
HAL Id: hal-01403745
https://hal.science/hal-01403745v1

Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

DESP-C++: A Discrete-Event Simulation Package for
C++

Jérôme Darmont

To cite this version:
Jérôme Darmont. DESP-C++: A Discrete-Event Simulation Package for C++. Software: Practice
and Experience, 2000, 30 (1), pp.37-60. �hal-01403745�

https://hal.science/hal-01403745v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

DESP-C++: A Discrete-Event Simulation Package for C++ 1/28

DESP-C++:

A Discrete-Event Simulation Package for C++

Jérôme Darmont

Laboratoire d'Informatique (LIMOS)

Université Blaise Pascal – Clermont-Ferrand II

Complexe Scientifique des Cézeaux

63177 Aubière Cedex

FRANCE

E-mail: jerome.darmont@libd2.univ-bpclermont.fr

Summary: DESP-C++ is a C++ discrete-event random simulation engine that has been de-

signed to be fast, very easy to use and expand, and valid. DESP-C++ is based on the resource

view. Its complete architecture is presented in detail, as well as a short “user manual”. The

validity of DESP-C++ is demonstrated by the simulation of three significant models. In each

case, the simulation results obtained with DESP-C++ match those obtained with a validated

simulation software: QNAP2. The versatility of DESP-C++ is also illustrated this way, since

the modelled systems are very different from each other: a simple production system, the din-

ing philosopher classical deadlock problem, and a complex object-oriented database man-

agement system.

Keywords: C++ simulation package, Discrete-event simulation, Resource view, Validation

DESP-C++: A Discrete-Event Simulation Package for C++ 2/28

Introduction

Many tools are nowadays available when one needs to perform random simulation. Many

general simulation languages, like SIMULA [1], GPSS II [2], SLAM II [3], SIMAN [4] or

QNAP2 [5] have been developed since the mid-sixties. They propose numerous functionali-

ties and are considered valid. However, they all require a fair investment in time just to learn

how to use them. When this process is complete, though, designing a simulation model is

much easier than writing one from scratch. Nevertheless, dedicated simulators still remain

useful when good performances are required. Furthermore, most of the general simulation

languages do not allow a full object-oriented approach. Several object-oriented simulation

languages and environments have been designed in the last decade, such as MODSIM II [6]

and SIMPLE++ [7] that are based on C++, or Silk [8] and SimJava [9] that are based on Java.

Yet, these environments still require a substantial learning time. That is why simpler simula-

tion tools appeared in parallel as C++ or Java packages. DESP-C++ is one of them.

DESP-C++ stands for Discrete-Event Simulation Package. Its design originates in the model-

ling of object-oriented database management systems. Initially, a simulation model baptized

VOODB (Virtual Object Oriented Database) [10] had been implemented with the QNAP2

(Queuing Network Analysis Package 2
nd

 generation) simulation software, which is a validated

and reliable tool featuring a simple language close to Pascal. However, this simulation lan-

guage is interpreted and our model‘s executions were far too slow for the intensive simulation

experiments planned, especially with the object-oriented features used to extend QNAP2 [11].

Hence aroused the need for a faster simulation environment.

In short, we needed a fast, cheap, and reasonably simple object-oriented simulation language.

C++ [12] obviously qualified, provided a simulation engine was coded. For simplicity‘s sake,

we decided to implement a discrete-event random simulation kernel. It facilitated the adapta-

DESP-C++: A Discrete-Event Simulation Package for C++ 3/28

tion of the QNAP2 VOODB model, since QNAP2 is also a discrete-event simulation soft-

ware. DESP-C++ was born.

Characteristics and functionalities

The motivation to build our own simulation engine came from the fact that the existing tools

did not suit our needs, primarily in terms of validity and simplicity. The qualities we intended

to give to DESP-C++ are the following.

• Validity: To provide reliable simulation results, DESP-C++ had to be validated, i.e., we

had to check out if it was bug-free and behaved as expected. This goal was achieved by

implementing the same models in QNAP2 and C++, and by verifying that the results were

consistent (see the validation experiments section). Validity was a strong concern to us,

and it was actually the reason why we did not select an existing C++ simulation package

instead of building our own. For instance, in Reference 13, absolutely no validation expe-

riment is provided for C++SIM. Reference 14 only proposes sample possible SimPack

models, without any hint that these models are functionally correct nor that the simulator

itself is bug-free.

• Simplicity: Provided certain basis in object-oriented programming, modelling, and simula-

tion, DESP-C++ had to be very easy to use, compared to complex simulation software like

SLAM II, QNAP2, or even other C++ simulation packages like SimPack or C++SIM,

which all feature much more than what we actually needed.

• Efficiency: Our simulation experiments with QNAP2 being too slow, DESP-C++ had to

be reasonably fast.

• Portability: Since our simulation models were likely to be used on several platforms (Sun,

Silicon Graphics or IBM workstations; PCs under Linux or Windows), the code of DESP-

DESP-C++: A Discrete-Event Simulation Package for C++ 4/28

C++ had to be portable. This is another reason why C++ was selected as the programming

language for DESP-C++.

• Compactness: To remain simple and extensible, the simulation kernel had to be quite

small and understandable. Its code is indeed less than 1,500 lines long, including a couple

of utility functions.

