
HAL Id: hal-01403741
https://hal.science/hal-01403741v1

Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Benchmarking OODBs with a Generic Tool
Jérôme Darmont, Michel Schneider

To cite this version:
Jérôme Darmont, Michel Schneider. Benchmarking OODBs with a Generic Tool. Journal of Database
Management, 2000, 11 (3), pp.16-27. �hal-01403741�

https://hal.science/hal-01403741v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Benchmarking OODBs with a Generic Tool – Submission to JDM 1/22

Benchmarking OODBs with a Generic Tool

Jérôme Darmont, Michel Schneider

Laboratoire d’Informatique (LIMOS)

Université Blaise Pascal – Clermont-Ferrand II

Complexe Scientifique des Cézeaux

63177 Aubière Cedex

FRANCE

E-mail: darmont@libd2.univ-bpclermont.fr, schneider@cicsun.univ-bpclermont.fr

Phone: (33) 473-407-740

Fax: (33) 473-407-444

Abstract: We present in this paper a generic object-oriented benchmark (OCB: the Object

Clustering Benchmark) that has been designed to evaluate the performances of Object-

Oriented Databases (OODBs), and more specifically the performances of clustering policies

within OODBs. OCB is generic because its sample database may be customized to fit any of

the databases introduced by the main existing benchmarks, e.g., OO1 (Object Operation 1) or

OO7. The first version of OCB was purposely clustering-oriented due to a clustering-oriented

workload, but OCB has been thoroughly extended to be able to suit other purposes. Eventual-

ly, OCB’s code is compact and easily portable. OCB has been validated through two imple-

mentations: one within the O2 OODB and another one within the Texas persistent object

store. The performances of a specific clustering policy called DSTC (Dynamic, Statistical,

Tunable Clustering) have also been evaluated with OCB.

Keywords: Object-Oriented Databases, Clustering, Performance Evaluation, Benchmarking.

INTRODUCTION

The need to evaluate the performances of Object-Oriented Database Management Systems

(OODBMSs) is important both to designers and users. Performance evaluation is useful to

designers to determine elements of architecture, choose between caching strategies, and select

Object Identifier (OID) type, among others. It helps them validate or refute hypotheses regard-

ing the actual behavior of an OODBMS. Thus, performance evaluation is an essential compo-

nent in the development process of efficient and well-designed object stores. Users may also

employ performance evaluation, either to compare the efficiency of different technologies

before selecting an OODBMS or to tune a system.

Benchmarking OODBs with a Generic Tool – Submission to JDM 2/22

The work presented in this paper was initially motivated by the evaluation of object clustering

techniques. The benefits induced by such techniques on global performances are widely ac-

knowledged and numerous clustering strategies have been proposed. As far as we know, there

is no generic approach allowing for their comparison. This problem is interesting for both

designers (to set up the corresponding functionalities in the system kernel) and users (for per-

formance tuning).

There are different approaches used to evaluate the performances of a given system: experi-

mentation, simulation, and mathematical analysis. This paper focuses only on the first two

approaches. Mathematical analysis is not considered because it invariably uses strong simpli-

fication hypotheses (Benzaken, 1990; Gardarin et al., 1995) and its results may well differ

from reality.

 Experimentation on the real system is the most natural approach and a priori the simplest

to complete. However, the studied system must have been acquired, installed, and have a real

database implanted in it. This database must also be significant of future exploitation of the

system. Total investment and exploitation costs may be quite high, which can be drawbacks

when selecting a product.

Simulation is casually used in substitution or as a complement to experimentation. It does not

necessitate installing nor acquiring the real system. It can even be performed on a system still

in development (a priori evaluation). The execution of a simulation program is generally

much faster than experimentation. Investment and exploitation costs are very low. However,

this approach necessitates the design of a functioning model for the studied system. The relia-

bility of results directly depends on the quality and the validity of this model. Thus, the main

difficulty is to elaborate and validate the model. A modelling methodology can help and se-

cure these tasks.

Experimentation and simulation both necessitate a workload model (database and operations

to run on this database) and a set of performance metrics. These elements are traditionally

provided by benchmarks. Though interest for benchmarks is well recognized for experimenta-

tion, simulation approaches usually use workloads that are dedicated to a given study, rather

than workloads suited to performance comparisons. We believe that benchmarking techniques

can also be useful in simulation. Benchmarking can help validate a simulation model as com-

pared to experimental results or support a mixed approach in which some performance criteria

necessitating precision are measured by experimentation and other criteria that does not ne-

cessitate precision are evaluated by simulation.

Benchmarking OODBs with a Generic Tool – Submission to JDM 3/22

There is no standard benchmark for OODBs, even if the more popular benchmarks, OO1,

HyperModel, and OO7 are de facto standards. These benchmarks are aimed at engineering

applications (Computer Aided Design, Manufacturing, or Software Engineering). These gen-

eral-purpose benchmarks feature quite simple databases and are not well suited to the study of

clustering, which is very data-dependent. Many benchmarks have been developed to study

particular domains. A fair number of them are more or less based on OO1, HyperModel, or

OO7.

In order to evaluate the performances of clustering algorithms within OODBs, we designed

our own benchmark: OCB (Darmont et al., 1998). It originally had a generic object base and

was clustering-oriented through its workload. It actually appeared afterwards that OCB could

become more general, provided the focused workload was extended, as described in this pa-

per.

The objective of this paper is to present full specifications for a new version of OCB. More

precisely, we address the following points: the generalization of the OCB workload so that the

benchmark becomes fully generic, a comparison of OCB to the main existing benchmarks,

and a full set of experiments performed to definitely validate OCB. These performance tests

were performed on the O2 OODB (Deux, 1991), the Texas persistent object store (Singhal et

al., 1992), and the DSTC clustering technique (Bullat & Schneider, 1996). The results ob-

tained are discussed in this paper.

