantities

N

N
D [An1 4, and >[4 1.4, are independent for m=n. With the results of Appendices 1 and 2 we
j=1

=1

conclude that (v;)? exhibits a diversity order equal to: R.q, —1.

2
The diversity order of the quantity (\(J'—) will be the same as those of (V,)*. Although we use here ratio of

correlated variables, this may be justified in comparison with the case of the p.d.f of the ratio of two
independent Chi-2 variables (see Appendix 4). We proved in Appendix 4 that the diversity order of the ratio
of two independent random Chi-2 variables correspond to the diversity order of the numerator random

variable and this completes the proof.



Appendix 4 : Characterization of the ratio of two independent Chi 2 random variables.

We want to calculate the p.d.f of U/V with:

py (4) = %.x“‘l.e‘X pour x>0 and p,(4)= F(lm) X" e pourx >0

We calculate at first :

+o V. X

Proba(U /V < X) = jProba(u <V.X|V).p, V)V = j[j p, ().dyl.p, (V).dV

Weset, y=V.z ;d’ou: .[ pu(y).dy:.[pu(\/.z).\/.dz ; We obtain :
0 0

+o V.X

Fow (X)= Proba(U/V<X)—j[j P (¥)-dyl.p, (V).dV = j[jpuwz)de]pv(\ndv

+o X

- I[j p, (V.2).dz]V.p, (V).dV
So, this yields to :

Fon X)== [ py (22)dz]. A.p, ()d2  (4.1)

We use the well known result :

I(x)= jt”.e’t.dt =[-t"e "]} + n.jt”’l.e".dt =—x"e*+nl_,
0 0

=—x"e*+n[-x""e*+(n-1).1 ]
= [X"+nx""+n.(n=-1).X"?+..+nl]+n!

=nl[l-e™. (n—n' (nX—l)!+m+ (nX—k)! +...+Xx+1)]
We deduce : Jn(x):I(z.t)".e-ﬂ-‘.dt=%.Ixu”.e- % (A%)
We can then calculate : Tpu (1.2).dz :%Iu”‘l.e‘“.du =% (X )_F() 1 (AX).
jpu (12)d2 == 1, (2X)
(n)l n2 ik (4.2)
=l[ e ™ ((AX) +(/1X) +...+(/1'X) o+ AX+D)]
A (n=n! (n-2)! (n=1-k)!

And we eventually obtain:



+oo X

Fon ) = [ [ Py (A.2).d2].4.p, (2).d2

_+°O£ X (X)) (AxX)"? (XY
—!;i'[l e (D] + -2 +...+(n_1_k)!+...+/1.X +1)]4.p, (4).dA

+00 n-1 n-2 n-1-k

= f[l—e’“.((/lx) + (4X) +ot (4.X) o+ AX +1)].i.lm’l.e’*d/1
° (n=-1! (n-2)! (n-1-Kk)! I'(m)

B 1 X n—ll/lern—Z X n—2.ﬂm+n—3 X n-1-k .Amm—k—z

+ ot Fo A ATX +A"NdA
(n=1! (n=2)! (n=1-k)!

0

We have to calculate integrals of the type :

Ky =[N =k D)1, [ A2 X2 4000 4 7
0

=[1/(n-k =D1].X n_k_l'j Amnk-2 g=2(X+1) 4 3
0

Weset: z=A.(X +1), soit 2 =z/(X +1) this gives:

+o0

Kn,m,k = [1/(n -k-1) |]X nikil.J. Amn-k-2 o=2(X+1) 4 2

0

—[1/(n—k —1)1].X "-k-l.T[z/(x D™ et dz /(X +1)

n—-k-1 +00 k_ 1 n—k-1
Komk = >i —. 1m+n—k—l .f M e dz = (m+i _k 2! __X ——  (43)
(n=1-K)! (X +1) 0 (n-1-kK)!' (X+1)
We deduce :
_ 1 n-1 k_ 1 n-k-1
F,(X) =1 (m+n-2)! X (m+n—-k-2)! X 1 (4.4)

M-DL=-D' (X +)™" 7 (m=-DL(n-1-K)I (X +)™"* 7 (X +D)"

The p.d.fof U /V isthe derivative of F,, (X) ; we have :

oF, (X
P () = )
With :
(m+n-k-2)t a8 X" :
(M-1)L(n-1-Kk)! OX (X +1)""*"
_ k=D ey X meneken
(m-1)L(n-1-k)! (X +1)m2 XD
(m+n—k-2)! X" (m+n-k-1! ¥ 1

T M-DL—k-2) (X )" (m-DL(n-1-K)! (X + 1"

We obtain :



(m+n-1! X" (m+n-2)! X" N (m+n-2)! X2

Purs )= (M- =D (X+)™"  (m-DL.(n-2)! (X +)"""  (m-DL(n-2)! (X +)"""
_ (m+n-3)! X" N (m+n-23)! X"?  (m+n-4)! X" N
(M=-DLM=3)! (X +)™™ 2  (m=DL(=3)! (X +D)™"? (m-DL(n-4)! (X +)™"°
m m

.t - ]
(X+D™ (X +p™

And finally :

(m+n-1! X" T+m) X"
(M=DL(n-D!' (X +)™"  T(m).C(n) @+ X)™"

Pu v X)= (45)

Formula (4.5) clearly shows that the diversity order of random variable U/V is equal to: n -1; i.e. the diversity

order of U.



Appendix 5 : Characterization of SNR p.d.f for the reference system by means of a mixture of Nakagami
laws.
Using the same notations as in Section 3.1 with the use of Gamma laws, we have now:

y 2 ;1 2
X) = leg o u>0,0>0 5.1
f(x) = r(ﬂ)wﬂ H (5.1)

The mixture of Nakagami laws takes the following form:
J 2. e %
f(X) = Zﬂ A" g (5.2)
['(y;).o;

We find now :

logpe(=,2) = .Zl JZZ., logr, +Iz ]zz., [log.4;"1)— log(T" (1)) +...
- - (5.3)

— pt;.10g(e;) + (2.4 —1).|og(§i)—— &

The maximization step yields to :

ologpy(£,Z) <, M Hi oy,
6a)j —Z( +— G )'Zij

Seta,

. = .:1n— (5.4)

zzi,j
i=1

j

And :
= n or'(u,)l ou.
w:Zaog(ﬂj)ﬂ_M
O, i=L ()

=i('og(ﬂj)Jrl—{(,uj)—Iog(a)j)+2.log(§i) & )zIj

~log(,)+2.109(6) - ).,

i} Y2, .(Iog(w;) L+ £ (1) - 2.109(£) + £ @)
NGPZ2) o > tog(u;) = 2 : 55

Oty >,
i=1

+00
[ In@)u”ie™.du
With @ §(u;) = 0 — ; and we solve (5.5) with the classical Newton Raphson method.

[u®ie™.du
0