• Extensibility: We wished to allow the possibility to develop anything, even complicated

models, based on our simulation kernel. Hence we chose an ―open‖ and simple structure

that is easy to modify and expand.

• Universality: Many people are now comfortable with the C++ language. Hence, there is

no need to learn a special syntax and starting creating simulation models is instantaneous.

• Low-price: DESP-C++ is a free software. Its source code is available at the following

URL: http://libd2.univ-bpclermont.fr/~darmont/download/desp-c++.tar.gz .

DESP-C++ basically provides classes to manage and order simulation events, much like any

classical discrete-event simulator. Discrete-event simulation can be defined this way [15, 16]:

in a discrete-event simulation, the variables that need to be known at all times are discrete.

They are called state variables. The set of values these variables can bear constitutes the sys-

tem‘s state space. The state space is countable or finite. According to the definition of the

state space, each change in state or event occurs in a discrete manner in time at instants

(ti) i N. These (ti) instants are called event occurrence times or event dates. Discrete-event

simulation applies to any discrete system, i.e., which evolution in time is accomplished in a

discrete manner. This definition covers a very broad range of systems. A couple of examples

are provided in the validation experiments section. Hence, a discrete-event simulator was a

natural choice to us.

Furthermore, two approaches exist to describe a system within a discrete-event simulator: the

transaction view and the resource view. In the transaction view, an observer or designer de-

DESP-C++: A Discrete-Event Simulation Package for C++ 5/28

scribes, in a chosen formalism, the behavior of the system by specifying, for each type of enti-

ty flow traversing the system, the path these entities follow and the successive operations they

undergo. In the resource view, the observer describes the behavior of each active resource in

the modelled system. The relationships linking active resources to various passive entities

visiting them have to be defined. Among these passive entities are components that undergo

some operations and passive resources that are used by active resources to perform their tasks.

The transaction view was considered first, because it seemed natural with the VOODB simu-

lation model that manages transactions in an object-oriented database system. However, cod-

ing the transaction view implied handling C++ threads, which use is not always easy. Han-

dling threads would have played against the simplicity desired for DESP-C++. Furthermore,

QNAP2 uses the resource view and we needed an easy adaptation of VOODB from QNAP2

to DESP-C++. Eventually, since any system may be modelled as easily with the resource

view as with the transaction view (it is just a question of system representation), the resource

view was favored for the sake of simplicity.

Thus, in DESP-C++, the system to be simulated is described by a queuing network constituted

of a set of communicating resources. Resources are divided into two categories: active re-

sources that actually perform some task and passive resources that do not directly participate

in any treatment but are used by the active resources to perform their operations. The user‘s

task is to instantiate the resource classes by specifying their parameters and their associated

events, for active resources. Clients travel through the active resource network and are

―served‖ by these resources.

For instance, consider a computer system where different processes run programs in parallel

(Figure 1). Programs can be viewed as the system‘s clients and processes as the system‘s ac-

tive resources. The processor, main memory, hard drive(s), etc. constitute this system‘s pas-

sive resources.

DESP-C++: A Discrete-Event Simulation Package for C++ 6/28

Process #1Programs

Process #2Programs

Process #NPrograms

Processor

Memory

Disks

Uses

Uses
Uses

Uses

Uses

Uses

Uses
Uses

Uses

Figure 1: Sample parallel computer system

The behavior of a simulation model is evaluated by the mean of a set of statistics (mean val-

ues and confidence intervals). Confidence intervals are ascertained through replications of the

simulation experiments using the method presented in Reference 17. By default, DESP-C++

provides the following statistics for each resource, whether passive or active:

• mean response time,

• mean waiting time for clients before being served,

• mean number of clients served,

• mean number of clients still being served,

• mean number of clients still waiting to be served.

Architecture

The complete architecture of DESP-C++ is displayed as a UML Static Structure Diagram in

Figure 2.

DESP-C++: A Discrete-Event Simulation Package for C++ 7/28

0..*

1..*

0..*

ActiveResource_i

Event_i0()

Event_i1()

Event_iN()

0..*

next_active_rs

0..*

1

EventManager

ExecuteEvent()

Init()

InitRep()

Stats()

DisplayStats()

1..*

active_rs

1

1

11

Resource

name : String

capacity : Integer

ccapacity : Integer

response : Real

wait : Real

nbserv : Integer

stats : Array [1..5] of Real

stats2 : Array [1..5] of Real

n : Integer

PurgeQueue()

P()

V()

Sim()

ResetCounters()

ResetStats()

Stats()

DisplayStats()

EnQueue()

GetEventCode()

GetClient()

DestroyTop()

QueueEmpty()

0..*

used_passive_rs

0..*

passive_rs

1

Simulation

tstart : Real

tmax : Real

tnow : Real

rseed : Integer

clientlist : Reference to Client

Run (nreplic : Integer)

Sched()

Tnow()

Reset()

NewClient()

KillClient()

PurgeClientList()

1

simul

1

eventmanager

1simul

client

1

QueueCell

eventcode : Integer

priority : Integer

next : Reference to QueueCell

previous : Reference to QueueCell

Code()

Cli()

Priority()

Next()

Previous()

SetNext()

SetPrevious()

1

bottom

1

top

1

1

Scheduler

IsEmpty()

Schedule()

GetEventCode()

GetEventDate()

GetClient()

DestroyEvent()

1
scheduler

Client

next : Reference to Client

previous : Reference to Client
1

client

1

SchedulerCell

eventcode : Integer

eventdate : Real

next : Reference to SchedulerCell

previous : Reference to SchedulerCell

Code()

Date()

Cli()

Next()

Previous()

SetNet()

SetPrevious()

Purge()

1

top

1

bottom

1

Figure 2: DESP-C++ architecture

DESP-C++ is organized around the Simulation class, whose attributes are the basic simulation

control data: beginning and end of simulation times, current time, and random generator seed.