We are aware of the legal difficulties pointed out by Carey et al. (1993) and Carey et al.

(1994). Indeed, OODBMS vendors are sometimes reluctant to see benchmark results pub-

lished. The objective of our effort is rather to help software designers or users evaluate the

adequacy of their product in a particular environment. OCB should also prove useful at least

for researchers, to benchmark OODB prototypes and/or evaluate implementation techniques.

The remainder of this paper is organized as follows. The de facto standards in object-oriented

benchmarking are briefly presented (OO1, HyperModel, and OO7; as well as the Justitia

benchmark, which is interesting due to its multi-user approach). Next, our proposed bench-

mark, OCB, is described and compared to the other benchmarks. Experiments performed to

validate our benchmark are also presented. We conclude the paper with future research direc-

tions.

Benchmarking OODBs with a Generic Tool – Submission to JDM 4/22

RELATED WORK

The OO1 Benchmark

OO1, also referred to as the ―Cattell Benchmark‖ (Cattell, 1991), was developed early in the

1990’s when there was no appropriate benchmark for engineering applications. OO1 is a sim-

ple benchmark that is very easy to implement. It was used to test a broad range of systems

including object-oriented DBMS, relational DBMS, and other systems such as Sun’s INDEX

(B-tree based) system. The visibility and simplicity of OO1 provide a standard for OODB

benchmarking. A major drawback of this tool is that its data model is too elementary to meas-

ure the elaborate traversals that are common in many types of object-oriented applications,

including engineering applications. Furthermore, OO1 only supports simple navigational and

update tasks and has a limited notion of complex objects (only one composite hierarchy).

The HyperModel Benchmark

The HyperModel Benchmark (Anderson et al., 1990), also referred to as the Tektronix

Benchmark, is recognized for the richness of the tests it proposes. HyperModel possesses both

a richer schema and a wider extent of operations than OO1. This renders it potentially more

effective than OO1 in measuring the performances of engineering databases. However, this

added complexity also makes HyperModel harder to implement, especially since its specifica-

tions are not as complete as OO1’s. The presence of complex objects in the HyperModel

Benchmark is limited to a composition hierarchy and two inheritance links. The scalability of

HyperModel is also not clearly expressed in the literature, whereas other benchmarks explicit-

ly support different and well identified database sizes.

The OO7 Benchmark

OO7 (Carey et al., 1993) is a more recent benchmark than OO1 and HyperModel. It reuses

their structures to propose a more complete benchmark and to simulate various transactions

running on a diversified database. It has also been designed to be more generic than its prede-

cessors and to correct their weaknesses in terms of object complexity and associative accesses.

This is achieved with a rich schema and a comprehensive set of operations.

Benchmarking OODBs with a Generic Tool – Submission to JDM 5/22

However, if OO7 is a good benchmark for engineering applications, it is not the case for other

types of applications such as financial, telecommunication, and multimedia applications (Ti-

wary et al., 1995). Since its schema is static, it cannot be adapted to other purposes. Eventual-

ly, the database structure and operations of OO7 are nontrivial. Hence, the benchmark is quite

difficult to understand, adapt, or even implement. Yet, to be fair, OO7 implementations are

available by anonymous FTP
1
.

The Justitia Benchmark

Justitia (Schreiber, 1994) has been designed to address the shortcomings of existing bench-

marks regarding multi-user functionality, which is important in evaluating client-server envi-

ronments. Justitia is also aimed at testing OODB capacity in reorganizing its database.

Because Justitia’s published specifications lack precision, the author’s work cannot be easily

reused. Furthermore, taking multiple users into account renders the benchmark quite complex.

Justitia is fairly tunable and supposed to be generic, but it still uses structures that are typical

of engineering applications. Its database schema is more limited than those of HyperModel or

OO7. Though the object types are diverse, inter-class relationships are very few. The inherit-

ance graph is substantial, but other types of references are limited to composition.

THE OBJECT CLUSTERING BENCHMARK

Originally, the purpose of OCB was to test the performances of clustering algorithms within

object-oriented systems. OCB is structured around a rich object base including many different

classes and numerous types of references allowing the design of multiple interleaved hierar-

chies. This database is wholly generic. The OCB workload, once clustering-oriented, has been

extended with relevant, significant, and reproducible transactions. Thus, the workload became

fully generic.

The flexibility of OCB is achieved through an extensive set of parameters. Many different

kinds of object bases can be modeled with OCB as well as many different kinds of applica-

tions running on these databases. This is an important feature since there exists no canonical

OODB application. OCB can indeed be easily parameterized to model a generic application or

dedicated to a given type of object base and/or application. OCB is also readily scalable in

1
 ftp://ftp.cs.wisc.edu/OO7

Benchmarking OODBs with a Generic Tool – Submission to JDM 6/22

terms of size and complexity resulting in a wide range of object bases. Usage time can be set

up as well to be rather short or more extensive. Moreover, OCB’s parameters are easy to set

up.

OCB’s code is very compact and easily implemented on any platform. OCB is currently im-

plemented in C++ to benchmark O2 and Texas. Both versions are freely available
2
. The C++

code is less than 1,500 lines long. OCB has also been ported into QNAP2 and C++ simulation

models. QNAP2 is a simulation software that supports a non object-oriented language close to

Pascal. The QNAP2 code dealing with OCB is shorter than 1,000 lines.

The next version of OCB, which is currently in development, shall support multiple users

viewed as processes in a very simple way to test the efficiency of concurrency control. As far

as we know, Justitia is the only benchmark to have actually addressed this problem, though

OO7 also has a multi-user version in development. OO1 was designed as multi-user, but the

published results only involve a single user. One of our research objectives is to provide clear

specifications for our benchmark so that others can readily implement it and provide feedback

to improve it.

