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Abstract

This paper presents the runs that we submitted in the context of the
TRECVid 2015 Video Hyperlinking task. The task aims at proposing
a set of video segments, called targets, to complement a query video seg-
ment defined as anchor. We used automatic transcripts and automatically
extracted visual concept as input data. Two out of four runs use cross-
modal LDA as a means to jointly make use of visual and audio information
in the videos. As a contrast, one is based solely on visual information,
and a combination of the cross-modal and visual runs is considered. Af-
ter presenting the approaches, we discuss the performance obtained by
the respective runs, as well as some of the limitations of the evaluation
process.

1 Introduction

Recently, the automatic generation of hyperlinks in videos became a subject
of growing interest. Most approaches were proposed in the context of the
Search and Hyperlinking benchmark at MediaEval [3, 2] and, more recently, at
TRECVid [5]. Video hyperlinking consists in establishing links between video
fragments that share the same, or similar, topics, within a video collection. A
link relates a source, called an anchor, and a target, both being video segments
within large video streams. Starting from a set of anchors given by users, tar-
gets are determined in a large collection of video streams for each anchor, based
on similarity criteria. Application wise, the main goal of creating hyperlinks is
to offer information seeking and browsing capabilities in addition to standard
search features. Furthermore, instead of retrieving full documents the aim is
to retrieve only the video segments that are relevant to the predefined anchors,
with specific jump-in points.

The creation of hyperlinks usually implements two steps: first, potential
target segments are extracted over the entire video database; second, the most
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relevant targets are selected for each anchor, relying on content analysis and
similarity measures. In this last step, most of the existing approaches for
video hyperlinking focus on direct pairwise content-based similarity, varying
the weighting schemes and the information used (e.g., named entities, meta-
data, transcripts, visual features), and end up favoring links between anchors
and very similar targets. We believe however that an important aspect of video
hyperlinking is to be able to offer diverse targets, favoring serendipity, i.e., un-
expected targets that are deemed relevant. The cross-modal approaches that
we propose focus on offering increased variety in the links, by searching links
that would not be captured with classical direct content comparison.

Along with a single-modal run (RUN-1) based on visual description and
a rank aggregation run (RUN-4) combining all approaches, we propose a new
way to increase diversity in targets with multimodal information, relying on a
cross-modal generative model inspired by the bilingual LDA model (BiLDA) [8]
(RUN-2 and RUN-3).

In the context of video hyperlinking, we use BiLDA to create a probabilistic
translation model between visual concepts and words pronounced in the videos.
The links are created using content-based comparisons between anchor and tar-
get pairs, translating from one modality to the other. This translation offers a
richer context and allows the creation of diverse links. Additionally, an anchor
that has no visual concept associated will have the chance to be linked to tar-
gets that visually “show” information related to what is “talked about” in the
anchor segment. The same analogy can be made for anchors with no associated
transcripts.

The rest of the paper is organized as follows. First, we briefly present the
data used in the respective runs as well as the segmentation step. Next, we
describe the four runs that were submitted, two of them taking advantage of
the novel cross-modal approach. Finally, we discuss the results and show that
diversity in the links proposed was not rewarded by evaluators in the TRECVid
context.

2 Data and Settings

The design choice that we made was to be as close as possible to a real-life
situation. We thus rely only on data that could be obtained automatically. In
particular, we discarded reference transcription to the benefit of the automatic
transcription offered by LIMSI [1]. These automatic transcriptions correspond
to the audio content description on which the cross-modal runs are built. We
also use the visual concepts extracted by Leuven for visual content descrip-
tion. We chose to ignore the metadata, which were significantly poorer than in
previous years.

Tha task definition states that for each anchor, we have to propose a set of
short-length targets, thus requiring segmentation of long videos. For efficiency
reasons, we used (quasi) fixed-length segments, independent of the anchor. We
chose a 90 seconds split of the video, growing segments after 90 s up to the
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Figure 1: Matrix multiplication for visual scoring

next pause in the video as indicated by breath intakes in the transcripts. This
simple approach may cut coherent segments in several parts, but we judged this
issue not to be crucial as we are looking for short enough segments as targets
(a maximum of two minutes was allowed), that are often considered as jump-in
points.

To skirt issues with very short anchors, we considered the context of the
anchors, i.e., considering 30 seconds before and 30 seconds after the start and
end points respectively.

3 Runs

3.1 Visual similarity (RUN-1)

For the experiments relying on visual information, we use the visual concepts
provided by Leuven. Each video is represented as a set of keyframes for which
visual concepts scores are available. These 1,537 concepts are composed of
the 1,000 classes of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2010 and of 537 classes indicated as ”popular” by ImageNet [10].
For concept detection, images were described with dense SIFT features encoded
with Fisher vectors and classified with a SVM trained using 10K Flickr images
as negative examples. For every keyframe, the classifiers were applied and only
normalized scores higher than 0.7 were kept.