DESP-C++: A Discrete-Event Simulation Package for C++ 8/28

The Simulation class also upholds a list of references toward all the clients in the system, so

that all the clients remaining in the system at the end of simulations can be destroyed and

memory freed. The Simulation class constitutes the interface of DESP-C++. It must be instan-

tiated in the main program. Simulation runs are activated by the Run() method, the number of

replications being indicated in parameter.

Each simulation instance is related to a Scheduler object that is basically an ordered list of

events to be executed, sorted by event date. Each event also has a unique code and is related

to the Client object undergoing the event. The Scheduler methods deal with the event list

management: event insertion, deletion and retrieval.

A Simulation instance is also linked to an EventManager object that mainly deals with the

execution of events by the active resources (ActiveResource objects), using the passive re-

sources (Resource objects), via the ExecuteEvent() method. The EventManager is also in

charge of statistic initialization and computation for each resource in the system: the Init()

method initializes the statistics for a whole simulation experiment, the InitRep() method does

the same for one replication, the Stats() method computes intermediate statistics for one repli-

cation and, eventually, the DisplayStats() method computes and displays the final statistical

results.

A Resource object is essentially a queue of events that are sorted by priority, each event being

again associated to a Client object. Each Resource is defined by a name that is not necessarily

unique, but ought to be, and a maximum capacity, i.e., the maximum number of clients it can

serve concurrently. The current capacity ccapacity indicates how many supplemental clients

may use the Resource. The typical P() and V() methods that are used to reserve and release

the Resource, respectively, constitute a Resource‘s interface along with private methods deal-

ing with queue management (insertion, deletion, retrieval).

DESP-C++: A Discrete-Event Simulation Package for C++ 9/28

A Resource also bears attributes (the wait, response, stats[]… counters) and methods dealing

with statistics management at the individual, resource level: global initialization, initialization

by replication, computation by replication, and global computation. These methods are in-

voked by the EventManager during the corresponding phases of statistics maintenance. All

the active resources inherit from the Resource class. They just include the executions of their

related events as methods in addition. Users may add extra public attributes if necessary for a

particular model.

Clients, as mere passive entities running through the system, are just designed to be part of

linked lists. However, they can be customized by users to carry any kind of information by

simply adding public attributes to the Client class. For instance, these data can be used by

active resources to perform a personalized treatment for each client.

All these classes are further organized into files and modules, as shown by Figure 3.

SIMULATION

simulc.h

simulm.h

EVENTS

eventc.h

eventm.h

UTILITIES

lewis.h

simutil.h

F
ix

ed
 m

od
u

le
s

E
di

ta
bl

e
m

od
u

le

Figure 3: DESP-C++ modules

On the left hand of Figure 3 are the Simulation and Utilities modules, which are not normally

modified by users. They contain various utilities, including an implementation of the Lewis-

Payne random generator [18], which is the best pseudo-random number generator currently

DESP-C++: A Discrete-Event Simulation Package for C++ 10/28

available thanks to its huge period, the implementation of several types of random distribution

laws, and the simulation engine proper. On the right hand side stands the Events module,

which can be modified. It deals with the definition of the system‘s resources, clients, and si-

mulation events. The arrows figure how the three modules make use of each other‘s methods.

*c.h files contain class definitions and *m.h files contain the methods‘ code. Other files con-

tain utility functions.

The simulation kernel itself is very simple. Its full C++ code is presented in Figure 4 as an

illustration. Basically, it functions as follows:

• global statistics are initialized;

• for each replication:

 statistics concerning the current replication are initialized,

 as long as the replication is not over, events are supplied by the Scheduler and ex-

ecuted by the EventManager — of course, events themselves do schedule other events

so that the whole process iterates,

 statistics concerning the current replication are computed,

 all the Client objects remaining in the system are destroyed so that the next replication

is not biased;

• global statistics are computed and displayed.

Usage

We strongly recommend the use of a modelling methodology like those presented References

19, 20, and 21 in order to produce correct simulation models, before any attempt to write a

simulation program. Specialists in modelling and simulation at Blaise Pascal University cus-

tomarily employ such a methodology, especially to model complex systems.

DESP-C++: A Discrete-Event Simulation Package for C++ 11/28

// CLASS Simulation: Simulation Execution

void Simulation::Run(int nreplic) {

 int i, nextevent;

 Client *client;

 // Global initialization

 eventmanager->Init();

 // Replications loop

 for (i=1; i<=nreplic; i++) {

 // Replication initialization

 tnow=tstart;

 eventmanager->InitRep();

 client=NewClient();

 eventmanager->ExecuteEvent(0,client); // First event scheduled

 // Simulation engine

 while ((tnow<tmax) && (!scheduler->IsEmpty())) {

 nextevent=scheduler->GetEventCode();

 tnow=scheduler->GetEventDate();

 client=scheduler->GetClient();

 scheduler->DestroyEvent();

 eventmanager->ExecuteEvent(nextevent,client);

 }

 // Replication statistics computation

 eventmanager->Stats();

 // Destruction of clients still remaining in the system

 PurgeClientList();

 }

// Global results

 eventmanager->DisplayStats();

}

Figure 4: Simulation kernel code

Following a modelling methodology allows an easy and non-ambiguous specification of a

given system‘s structure and behavior. It constitutes a guide all along the modelling process,

in order to generate the most reliable models. A good use of such a modelling methodology,

rather than an empirical analysis approach, induces important gains in terms of analysis time.