OCB Database

The OCB database is highly generic because it is rich, simple to achieve, and very tunable. It

is made of a predefined number of classes (NC) derived from the same metaclass (Figure 1).

A class has a unique logical identifier, Class_ID, and is defined by two parameters: MAXN-

REF, the maximum number of references in the class’ instances; and BASESIZE, an increment

size used to compute the InstanceSize after the inheritance graph is processed at database gen-

eration time. On Figure 1, note that the UML « bind » clause indicates that classes are instan-

tiated from the metaclass using the parameters between brackets.

Since different references can point to the same class, 0-N, 1-N, and M-N links are implicitly

modeled. Each of these CRef references has a type: TRef. There are NTREF different types of

references. A reference type can be, for instance, a type of inheritance, aggregation, or user

association. Eventually, an Iterator is maintained within each class to save references toward

all its instances.

Objects in the database (instances of class OBJECT) are characterized by a unique logical

identifier OID and by their class through the ClassPtr pointer. Each object possesses AT-

Benchmarking OODBs with a Generic Tool – Submission to JDM 7/22

TRANGE integer attributes that may be read and updated by transactions. A string of size In-

stanceSize, the Filler, simulates the actual size the object should occupy on disk.

After instantiating the database schema, an object O of class C points through the ORef refer-

ences to at most MAXNREF objects. These objects are selected from the iterator of the class

referenced by C through the corresponding CRef reference. For each direct reference identified

by an ORef link from an object oi toward an object oj, there is also a backward reference

(BackRef) from oj to oi.

Instances

OB JECT

OID: Integer

Filler: Array [1..ClassP tr.InstanceSize] of Byte

Attribute: Array [1..ATTRANGE] of Integer

Class_ID: Integer

TRef: Array [1..MAXNREF] of TypeRef

Iterator: Array [0..*] of Reference to OBJECT

InstanceSize: Integer

CLASS #1

« bind»

<MAXNREF
1
,BASESIZE

1
>

CLASS #2

« bind»

<MAXNREF
2
,BASESIZE

2
>

CLASS #NC

« bind»

<MAXNREF
NC

,BASESIZE
NC

>

Schema

CLASS

MAXNREF: Integer

BASESIZE: Integer

ClassP tr

1

CRef

1..MAXNREF

ORef

1..ClassP tr.MAXNREF

BackRef

0..*

Figure 1: OCB database schema (UML Static Structure Diagram)

The database generation proceeds through three primary steps.

2
 http://libd2.univ-bpclermont.fr/~darmont/download/

Benchmarking OODBs with a Generic Tool – Submission to JDM 8/22

1) Instantiation of the CLASS metaclass into NC classes: creation of the classes without any

reference, then selection of the classes referenced by each class. The type of the references

(TRef) can either follow the DIST1 random distribution or be set up a priori. The refe-

renced classes belong to the [Class_ID – CLOCREF, Class_ID + CLOCREF] interval that

models a certain locality of reference, as introduced by OO1, but at the class level. The

class reference selection can either follow the DIST2 random distribution or be set up a

priori. NIL references are possible.

2) Database consistency check-up: suppression of all the cycles and discrepancies within the

graphs that do not allow them, e.g., inheritance graphs or composition hierarchies.

3) Instantiation of the NC classes into NO objects: creation of the objects, without any refer-

ence — their class follows the DIST3 random distribution, then random selection of the

objects referenced by each object. The referenced objects belong to the [OID – OLO-

CREF, OID + OLOCREF] interval that models a certain locality of reference at the in-

stance level. The random selection of object references follows the DIST4 random distri-

bution. Reverse references (BackRef) are instantiated when the direct links are instan-

tiated.

The random numbers are generated by the Lewis-Payne random generator (Lewis & Payne,

1973), which is one of the best pseudorandom number generators currently available. The

database parameters are summarized in Table 1.

Parameter name Parameter Default value

NC Number of classes in the database 50

MAXNREF (i) Maximum number of references, per class 10

BASESIZE (i) Instances base size, per class 50 bytes

NO Total number of objects 20,000

NREFT Number of reference types (inheritance, aggregation, etc.) 4

ATTRANGE Number of integer attributes in an object 1

CLOCREF Class locality of reference NC

OLOCREF Object locality of reference NO

MAXRETRY Maximum number of retries when linking objects 3

DIST1 Reference types random distribution Uniform

DIST2 Class references random distribution Uniform

DIST3 Objects in classes random distribution Uniform

DIST4 Objects references random distribution Uniform

Table 1: OCB database parameters

Benchmarking OODBs with a Generic Tool – Submission to JDM 9/22

OCB Workload

The core of the workload is organized around several transactions, the traversals, which are

able to explore the effects of clustering. Several operations that do not benefit from any clus-

tering effort have been re-introduced, e.g., creation and update operations. A full description

of the benchmark’s operations follows.

• Random Access: Access to NRND objects following the DIST5 random distribution.

• Sequential Scan: Browse the instances of a class following the DIST6 random distribution

(Simple Scan). A Range Lookup additionally tests the value of NTEST attributes in each

instance.

• Traversals: Traversal operations are divided into two types: Set-Oriented Accesses (or

Associative Accesses) and Navigational Accesses, which have been empirically found by

Mc Iver (1994) to match breadth-first and depth-first traversals; respectively. Navigational

Accesses are further divided into Simple, depth-first traversals, Hierarchy Traversals that

always follow the same type of reference, and finally Stochastic Traversals that randomly

select the next link to cross. Stochastic traversals effectively simulate the access patterns

caused by real queries, according to Tsangaris & Naughton (1992). An object bears at

most MAXNREF references numbered from 1 to MAXNREF. At each step of a stochastic

traversal, the probability to follow reference number N (N [1, MAXNREF]) is p(N) =

1

2 N
. Each type of traversal proceeds from a root object following the DIST7 random dis-

tribution and up to a predefined depth depending on the traversal type. All these transac-

tions can be reversed to follow the links backward, ―ascending‖ the graphs.