We used the visual concepts as a way to represent anchors and potential
targets. For each, a concept matrix was built. A concept matrix is a matrix of
size N ∗M where N is the number of total concepts that appear in the collection
and M is the number of keyframes available for the video segment. In this case,
N = 1, 537 and M varies between 1 and a few dozens. As in multiple query image
retrieval [6], keyframe concept descriptors were combined by an average over all
keyframes followed by l2 -normalization, yielding a N-dimensional descriptor for
a segment. The similarity between two video segments is finally computed as
the dot product between their respective descriptors, as shown in figure 1 where
all potential targets are considered.
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3.2 Multimodal LDA (RUN-2 and RUN-3)

There exists video segments that are about the same, or similar subject, with-
out sharing much vocabulary or visual information. A way to connect such
segments is to translate the representation of one segment from one modality
to another via a shared representation space reachable from either one of the
modality. Thus, segments can be linked based on the shared information in the
new representation space. To be able to translate from one modality to another,
we propose to decompose the video collection into multimodal topics. A bilin-
gual LDA (BiLDA) topic model is leveraged to learn cross-modal translation
for each topic.

In order to create a bi-modal LDA model, we assume that instead of trans-
lating from a source language (e.g, French) to a target language (e.g., English),
as achieved by BiLDA, we do a translation between a source modality (e.g.,
audio) to a target modality (e.g., visual). To do so, we generate a collection
of parallel documents, one for each modality: audio is obtained by considering
the automatic transcripts, while visual information is obtained through learned
visual concepts scores computed for each keyframe in the video. Based on this
collection, the BiLDA model is trained and the resulting probabilistic transla-
tion model is used to create links between anchors and targets.

3.2.1 Building the cross-modal topical structure

The BiLDA topic model is a bilingual extension of the classical LDA model.
These two latent topic models are based on the idea that there exist latent
variables, i.e., topics, which determine how words in documents have been gen-
erated. Fitting such a generative model means finding the best set of those
latent variables in order to explain the observed data. As a result documents
are seen as mixtures of latent topics, while topics are represented as probability
distributions over the words in the vocabulary.

In the classic LDA model, each document is assumed to have a specific distri-
bution over topics. Meanwhile, BiLDA assumes that each document pair (from
each languages or modalities) shares the same distribution over topics θ. There-
fore, the latent topics learned are language-independent, but each language has
a language-specific association to topics. In other words, each latent topic is
characterized by two probability distributions, one over each language.

In our approach, we learn cross-modal topics instead of cross-lingual ones.
Therefore, instead of having a comparable corpora of documents in two lan-
guages, we have paired bimodal (i.e., audio and visual) comparable documents.
Learning the cross-modal topics is achieved by training BiLDA using Gibbs sam-
pling with standard values for the hyper-parameters α = 50/K and β = 0.01 [9],
where K denotes the number of latent topics. After training, a set of word distri-
butions φ, one for each topic, and of visual concepts distributions ψ are obtained.
These distributions enable to measure the contribution of each word/visual con-
cept for a particular multimodal topic zj . Given the documents in the text
(resp. visual) modality, with vocabulary V1 (resp. V2), the probability that a
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Topic 3 text love, home, feel,
day, life, baby, made

K = 700 visual concepts singer, microphone, sax,
concert, flute

Topic 25 text years, technology, find,
computer, key, future

K = 700 visual concepts tape-player, computer,
equipment, machine

Table 1: Representation of two cross-modal topics, with their top-words and
visual concepts.

word wi ∈ V1 (resp. a visual concept vci ∈ V2) is generated by topic zj is given
by

p(wi|zj) = φj,i =
nwi
zj + β

|V1|∑
x=1

nwx
zj + β|V1|

, (1)

with nwi
zj the number of times topic zj was assigned to an occurrence of wi in

the training documents. The sum in the denominator corresponds to the total
number of word occurrences assigned to topic zj and β is a Dirichlet prior.
Similarly, the probability of a visual-concept being generated by topic zj is
denoted p(vci|zj) = ψj,i.

Two examples of multimodal topics learned on our data set are given in
Tab. 1, where the words/visual concepts with the highest probability are given.
In the example, topics can be characterized as resp. singing and technology and
are adequately represented in both modalities.

3.2.2 Linking anchors and targets

We use the previously introduced model to change the representation space of
the anchor and target segments, moving to the space of topics. Two probabil-
ities are computed for each segment-topic pair, one based on topic-wise word
distributions, the other based on topic-wise visual concepts distributions. The
resulting representations are obtained by computing the probability of each an-
chor (resp. target) segment given the topics learned in both modalities. We
normalize the probabilities over the topics to sum to one. For the textual rep-
resentation of an anchor a, the probability is computed as

p(a|zj) =

(
na∏
i=1

p(wi|zj)

)1/na

, (2)

where na is the size of the vocabulary in the anchor segment. For the visual
concepts representation the probability p(wi|zj) becomes p(vci|zj). The repre-
sentation of the targets in the two modalities is computed similarly.
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Figure 2: Representation of the translation for the anchor and targets segments
and the 4 strategies that can be used for content-based comparisons in this
new space. Histograms present the importance of each topic for each anchor
and target and are computed both on the audial and visual content of the an-
chor/target. Anchors and targets sharing the same, or similar, subject (visually
or audially) have similar distributions over cross-modal topics.