Yet, once this modelling step is performed, translating a model in C++ is easy. Coding a dis-

crete-event simulation model with DESP-C++ is mostly achieved by filling the Events module

from Figure 3, i.e., by specifying the system‘s resources and simulation events through three

steps.

DESP-C++: A Discrete-Event Simulation Package for C++ 12/28

Step 1: Editing the eventc.h file (see full code in Appendix):

• All active resources must be defined as classes inheriting from the Resource class

(Figure 5). An active resource must ―know‖ all the passive resources it uses (like the

resource named Passive in Figure 5) and all the other active resources it can direct

clients to.

// Sample active resource

class Sample_AR: public Resource {

 public:

 // Constructor

 Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource *passive);

 // Events for resource Sample_AR

 void AR_Event0(Client *client);

 void AR_Event1(Client *client);

 void AR_Event2(Client *client);

 void AR_Event3(Client *client);

 private:

 Resource *Passive;

};

Figure 5: Sample active resource definition

• Pointers toward all active and passive resources must be declared as attributes of the

EventManager class (Figure 6).

class EventManager {

 // Public methods (skipped)

 private:

 // Attributes

 Simulation *simul; // Pointer to Simulation object

 // Passive resources

 Resource *sample_pr;

 // Active resources

 Sample_AR *sample_ar;

};

Figure 6: Resources declaration in class EventManager

• If needed, new attributes may be added to the Client class (Figure 7).

class Client {

 public :

 // Usual attributes

 Client *next;

 Client *previous;

 // Supplementary attribute

 float operating_time;

};

Figure 7: Supplementary attributes definition in class Client

DESP-C++: A Discrete-Event Simulation Package for C++ 13/28

Step 2: Editing the eventm.h file (see full code in Appendix):

• In class EventManager‘s constructor and destructor, respectively instantiate or de-

stroy all active and passive resources (Figure 8).

// CLASS EventManager : Constructor

EventManager::EventManager(Simulation *sim) {

 simul=sim;

 // Passive resources instantiation

 sample_pr=new Resource("PR",2,simul);

 // Active resources instantiation

 sample_ar=new Sample_AR("AR",1,simul,sample_pr);

}

// CLASS EventManager : Destructor

EventManager::~EventManager() {

 // Passive resources destruction

 delete sample_pr;

 // Active resources destruction

 delete sample_ar;

}

Figure 8: Instantiation and destruction of the resources

• In class EventManager and method ExecuteEvent(), for each active resource and

each event, add a line aimed at firing the event (Figure 9).

// CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {

 switch(code) {

 case 0: sample_ar->AR_Event0(client);break; // Initial event MANDATORY!!

 case 1: sample_ar->AR_Event1(client);break;

 case 2: sample_ar->AR_Event2(client);break;

 case 3: sample_ar->AR_Event3(client);break;

 default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());

 }

}

Figure 9: Events triggering in method ExecuteEvent

• Take all active and passive resources into account in the other methods of class

EventManager. An example is given for method Init() in Figure 10.

void EventManager::Init() {

 // Passive resources

 sample_pr->ResetStats();

 // Active resources

 sample_ar->ResetStats();

}

Figure 10: Resources’ statistics initialization

DESP-C++: A Discrete-Event Simulation Package for C++ 14/28

• Each active resource‘s constructor must be specified if it differs from the standard

Resource constructor. Each event fired by the active resource must also be coded as a

method (Figure 11).

// CLASS Sample_AR : Constructor

Sample_AR::Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource

*passive):Resource(name, capacity, sim) {Passive=passive;}

// CLASS Sample_AR : Event #0, active resource reservation

void Sample_AR::Event0(Client *client) {

 this->P(1,client,1); // next event: #1, priority in queue: 1 }

// CLASS Sample_AR : Event #1, passive resource reservation

void Sample_AR::Event1(Client *client) {

 Resource->P(2,client,1); // next event: #2, priority in queue: 1 }

// CLASS Sample_AR : Event #2, perform operation

void Sample_AR::Event2(Client *client) {

 Sim()->Sched()->Schedule(3,Sim()->Tnow()+client->operating_time,client);

 // next event: #3, scheduled after time operating_time

}

// CLASS Sample_AR : Event #3, resources release

void Sample_AR::Event3(Client *client) {

 Resource->V();

 this->V();

 Sim()->Sched()->Schedule(0,Sim()->Tnow(),client);

 // reiterates the process now (event #0)

}

Figure 11: Sample active resource methods

Step 3: Writing a main program: this is the easy part. You just need to include the DESP-C++

modules, create a Simulation object and execute its Run() method. An example is provided in

Figure 12.