• Update: Update operations are also subdivided into different types. Schema Evolutions

deal with individual insertion and deletion of Class objects. The class to be deleted fol-

lows the DIST8 random distribution. Database Evolutions deal with individual insertion

and deletion of objects. The object to be deleted follows the DIST9 random distribution.

Eventually, Attribute Updates allow attribute changes, either of random accessed objects

(Random Update of NUPDT objects following the DISTA random distribution) or of in-

stances of a class following the DISTB random distribution (Sequential Update).

The execution of transactions by each client (the benchmark is to be multi-user) is organized

according to the following protocol:

Benchmarking OODBs with a Generic Tool – Submission to JDM 10/22

1) cold run of COLDN transactions whose types are determined randomly according to pre-

defined probabilities. The purpose of this step is to fill in the cache in order to observe the

real, stationary behavior of the clustering algorithm implemented in the benchmarked sys-

tem;

2) warm run of HOTN transactions.

A latency time THINK can be introduced between each transaction run. Furthermore, the

whole benchmark execution may be replicated so that the same set of transactions is executed

on different randomly-generated object bases. This feature allows the computation of mean

values and confidence intervals, which are typically more significant than a single measure-

ment. The OCB workload parameters are summarized in Table 2.

Parameter(s) name(s) Parameter(s) Default value(s)

NRND Number of objects accessed in Random Accesses 50

NTEST Number of attributes tested in Range Lookups 1

SETDEPTH, SIMDEPTH,

HIEDEPTH, STODEPTH

Depth: Set-oriented Access, Simple Traversal,

Hierarchy Traversal, Stochastic Traversal

3, 3,

5, 50

NUPDT Number of updated objects in Random Updates 50

DIST5,

DIST6, DIST7,

DIST8, DIST9,

DISTA, DISTB

Random distribution law: Random Access objects,

Sequential Scan classes, Transaction root objects,

Schema Evolution classes, Database Evolution objects,

Random Update objects, Sequential Update classes

Uniform

PRND, PSCAN,

PRANGE, PSET, PSIMPLE,

PHIER, PSTOCH,

PCINSERT, PCDEL, POINSERT,

PODEL, PRNDUP, PSEQUP

Occurrence probability: Random Access, Simple Scan,

Range Lookup, Set Access, Simple Traversal,

Hierarchy Traversal, Stochastic Traversal,

Class Insertion, Class Deletion, Object Insertion,

Object Deletion, Random Update, Sequential Update

0.1, 0.05,

0.05, 0.2, 0.2,

0.2, 0.1, 0.005,

0.005, 0.02,
0.02, 0.025, 0.025

COLDN Number of transactions executed during the cold run 1,000

HOTN Number of transactions executed during the warm run 10,000

THINK Average latency time between two transactions 0

CLIENTN Number of clients 1

RSEED Random generator seed Default seed

Table 2 : OCB workload parameters

The metrics measured by OCB are basically:

• database response time (global and per transaction type) and throughput. In a client-server

environment, times must be measured on the client side with standard system primitives

like time() or getrusage() in C++. The replication of the transactions compensates for

the possible inaccuracy of these functions. If the number of transactions is sufficiently

large, the absence of such system functions can be compensated by a manual timing, as it

is specified for OO1;

Benchmarking OODBs with a Generic Tool – Submission to JDM 11/22

• number of accessed objects (both globally and per transaction type). The computation of

these usage statistics must be included in the benchmark’s code;

• number of Input/Output (I/Os) performed. The I/Os necessary to execute the transactions

and the I/Os needed to cluster the database (clustering overhead) must be distinguished.

I/O usage can be obtained through the C++ getrusage() function or by statistics pro-

vided by the DBMS. For instance, O2 provides such statistics.

Comparison of OCB to the Existing Benchmarks

Genericity of OCB

Since we intend to provide a generic benchmark, our tool must be able to model various types

of databases and applications. In addition, it must also be able to imitate the demeanor of pre-

vious object-oriented benchmarks. Schreiber (1994) claims Justitia bestows this property pro-

vided the benchmark is properly parameterized. However, he does not provide any solid evi-

dence to back up his claim.

We have shown that the OCB database is generic by comparing it to the object bases from

existing benchmarks (Tables 3 and 4). In terms of workload, however, the demonstration of

genericity is more difficult to achieve. OO7 especially offers a wide range of complex transac-

tions. Some of them have been discarded when designing OCB, because they added complexi-

ty without providing much insight. Still, the transactional behavior of OO1, HyperModel, and

Justitia can easily be imitated. Furthermore, some of OCB’s operations, if combined, can be

equivalent to OO7’s complex operations.

Comparison with Gray’s Criteria

Gray (1993) defines four primary criteria concerning the specification of a good benchmark:

1) relevance: it must concern aspects of performance that appeal to the largest number of

potential users;

2) portability: it must be reusable to test the performances of different OODBs;

3) simplicity: it must be feasible and must not require too many resources;

4) scalability: it must be able to be adapted to small or large computer systems, or new archi-

tectures.