Figure 2 depicts the change in representation space and the content-based
comparisons made within the new space. Taking advantage of the fact that the
topics were jointly learned from audio and visual features, one can use any paired
representation (audio→audio, visual→visual, audio→visual, visual→audio) to
compute a similarity score for an anchor-target pair. We selected audio→visual
(RUN-2) and visual→audio (RUN-3) as two of our runs. The scores were com-
puted after a l2 -normalization of the histograms of topics. For each anchor, the
ranking of the targets is achieved based on the obtained scores.

3.2.3 Reranking on RUN-2 and RUN-3

For the two cross-modal runs (RUN-2 and RUN-3), we used reranking on a short-
list of targets (top 50 obtained for each anchor with cross-modal comparison) in
order to refine the proposed targets. We used a ngram cosine similarity to rerank
visual-audio representations (RUN-2). This ngram cosine was computed with
unigrams cosine (weighted 2), bigrams cosine (weighted 3), and trigrams cosine
(weighted 5). Weights were obtained empirically on preliminary experiments.
Convolutional neural networks (CNN) were used to perform visual reranking
(RUN-3). CNN have shown very high performance on both image classification
and retrieval task [4]. We trained the CNN on the ImageNet ILSVRC classifi-
cation dataset, using the very deep convolutional network architecture from [7].
The network is composed of 13 convolution layers and 3 fully connected layers.
We extracted the output of the second fully connected layer before applying
ReLU and performed l2 normalization. We fused the keyframes descriptors in
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RUN-1 RUN-2 RUN-3 RUN-4
P@5 0.2140 0.0160 0.2580 0.1760
P@10 0.2070 0.0170 0.2240 0.1560

Table 2: Precision at ranks 5 and 10, for Visual (RUN-1), Audio→Visual (RUN-
2), Visual→Audio (RUN-3) and Rank Aggregation (RUN-4).

the same way as RUN-1, by averaging all the concepts in each keyframe and
computed the similarity via a dot product.

3.3 Rank Aggregation (RUN-4)

Our last run uses results from the three previous runs, as well as a pure ngram
scoring. We combine them by adding the rankings and reordering them in
decreasing order. Targets can thus be heavily impacted by a low score on one
of the systems, while homogeneous targets, that perform reasonably well with
most systems, are favored.

4 Results and discussion

4.1 Results

Results are reported in table 2. As we can see, we have a surprisingly low
score for the audio→visual (RUN-2) method. This result is counterbalanced by
the fact that our best run overall is the similar in idea visual→audio (RUN-3)
method. We are still investigating the reasons for such a low score, a time-
consuming task. We also notice that the rank aggregation (RUN-4) achieves
medium scores, and combining ranks does not seem to bring more information.

We can see that the visual→audio (RUN-3) method performs better than
the purely visual method (RUN-1), a hint that using both modalities does offer
better targets. The precisions at 5 and 10 are similar, indicating that for the
method is robust.

4.2 Discussion

We started analysing our best run, the visual→audio (RUN-3) cross-modal run,
and found some surprising results. As opposed to previous years, targets that
come from the exact same show were discarded for evaluation. The rationale
behind this decision was that proposing links that were already watched by the
user is of little interest. However, due to the very nature of the data, we can
still find duplicates, albeit in distinct shows. That is the case for anchors 82-
83-84-85, which all discuss the “No” from Ireland to the Lisbon treaty after a
national referendum. This information was important enough to be reported in
consecutive news shows, using the same content. Hyperlinking to those near-
duplicates, that show the same images and do not bring any new information,
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has been judged as relevant in this task. The evaluation thus continues encour-
aging systems to propose near-duplicates.

On the contrary, targets that are not close enough to the anchor were judged
not relevant, even when they were related and brought new information. As a
matter of example, for anchor 85, we proposed a target that shows a debate
within the U.K. parliament, where members argue for pressuring Ireland into
making a second vote in a new referendum. Unfortunately, this is not uncommon
in the evaluation, and probably the result of having only one annotation per
proposed target, with no way to compute an inter-annotator agreement that
could emphasize the discrepancies that can exist on such a task.

5 Conclusion

In this paper, we described our four runs for the TRECVid 2015 Hyperlink-
ing task, and introduced a novel method for cross-modal models. We showed
that this method brings more diversity in the targets proposed and outperforms
single-modality comparison. While more in-depth study is necessary to better
understand the results of the evaluation, we are confident that the community
will push for the removal of near-duplicate targets in further editions, and en-
courage the design of methods that favorise diversity and serendipity.
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