// Sample usage program for DESP-C++

#include "simutil.h"

#include "simulc.h"

#include "eventc.h"

#include "simulm.h"

#include "eventm.h"

void main() {

 Simulation *sim = new Simulation(START_TIME, END_TIME, RANDOM_SEED);

 sim->Run(NUMBER_OF_REPLICATIONS);

}

Figure 12: Sample simulation main program

DESP-C++: A Discrete-Event Simulation Package for C++ 15/28

Validation experiments

Being able to perform simulation is one thing, but obtaining reliable results is another. To

achieve this goal, two conditions are mandatory:

• simulation models must be valid, i.e., they must conform to the real system they model;

• the simulator must be valid too, i.e., there must be no bug altering the results.

In order to prove that our simulation engine is adequately bug-free, we implemented the same

models with QNAP2 and DESP-C++. Since QNAP2 is a valid tool, concordant results were to

valid DESP-C++, making it actually ―QNAP2-valid‖.

Though DESP-C++ is a simple tool, it is not always easy to detect and locate errors in simula-

tion. Hence, we used testing cases that are different in terms of behavior and complexity: a

simple, classical flow shop model; a little more complex model in terms of resource usage:

the dining philosophers; and eventually a much more complex model: VOODB. All simula-

tion experiments were performed on an IBM RISC 6000 workstation with 256 MB of RAM,

under AIX version 4. Note that our aim here is not to validate these three simulation models

but to show that our simulation engine provides unbiased results.

Simple model: Flow shop

The first model concerns the flow shop production system that is presented in Figure 13.

Products undergo some operations in Machine #1 for a time depending on a random exponen-

tial law (average: 10 minutes). Then, the products are transported by a mobile robot into a

buffer stock ahead of Machine #2. Transport time depends on a random uniform law (values

ranging from 4 to 6 minutes). The products then undergo other operations in Machine #2, for

a time depending on a random exponential law (average: 12 minutes). Eventually, the prod-

ucts are transported outside the system by the mobile robot. Transport time still depends on a

random uniform law (values ranging from 4 to 6 minutes).

DESP-C++: A Discrete-Event Simulation Package for C++ 16/28

Machine #1

(source)
Machine #2 OUT

Robot
M1-M2 and

M2-OUT transp ort

EXP(10) EXP(12)

UNI(4,6)

Figure 13: Simple flow shop

This production system is very simple. Figure 14 though illustrates the application of a mod-

elling methodology in order to build a model of this system. This UML Activity Diagram

shows the transformation process undergone by the clients (products) using the active re-

sources Machine #1 and Machine #2, which constitute the swimlanes in the Activity Diagram.

The passive resources do not appear on Figure 14, but they must also be indicated since they

will be part of the simulation program code. Here, the system has only one passive resource:

the robot transporting the products.

Machine #1 Raw material Operation #1

Semi-finite

product

[Transportation]

Operation #2Machine #2 Finite product [Transportation]

OUT

Figure 14: Flow shop model

To evaluate the results‘ conformity, the response time and the number of clients served by

each resource were measured, as computed by QNAP2 and DESP-C++. The number of repli-

cations also varied from 1,000 to 15,000. The mean results obtained showed that DESP-C++

provided the same results than QNAP2 (Table 1).

DESP-C++: A Discrete-Event Simulation Package for C++ 17/28

 QNAP2 DESP-C++ Ratio

Machine #1: Mean response time (min) 12.64 12.65 0.99

Machine #1: Average number of clients served 790.2 791.4 0.99

Machine #2: Mean response time (min) 14.73 14.79 0.99

Machine #2: Average number of clients served 673.6 672.5 1.00

Robot: Mean response time (min) 4.99 5.00 0.99

Robot: Average number of clients served 1463.0 1463.8 0.99

Table 1: Simulation output comparison (flow shop)

In addition, execution time for both models was measured in order to check whether the in-

crease in performance with DESP-C++ was sufficient. On an average, DESP-C++ ran about

nine times faster than QNAP2 (Figure 15).

0

50

100

150

200

250

300

1000 5000 10000 15000

Number of replications

E
x

ec
u

ti
o

n
 t

im
e

(m
in

)

DESP-C++

QNAP2

Figure 15: Execution time comparison (flow shop)

This study constituted a first, very encouraging validation for DESP-C++. However, we

checked if the results were still as good with more elaborate models.

Medium model: Dining philosophers

To pursue the validation process, we considered the classical dining philosophers‘ problem.

Four philosophers who do nothing but eat for a time depending on a random exponential law

(average: 5 minutes) and think for a time depending on a random exponential law (average: 2

minutes) are seated at a table. Between each pair of philosophers is a single fork. A philoso-

pher needs to have two forks to eat. A model for the philosopher‘s problem is presented in

DESP-C++: A Discrete-Event Simulation Package for C++ 18/28

Figure 16 as a UML Activity Diagram. It describes each philosopher‘s behavior. Philosophers

constitute the system‘s active resources, and forks are the passive resources.

Both forks are free

Eat

Think

Philosopher #i

Figure 16: Philosophers individual behavior

We again compared the response time and the number of clients served by each resource, as

computed by QNAP2 and DESP-C++, while still varying the number of replications from

1,000 to 15,000. The mean results obtained showed that DESP-C++ provided once more the

same results than QNAP2 (Table 2).