Benchmarking OODBs with a Generic Tool – Submission to JDM 12/22

OCB parameter OO1 HyperModel

NC 2 3

MAXNREF (i) Parts: 3

Connections: 2

5 (Parent/Children)

+ 5 (PartOf/Part)

+ NO (RefTo/RefFrom)

+ 1 (Specialization)

BASESIZE (i) Parts: 50 bytes

Connections: 50 bytes

Node: 20 bytes

TextNode: 1000 bytes

FormNode: 20008 bytes

NO 20000 parts

+ 60000 connections

3906 Nodes

+ 125 FormNodes

+ 15500 TextNodes

NREFT 3 4

CREFLOC NC NC

OREFLOC RefZone Level k+1 in the Parent/Children hierarchy

DIST1 Constant (non random) Constant (non random)

DIST2 Constant (non random) Constant (non random)

DIST3 Constant (non random) Constant (non random)

DIST4 Uniform Uniform

Table 3: OCB tuning to imitate OO1 and HyperModel object bases

When designing OCB, we mainly intended to palliate two shortcomings in existing bench-

marks: their lack of genericity and their inability to properly evaluate the performances of ob-

ject clustering techniques. To achieve this goal, we designed a fully tunable benchmark, al-

lowing it either to be generic or to be specialized for a given purpose. The consequences of

this choice on Gray’s criteria are the following:

• relevance: as previously stated, all the transactions from existing benchmarks have been

included in OCB except the most intricate operations from OO7;

• portability: OCB has been used to evaluate the performances of the O2 and the Texas sys-

tems. Both these implementations have been made in C++. OCB has also been included in

simulation models written in QNAP2 and a simulation package called DESP-C++. OCB’s

code is short and simple in all these cases;

• simplicity: complete specifications for our benchmark are provided in this section in order

to support understandability and ease of implementation;

• scalability: OCB is a very flexible benchmark due to an extensive set of parameters. Its

object base can take different sizes and complexity levels and its various transactions can

model a fair number of applications.

The characteristics of the existing benchmarks and OCB according to these criteria are sum-

marized in Table 5.

Benchmarking OODBs with a Generic Tool – Submission to JDM 13/22

OCB parameter OO7 Justitia

NC 10 6

MAXNREF (i) Design object: 0

Atomic part: 20

Connection: 18

Composite part: NumAtomicPerComp + 8

Document: 1

Manual: 1

Assembly: 2

Complex assembly: NumAssmPerAssm + 2

Base assembly: NumComPerAssm x 2 + 1

Module:

elsNumAssmLev

i

i
AssmNumAssmPer

0

Database Entry: 0

Node: 2

CO: 3

PO: PO_ATT_SIZE + 3

BASESIZE (i) Design object: 18 bytes

Atomic part: 12 bytes

Connection: 14 bytes

Composite part: 0

Document: DocumentSize + 44 bytes

Manual: ManualSize + 48 bytes

Assembly: 0

Complex assembly: 0

Base assembly: 0

Module : 0

Database entry: 4 bytes

PO: 0

Node: 4 bytes

CO: 0

DO: DO_ATT_SIZE bytes

SO: SO_ATT_SIZE bytes

NO NumModules modules

+ NumModules manuals

+

1

0

elsNumAssmLev

i

i
AssmNumAssmPer complex assemblies

+ NumPerAssm
NumAssmLevels

 base assemblies

+ NumCompPerModule composite parts

+ NumCompPerModule documents

+ NumAtomicPerComp . NumCompPerModule atomic

parts

+ NumAtomicPerComp . NumCompPerModule . Num-

ConnPerAtomic connections

SECTION . MAXWIDTH .

MAXLEVEL

NREFT 12 3

CREFLOC NC NC

OREFLOC NO NO

DIST1 Constant (non random) Constant (non random)

DIST2 Constant (non random) Constant (non random)

DIST3 Constant (non random) Constant (non random)

DIST4 Constant + Uniform Constant (non random)

Table 4: OCB tuning to imitate OO7 and Justitia object bases

 Relevance Portability Simplicity Scalability

OO1 – – ++ ++ –

HyperModel + + – – –

OO7 ++ + – –

Justitia – – – + +

OCB ++ + + ++

Strong point : + Very strong point : ++ Weak point : – Very weak point : – –

Table 5: Comparison of existing benchmarks to OCB

Benchmarking OODBs with a Generic Tool – Submission to JDM 14/22

VALIDATION EXPERIMENTS

We present in this section performance evaluations performed with OCB on the O2 OODB,

the Texas persistent object store, and the DSTC clustering technique, which is implemented in

Texas. Our research objective did not include a comparison of the performances of O2 and

Texas. This would have been troublesome since our versions of these systems did not run on

the same platform. Furthermore, O2 and Texas are quite different in their philosophy and func-

tionalities. O2 is a full OODB supporting concurrent and secure accesses while Texas is posi-

tioned as an efficient persistent store for C++. We only intended to show that OCB provided

valid performance evaluations.

Since we recommended the use of a complex object base, the feasibility of our specifications

has been checked by measuring the database average generation time function of the database

size (number of classes and number of instances). For schemas containing 10, 20, and 50

classes, the number of instances NO was varied from 5,000 to 50,000. The actual database

size was also measured for all these configurations.

Next, the object base configuration was varied: number of classes NC, number of instances

NO, number of inter-object references MAXNREF. Four database configurations were ob-

tained using NC values of 20 and 50, and MAXNREF values of 5 and 10. Then, the number of

instances in the database was varied from 500 to 20,000 for each configuration. The scope of

this study is limited raw performance results, i.e., the average response time and the average

number of I/Os necessary to execute the operations.

The efficiency of the DSTC clustering technique has been assessed by measuring the perfor-

mances achieved by Texas before and after object clustering, on a medium and on a large da-

tabase. The medium database was OCB’s default object base: 50 classes, 20,000 instances,

about 20 MB with Texas. Technical problems were encountered with Texas/DSTC to cluster a

large database. The problem was circumvented by reducing the amount of available memory

so that the database size was actually big compared to the size of the memory. To observe a

significant gain in performances, DSTC was placed in advantageous conditions by running

very characteristic transactions (hierarchy traversals and simple traversals from predefined

root objects).

Note: All our experiments have been replicated 100 times so that mean tendencies could be

assessed.