 QNAP2 DESP-C++ Ratio

Philosophers: Mean response time (min) 3.61 3.64 0.99

Philosophers: Average number of clients served 30.93 31.16 0.99

Forks: Mean response time (min) 5.30 5.32 0.99

Forks: Average number of clients served 14.58 14.70 0.99

Table 2: Simulation output comparison (dining philosophers)

Execution time was also measured for both models. On an average, DESP-C++ ran about 11

times faster than QNAP2 (Figure 17).

DESP-C++: A Discrete-Event Simulation Package for C++ 19/28

Figure 17: Execution time comparison (dining philosophers)

Complex model: VOODB

VOODB is a generic simulation model that is aimed at evaluating the performances of object-

oriented database systems (OODBMSs), and more precisely, at evaluating the performances

of clustering algorithms within OODBMSs. VOODB is able to model the behavior of various

types of systems, especially different configurations of client-server systems.

VOODB simulates the execution of transactions within an OODB. Its workload model is con-

stituted by the Object Clustering Benchmark (OCB) [22] that is a generic benchmark able to

model various kinds of object-oriented databases and applications using these data. In these

experiments, object bases of 50 classes and 20,000 instances were used, with four different

kinds of transactions accessing the database.

Transactions are generated by Users, who submit them to a Transaction Manager. The

Transaction Manager determines which objects need to be accessed for the current transac-

tion and performs the necessary operations on these objects. A given object is requested by

the Transaction Manager to an Object Manager that finds out which disk page contains the

object. Then, it requests the page from a Buffering Manager that checks if the page is present

in the memory buffer. If not, it requests the page from an I/O Subsytem that deals with physi-

cal disk accesses. After an operation on a given object is over, a Clustering Manager may

update some usage statistics for the database. An analysis of these statistics can trigger a rec-

DESP-C++: A Discrete-Event Simulation Package for C++ 20/28

lustering that is then performed by the Clustering Manager. Such a database reorganization

can also be demanded externally by Users.

It would be too long to further describe VOODB here but a good summary is what we call the

knowledge model for VOODB. It is presented as a UML Activity Diagram in Figure 18. This

model is hierarchical and would normally be further detailed.

The knowledge model swimlanes figure the system‘s active resources. The objects (square

boxes) represent the clients running through the system. Eventually, the activities (round box-

es) correspond to decision rules that are invoked in the simulation events. The passive re-

sources in VOODB do not appear here. They are the processor and main memory, the disk

controller and the secondary storage, and the database itself. The clients bear several

attributes, e.g., the current depth for a transaction, the OID of the next object to be accessed,

etc.

The comparison between DESP-C++ and QNAP2 concerned the performances of the Texas

persistent object store [23] and the DSTC clustering technique [24]. Object clustering was not

included in these tests at first, to check out how everything worked out. We compared the

results of 100 replications. The number of replications did not vary here since simulations

with QNAP2 were already quite lengthy.

Table 3 presents the performance results obtained for a number of significant criteria. Global-

ly, the simulation results were 97% homogeneous on an average. Computation time was about

85 times faster with DESP-C++ with this model (Table 5).

The next step was to take the DSTC clustering strategy into account within our simulation

model and then to simulate the behavior of the Texas persistent object store. Performance

criteria relevant to clustering were added (Table 4) and 100 replications were still performed.

The results were 96% homogeneous on an average this time. This was sufficient four our

needs, since simulation results are to be considered as tendencies rather than accurate values.

DESP-C++: A Discrete-Event Simulation Package for C++ 21/28

User(s)
Transaction

Manager

Clustering

Manager

Object

Manager

B uf fering

Manager

I/O

Subsystem

Generate

Transaction
Transaction

Extract

Object

Object
[to access]

Extract

P age(s)
P age(s)

Access

Disk

[Page

to load]

Object
[in memory]

[Page in memory]

P erform

Transaction

[Runnnig

Transaction]

[Complete

Transaction]

P erform

treatment

relative to

clustering
(statistics

collection,

etc.)

P erform

Clustering

[Necessary

Clustering]

[No

Clustering]

Varies with the

tested algorithm

Usage of a page

replacement policy

(FIFO, LRU,

LFU, etc.)

External

triggering

Clustering

Demand

Automatic

triggering

I/O

Access

P age(s)

DESP-C++: A Discrete-Event Simulation Package for C++ 22/28

Figure 18: VOODB knowledge model

 QNAP2 DESP-C++ Ratio

Mean number of transactions 249.4 250.1 0.99

Mean response time (s) 2.85 2.66 1.07

Mean number of objects accessed (per transaction) 64.4 61.5 1.04

Mean system throughput (transactions/s) 0.25 0.25 1.00

Mean number of I/Os 15335 15085 1.01

Mean number of disk pages used 2823 2731 1.03

Table 3: Simulation output comparison (VOODB, no clustering)

 QNAP2 DESP-C++ Ratio

Mean number of transactions 246.0 250.7 0.98

Mean response time (s) 67.3 61.1 1.10

Mean number of objects accessed (per transaction) 2.12 1.86 1.14

Mean clustering time (s) 0.1 0.1 1.00

Mean system throughput (transactions/s) 0.24 0.25 0.98

Mean number of I/Os (transactions) 13073 12261 1.06

Mean number of I/Os (clustering) 243 259 0.94

Mean number of disk pages used 3066 3045 1.00

Table 4: Simulation output comparison (VOODB, clustering)

With the added complexity of clustering, the C++ model even ran almost 900 times faster

than the QNAP2 model (Table 5).