Benchmarking OODBs with a Generic Tool – Submission to JDM 15/22

Results for O2

Material Conditions

The O2 server (version 5.0) was installed on an IBM RISC 6000 43P240 biprocessor worksta-

tion. Each processor was a Power PC 604e 166. The workstation had 1 GB ECC RAM. The

operating system was AIX version 4. The O2 server cache size was 16 MB by default.

Object Base Generation

Figure 2 displays the database generation time function of the number of classes and the num-

ber of instances in the base. It shows that generation time increased linearly when the schema

was made of 10 or 20 classes. The increase was more accentuated with 50 classes, because

when the O2 client cache was full, which happened with the biggest databases, an execution

error occurred. To fix this problem, the generation process has been marked out with commits.

These multiple commits ware more costly than a single validation at the end of the generation

process. The feasibility of OCB was also demonstrated, since in the worst case generation

time was less than one hour. Moreover, a given object base could be saved and reused mul-

tiple times so that the generation process could be avoided each time.

Figure 3 shows how the size of the randomly generated database linearly evolved with the

number of classes and instances. Hence, it was easy to foresee the final size of a database

when setting the NC and NO parameters. The default OCB database (50 classes, 20,000 in-

stances) had a mean size of 30 MB, which is average for a benchmark. For instance, the large

database in OO1 has a size of 40 MB. However, we showed that larger databases are possible.

0

500

1000

1500

2000

2500

3000

5000 10000 20000 30000 40000 50000

Number of instances

A
v
e
r
a
g
e
 g

e
n
e
r
a
ti

o
n
 t

im
e
 (

s)

10 classes

20 classes

50 classes

Figure 2: Database generation time (O2)

0

10000

20000

30000

40000

50000

60000

70000

80000

5000 10000 20000 30000 40000 50000

Number of instances

D
a
ta

b
a
se

 a
v
e
r
a
g
e
 s

iz
e
 (

K
B

)

10 classes

20 classes

50 classes

Figure 3: Actual database size (O2)

Benchmarking OODBs with a Generic Tool – Submission to JDM 16/22

Object Base Usage

In Figure 4, we plotted the mean number of I/Os globally necessary to execute the transactions

function of the number of instances in the object base (NO) for our four database configura-

tions. We did the same in Figure 5 for the mean response time.

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 2000 5000 10000 20000

NO

M
e
a
n
 n

u
m

b
e
r
 o

f
I/

O
s

NC = 20,

MAXNREF = 5

NC = 20,

MAXNREF = 10

NC = 50,

MAXNREF = 5

NC = 50,

MAXNREF = 10

Figure 4: Mean number of I/Os (O2)

0

20

40

60

80

100

120

140

500 1000 2000 5000 10000 20000

NO
M

e
a
n
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

NC = 20,

MAXNREF = 5

NC = 20,

MAXNREF = 10

NC = 50,

MAXNREF = 5

NC = 50,

MAXNREF = 10

Figure 5: Mean response time (O2)

We can see that the performances of O2 logically decreased in the three following cases.

• NC increase — This was due to the structure of the OCB schema. The more classes it con-

tained, the deeper the inheritance graph was. Since information is inherited at each level

from the upper level, leaf classes in the inheritance graph have bigger instances than root

classes. Hence, a higher number of classes induced bigger object sizes, so the database oc-

cupied more disk pages.

• MAXNREF increase — The number of objects accessed by transactions that browsed all

the references increased.

• NO increase — The database got bigger and objects were distributed over more disk pag-

es.

The evolution of our two performance criteria was quite similar. This result was expected,

since most treatments performed by the system when running OCB deal with loading objects

from disk.

Results for Texas

Benchmarking OODBs with a Generic Tool – Submission to JDM 17/22

Material Conditions

Texas version 0.5 was installed on a PC Pentium-II 266 with a 64 MB SDRAM. The host op-

erating system was Linux 2.0.30. The swap partition size was 64 MB. Texas has been com-

piled with the GNU C++ compiler version 2.7.2.1.

Object Base Generation

Figure 6 displays the average time for database generation function of the number of instances

and the number of classes in the database. It shows that generation time did not increase li-

nearly. However, the longest generation times were approximately 10 minutes long, which

was an acceptable rate.

Texas did not appear to have the same behavior than O2 because average generation time was

greater when the schema contained few classes. This result can be attributed to two phenome-

na.

• The graph consistency check for acyclic graphs was more complex when the number of

classes was low. In these conditions, the interclass references were dispersed in a reduced

class interval and formed very dense graphs.

• When the database did not fit wholly into the main memory, the system swapped, which

was costly both in terms of I/Os and time.

The actual size of the object bases generated with Texas was always less than 60 MB, as

shown in Figure 8, allowing them to be stored in the 64 MB memory. Hence, the graph con-

sistency check was prevalent while in the case of O2, swap was prevalent. This hypothesis has

been checked with Texas by reducing the available memory under Linux to 16 MB. Figure 7

displays the results of these tests, which confirmed our assumption.

0

100

200

300

400

500

600

700

5000 10000 20000 30000 40000 50000

Number of instances

A
v

e
r
a

g
e
 g

e
n

e
r
a

ti
o

n
 t

im
e
 (

s)

10 classes

20 classes

50 classes

Figure 6: Database generation time (Texas)

0

1000

2000

3000

4000

5000

6000

7000

8000

5000 10000 20000 30000 40000 50000

Number of instances

A
v

e
r
a

g
e
 g

e
n

e
r
a

ti
o

n
 t

im
e
 (

s)

10 classes

20 classes

50 classes

Figure 7: DB generation time with 16 MB memory

Benchmarking OODBs with a Generic Tool – Submission to JDM 18/22

Figure 8 eventually shows how the database real size evolved with the number of instances

and the number of classes in the database. As happened with O2, this evolution was linear.

The average database size was about 20 MB with Texas. The object bases generated with O2

were one third bigger due to the objects storage format: Texas directly uses the memory for-

mat while O2 uses the WiSS (Chou, 1985) record structures that are more elaborate.

0

10000

20000

30000

40000

50000

60000

5000 10000 20000 30000 40000 50000

Number of instances

A
v

e
r
a

g
e
 d

a
ta

b
a

se
 s

iz
e
 (

K
B

)

10 classes

20 classes

50 classes

Figure 8: Actual database size (Texas)

Object Base Usage

In Figure 9, we plotted the mean number of I/Os globally necessary to execute the transactions

function of the number of instances in the object base (NO), for our four database configura-

tions. We did the same in Figure 10 for the mean response time.

0

1000

2000

3000

4000

5000

500 1000 2000 5000 10000 20000

NO

M
e
a
n
 n

u
m

b
e
r
 o

f
I/

O
s

NC = 20,

MAXNREF = 5

NC = 20,

MAXNREF = 10

NC = 50,

MAXNREF = 5

NC = 50,

MAXNREF = 10

Figure 9: Mean number of I/Os (Texas)

0

10

20

30

40

50

500 1000 2000 5000 10000 20000

NO

M
e
a
n
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

NC = 20,

MAXNREF = 5

NC = 20,

MAXNREF = 10

NC = 50,

MAXNREF = 5

NC = 50,

MAXNREF = 10

Figure 10: Mean response time (Texas)

In the case of Texas, the correlation between the mean number of I/Os and the mean response

time appeared tighter than for O2. O2 indeed includes many more features than Texas (securi-

ty, concurrency control, and others) that add an overhead that is not directly linked to disk

accesses.

Benchmarking OODBs with a Generic Tool – Submission to JDM 19/22

Results for DSTC/Texas

The transactions selected for this series of experiments were depth-3 hierarchy traversals and

depth-2 simple traversals. The depth of traversals was reduced regarding OCB’s default para-

meters so that the generated clusters were not too big and the effects of clustering were clear.

Technical problems were also encountered when the database size increased and DSTC at-

tempted to build too large clusters. The traversals have been performed from 100 predefined

root objects and each of them was executed 10 times.

Table 6 displays mean numbers of I/Os and response times concerning database usage before

and after clustering. Our results showed that for both the transaction types used, the DSTC

clustering technique allowed substantial increases in performances. The gain factor was about

5 for a medium object base and about 30 for a large one. We had the confirmation that the

effects of clustering were stronger when the database size was greater than the memory size.

Indeed, the smaller the database size, the more the system has to perform page replacements.

Unused pages do not normally remain in memory for long.

Clustering overhead does not appear in the ―large‖ base column because the medium base was

reused (both the initial and the clustered configurations) with a reduced amount of memory.

The results obtained show that this overhead was very important both in terms of time and

I/Os. This is actually why techniques such as DSTC are usually triggered when the database is

idle. Furthermore, reclustering the database is not a usual operation: a given object clustering

may be employed during several sessions before being reconsidered. It is then important to

determine the period after which clustering becomes advantageous, i.e., the time after which

the induced overhead becomes lower than the achieved performance increase.

 Medium base “Large” base

 Hierarchy traversals Simple traversals Hierarchy traversals Simple traversals

Pre-clustering usage 1890.7 17.7 1837.4 15.7 12504.6 102.1 12068.1 103.1

Post-clustering usage 330.6 3.3 313.1 3.0 424.3 2.9 401.3 2.7

Gain factor 5.7 5.4 5.9 5.2 29.5 35.2 30.1 38.7

Clustering overhead 12799.6 125.8 12708.8 124.3

Table 6: Effect of DSTC on Texas’ performances (mean number of I/Os / mean response time, in ms)

Benchmarking OODBs with a Generic Tool – Submission to JDM 20/22

CONCLUSIONS AND FUTURE RESEARCH

We have presented in this paper the full specifications for a new object-oriented benchmark:

OCB. Its main qualities are its richness, its flexibility, and its compactness. OCB indeed offers

an object base whose complexity has never been achieved before in object-oriented bench-

marks. Furthermore, since this database and likewise the transactions running on it are wholly

tunable through a collection of comprehensive but easily set parameters, OCB can be used to

model many kinds of object-oriented database applications. Eventually, OCB’s code is short,

reasonably easy to implement, and easily portable.

We have shown our benchmark was merely feasible by measuring generation time for its ran-

dom database. It appears that in the worst case, an OCB object base is generated in less than

one hour, which is quite acceptable. Furthermore, the largest databases can be saved for mul-

tiple uses.

We have also illustrated the genericity of our benchmark by showing how it could imitate both

the schema and the operations of four existing benchmarks. The flaws identified in these pre-

vious benchmarks have been underlined and an attempt was made to correct them. We even-

tually demonstrated that OCB could be used as a general-purpose benchmark by evaluating

the performances of the O2 OODB and the Texas persistent object store. We also showed it

could serve as a more specialized benchmark by testing the effects of the DSTC clustering

method on the performances of Texas.

Future work concerning this study chiefly concerns the actual exploitation of OCB. We plan

to benchmark several different systems featuring clustering techniques or not, for the sake of

performance comparison or to determine if their configuration fits a certain purpose. Other

aspects of OODB performance could also be tested, like buffering or indexing.

Future research about the OCB benchmark itself is mainly divided into two axes. First, we

only exposed the principles of a multi-user version of our benchmark. The transition from the

single-user version toward an operational multi-user version is not immediate and requires a

particular care. The aim of this evolution is to evaluate the efficiency of concurrency control

and to see how systems react when faced to a more important and heterogeneous workload.

Since OODBs normally operate in a concurrent environment, their performances cannot be

gauged with a single-user benchmark.