 QNAP2 DESP-C++ Ratio

No clustering 6,000 min. 70 min. 85

Clustering 81,000 min. 92 min. 880

Table 5: Execution time comparison (VOODB)

Conclusion

We have presented in this paper an overview of the DESP-C++ discrete event random simula-

tion engine. We discussed its main functionalities and characteristics, explained how its archi-

tecture was designed, and provided detailed usage instructions so that simulation models can

be coded relatively painlessly.

We also demonstrated this tool was a valid simulation engine by comparing it to QNAP2 in

terms of output. Another strong motivation was to provide a fast and easy to use simulation

kernel, provided previous knowledge of the C++ language. The flexibility of DESP-C++ has

DESP-C++: A Discrete-Event Simulation Package for C++ 23/28

been illustrated by our validation process that lead us to design three simulation models that

are quite different from one another: a production system, a classical deadlock problem, and

an object-oriented database management system.

Yet, there is still much room for improvement in DESP-C++. The statistical tools provided by

default (replications and computation of mean values and confidence intervals) are very sim-

ple. More elaborate methods, like the regeneration or spectral methods, could achieve more

reliable confidence intervals.

The mere C++ conception should also be enhanced, so that it becomes more transparent to

users. A module reorganization or an implementation as a library can be envisaged. A proper

graphical interface could also greatly ease the use of the package.

Eventually, some portions of code can be optimized so that simulations run even faster and

data structures are more robust. Optimizing DESP-C++ was not an urge for us, but it could

prove very useful. For instance, the Scheduler and Resource classes currently use basic data

structures for their queues (bi-directional linked lists). More effective data structures could be

used instead, like those from the LEDA [25] or STL [26] C++ libraries. STL (Standard Tem-

plate Library) is indeed a standard C++ library since 1998 [27].

To conclude this paper, we would recommend our simulation package to people having no-

tions of modelling and simulation, knowing the C++ language, and unwilling to learn a new

language dedicated to simulation. DESP-C++ is a fair solution when one needs to rapidly and

simply code a simulation model, for free.

DESP-C++: A Discrete-Event Simulation Package for C++ 24/28

References

1. O.J. Dahl and K. Nygaard, ‗SIMULA, an algol based simulation language‘, Communica-

tions of ACM 9(9) (1966)

2. H. Herscovitch and T.H. Schneider, ‗GPSS II – An extended general purpose simulator‘,

IBM System Journal 4(3) (1965)

3. A.A.B. Pritsker, Introduction to Simulation and SLAM II, Hasted Press (John Wiley and

Sons), System Publishing Corporation (1986)

4. C.D. Pegden, R.E. Shanon and P.P. Sdowski, Introduction to simulation using SIMAN,

McGraw-Hill (1990)

5. SIMULOG, QNAP2 Reference Manual (1995)

6. O.F. Bryan Jr., ‗MODSIM II – An Object-Oriented Simulation Language for Sequential

and Parallel Processors‘, 1989 Winter Simulation Conference, Piscataway, NJ, 172-177

(1989)

7. AESOP GmbH, SIMPLE++ Reference Manual (1995)

8. K.J. Healy and R.A. Kilgore, ‗Silk: A Java-based Process Simulation Language‘, 1997

Winter Simulation Conference, Atlanta, GA, 475-482 (1997)

9. E.H. Page, R.L. Moose Jr. and S.P. Griffin, ‗Web-Based Simulation in SimJava using

Remote Method Invocation‘, 1997 Winter Simulation Conference, Atlanta, GA, 68-473

(1997)

10. J. Darmont and M. Schneider, ‗VOODB: A Generic Discrete-Event Random Simulation

Model to Evaluate the Performances of OODBs‘, 25
th

 International Conference on Very

Large Databases (VLDB ’99), Edinburgh, Scotland, UK, 254-265 (1999)

11. D.R.C. Hill, ‗Enhancing the QNAP2 object-oriented simulation language‘, Modeling and

Simulation (ESM 93), Lyon, France, 171-175 (1993)

12. B. Stroustrup, The C++ Programming Language, Third Edition, Addison Wesley (1997)

13. M.C. Little and D.L. Mc Cue, Construction and Use of a Simulation Package in C++,

Technical Report, Department of Computer Science, University of Newcastle upon Tyne, UK

14. P.A. Fishwick, Simpack: Getting started with simulation programming in C and C++,

Technical Report #TR92-022, Computer and Information Sciences, University of Florida

(1992)

15. B.P. Zeigler, Theory of Modelling and Simulation, John Wiley and Sons (1976)

16. A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, 2
nd

 Edition, McGraw-

Hill (1991)

DESP-C++: A Discrete-Event Simulation Package for C++ 25/28

17. J. Banks, ‗Output Analysis Capabilities of Simulation Software‘, Simulation 66(1), 23-30

(1996)

18. T.G. Lewis and W.H. Payne, ‗Generalized feedback shift register pseudorandom number

algorithm‘, Journal ACM 20(3), 456-468 (1973)

19. O. Balci and R.E. Nance, ‗The simulation model development environment: an overview‘,

1992 Winter Simulation Conference, 726-736 (1992)

20. M. Gourgand and P. Kellert, ‗An object-oriented methodology for manufacturing systems

modelling‘, 1992 Summer Computer Simulation Conference (SCSC), Reno, Nevada, 1123-