Second, one very different aspect we did not consider yet is the ―qualitative‖ element that is

important to take into account when selecting an OODB. Atkinson, Birnie, Jackson, and Phil-

Benchmarking OODBs with a Generic Tool – Submission to JDM 21/22

brow (1992), Banerjee and Gardner (1995), Kempe, Kowarschick, Kießling, Hitzelgerger, and

Dutkowski (1995) all insist on the fact that functionality is at least as important as raw per-

formances. Hence, criteria concerning these functionalities should be worked out. Sheer per-

formance could be viewed as one of these criteria. Concerning optimization methods, we

could, for instance, evaluate if a clustering heuristic’s parameters are easy to apprehend and

set up or if the algorithm is easy to use or transparent to the user.

Eventually, another point that can be considered is the adequacy of OCB to evaluate the per-

formances of object-relational systems. Our generic model can of course be implemented with

an object-relational system and most the operations are relevant for such a system. Thus, OCB

can allow the comparison of different logical or physical organizations (distribution of the

objects into tables, implementation of associations by values or by pointers, distribution of

tables into tablespaces, index…). OCB can be considered as a candidate benchmark for this

type of systems, even if extensions are needed to take into account additional aspects, regard-

ing Abstract Data Types, in particular.

ACKNOWLEDGEMENTS

The authors would like to thank the editor and anonymous referees for their thoughtful criti-

cisms and suggestions, through which this paper was greatly improved.

REFERENCES

Anderson, T.L., Berre, A.J., Mallison, M., Porter, H.H., & Scheider, B. (1990). The Hyper-

Model Benchmark. International Conference on Extending Database Technology, Venice,

Italy. 317-331.

Atkinson, M.P., Birnie, A., Jackson, N., & Philbrow, P.C. (1992). Measuring Persistent Ob-

ject Systems. 5
th

 International Workshop on Persistent Object Systems, San Miniato (Pisa),

Italy. 63-85.

Banerjee, S., & Gardner, C. (1995). Towards An Improved Evaluation Metric For Object Da-

tabase Management Systems. OOPSLA ‘95 Workshop on Object Database Behavior, Bench-

marks and Performance, Austin, Texas.

Benzaken, V. (1990). An Evaluation Model for Clustering Strategies in the O2 Object-

Oriented Database System. 3
rd

 International Conference on Database Theory, Paris, France.

126-140.

Benchmarking OODBs with a Generic Tool – Submission to JDM 22/22

Bullat, F., & Schneider, M. (1996). Dynamic Clustering in Object Database Exploiting Effec-

tive Use of Relationships Between Objects. ECOOP ’96, Linz, Austria. Lecture Notes in

Computer Science. 1098, 344-365.

Carey, M.J., Dewitt, D.J., & Naughton, J.F. (1993). The OO7 Benchmark. ACM SIGMOD

International Conference on Management of Data, Washington DC. 12-21.

Carey, M.J., Dewitt, D.J., Kant, C., & Naughton, J.F. (1994). A Status Report on the OO7

OODBMS Benchmarking Effort. SIGPLAN Notices. 29(10), 414-426.

Cattell, R.G.G. (1991). An Engineering Database Benchmark. The Benchmark Handbook for

Database Transaction Processing Systems, Jim Gray, Ed. Morgan Kaufmann. 247-281.

Chou, H.-T. (1985). Design and implementation of the Wisconsin storage system. Software

Practice and Experience. 15(10).

Darmont, J., Petit, B., & Schneider, M. (1998). OCB: A Generic Benchmark to Evaluate the

Performances of Object-Oriented Database Systems. 6
th

 International Conference on Extend-

ing Database Technology (EDBT ‘98), Valencia, Spain. Lecture Notes in Computer Science.

1377, 326-340.

Deux, O. (1991). The O2 System. Communications of the ACM. 34(10), 34-48.

Gardarin, G., Gruser, J.-R., & Tang, Z.-H. (1995). A Cost Model for Clustered Object-

Oriented Databases, 21
st
 International Conference on Very Large Data Bases (VLDB ’95),

Zurich, Switzerland. 323-334.

Gray, J., Ed. (1993). The Benchmark Handbook for Database and Transaction Processing

Systems 2
nd

 edition. Morgan Kaufmann.

Kempe, J., Kowarschick, W., Kießling, W., Hitzelgerger, R., & Dutkowski, F. (1995). Ben-

chmarking Object-Oriented Database Systems for CAD. 6
th

 International Conference on Da-

tabase and Expert Systems Applications (DEXA ’95), London, UK. Lecture Notes in Comput-

er Science. 978, 167-176.

Lewis, T.G., & Payne, W.H. (1973). Generalized feedback shift register pseudorandom num-

ber algorithm. Journal ACM. 20(3), 456-468.

Mc Iver, W.J., & King, R. (1994). Self-Adaptive, On-Line Reclustering of Complex Object

Data. ACM SIGMOD Conference, Minneapolis, Minnesota. 407-418.

Schreiber, H. (1994). JUSTITIA: a generic benchmark for the OODBMS selection. 4
th

 Inter-

national Conference on Data and Knowledge Systems in Manufacturing and Engineering,

Shatin, Hong Kong. 324-331.

Singhal, V., Kakkad, S.V., & Wilson, P.R. (1992). Texas: An Efficient, Portable Persistent

Store. 5
th

 International Workshop on Persistent Object Systems, San Miniato, Italy.

Tiwary, A., Narasayya, V.R., & Levy, H.M. (1995). Evaluation of OO7 as a system and an

application benchmark. OOPSLA ‘95 Workshop on Object Database Behavior, Benchmarks

and Performance, Austin, Texas.

Tsangaris, M.M., & Naughton, J.F. (1992). On the Performance of Object Clustering Tech-

niques. ACM SIGMOD International Conference on Management of Data, San Diego, Cali-

fornia. 144-153.