1128 (1992)

21. P. Kellert, N. Tchernev and C. Force, ‗Object-oriented methodology for FMS modelling

and simulation‘, Int. J. Computer Integrated Manufacturing 10(6), 405-434 (1997)

22. J. Darmont et al., ‗OCB: A Generic Benchmark to Evaluate the Performances of Object-

Oriented Database Systems‘, LNCS 1377, 326-340 (1998)

23. V. Singhal, S.V. Kakkad and P.R. Wilson, ‗Texas: An Efficient, Portable Persistent

Store‘, 5
th

 International Workshop on Persistent Object Systems, San Miniato, Italy (1992)

24. F. Bullat and M. Schneider, ‗Dynamic Clustering in Object Database Exploiting Effective

Use of Relationships Between Objects‘, LNCS 1098, 344-365 (1996)

25. K. Mehlhorn et al., The LEDA User Manual Version 3.7.1 (1995)

26. A. Stepanov and M. Lee, The Standard Template Library, Technical Report, Hewlett-

Packard Company (1995)

27. Information Technology Council, X3 Secretariat, Standard – The C++ Language,

ISO/IEC:98-14882, Washington, DC, USA (1998)

DESP-C++: A Discrete-Event Simulation Package for C++ 26/28

Appendix: DESP-C++ eventc.h and eventm.h editable files

//

// DESP-C++ (C++ discrete-event simulation package)

// Version 1.1, February 1998

// Jerome Darmont

// LIMOS, Blaise Pascal University (Clermont-Ferrand II), France

//

// eventc.h : Definition of the Event Manager’s classes

// Varies with the simulated system

//

// Active resources declaration

// Ex. class AR;

//

// CLASS EventManager

//

// Simulation events management

//

// The event manager must know all the (passive and active) resources

class EventManager {

 public:

 // Methods

 EventManager(Simulation *sim); // Constructor

 ~EventManager(); // Destructor

 void ExecuteEvent(int code, Client *client); // Event execution

 void Init(); // Initialization

 void InitRep(); // Replication initialization

 void Stats(); // Stats computation (end of replication)

 void DisplayStats(); // Statistics final computation & display

 private:

 // Attributes

 Simulation *simul; // Pointer to Simulation object

 // Passive resources

 // Ex. Resource *pr;

 // Active resources

 // Ex. AR *ar;

};

//

// CLASS Client

//

// Custom simulation entity

//

class Client {

 public :

 // Add here eventual supplementary attributes

 Client *next;

 Client *previous;

};

//

// CLASS AR

//

// Sample active resource

//

// Active resources must know all the passive resources they use and

// the “next” active resources (pointers)

DESP-C++: A Discrete-Event Simulation Package for C++ 27/28

//class AR: public Resource {

// public:

// Constructor

// AR(char name[STRS], int capacity, Simulation *sim);

// Events

// void Event0(Client *client);

// void Event1(Client *client);

//};

//

// DESP-C++ (C++ discrete-event simulation package)

// Version 1.1 g++, February 1998

// Jerome Darmont

// LIMOS, Blaise Pascal University (Clermont-Ferrand II), France

//

// eventc.h : Definition of the Event Manager methods

// Varies with the simulated system

//

//

// CLASS EventManager

//

// CLASS EventManager : Constructor

EventManager::EventManager(Simulation *sim) {

 simul=sim;

 // Passive resources instantiation

 // Ex. pr=new Resource("PR",2,simul);

 // Active resources instantiation

 // Ex. ar=new AR("AR",1,simul);

}

// CLASS EventManager : Destructor

EventManager::~EventManager() {

 // Passive resources destruction

 // Ex. delete pr;

 // Active resources destruction

 // Ex. delete ar;

}

// CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {

 switch(code) {

 //case 0: ar->Event10(client);break; // Initial event MANDATORY!!

 // Sample events

 //case 10: ar->Event10(client);break;

 //case 11: ar->Event11(client);break;

 default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());

 }

}

// CLASS EventManager : Statistics initialization for each resource

void EventManager::Init() {

 // Passive resources

 //pr->ResetStats();

DESP-C++: A Discrete-Event Simulation Package for C++ 28/28

 // Active resources

 //ar->ResetStats();

}

// CLASS EventManager : Replication initialization

void EventManager::InitRep() {

 // Scheduler

 simul->Sched()->Purge();

 // Passive resources

 //pr->ResetCounters();

 //pr->PurgeQueue();

 // Active resources

 //ar->ResetCounters();

 //ar->PurgeQueue();

}

// CLASS EventManager : Statistics computation for each resource

void EventManager::Stats() {

 // Passive resources

 //pr->Stats();

 // Active resources

 //ar->Stats();

}

// CLASS EventManager : Statistics display for each resource

void EventManager::DisplayStats() {

 printf("\n*** SIMULATION STATISTICS ***\n\n");

 printf("\n*** PASSIVE RESOURCES\n");

// pr->DisplayStats();

 printf("\n*** ACTIVE RESOURCES\n");

// ar->DisplayStats();

}

//

// CLASS AR

//

// CLASS AR : Constructor

// AR::AR(char name[STRS], int capacity, Simulation *sim):

// Resource(name, capacity, sim) {

// }

// CLASS AR : Event #0

// void AR::Event0(Client *client) {

// code for event #0

// }

// ...

