
HAL Id: hal-01403704
https://hal.science/hal-01403704

Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Simulation of clustering algorithms in OODBs in order
to evaluate their performances

Jérôme Darmont, Amar Attoui, Michel Gourgand

To cite this version:
Jérôme Darmont, Amar Attoui, Michel Gourgand. Simulation of clustering algorithms in OODBs
in order to evaluate their performances. Simulation Practice and Theory, 1997, 5 (3), pp.269-287.
�10.1016/S0928-4869(96)00013-4�. �hal-01403704�

https://hal.science/hal-01403704
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

- 1 -

Simulation of clustering algorithms in OODBs

in order to evaluate their performances

J. Darmont A. Attoui M. Gourgand

Université Blaise Pascal – Clermont-Ferrand II

Laboratoire d'Informatique

Complexe scientifique des Cézeaux

63177 Aubière Cedex

France

E-mail : darmont@libd1.univ-bpclermont.fr

Abstract: A good object clustering is critical to the performance of object-oriented databases.

However, it always involves some kind of overhead for the system. The aim of this paper is to

propose a modelling methodology in order to evaluate the performances of different

clustering policies. This methodology has been used to compare the performances of three

clustering algorithms found in the literature (Cactis, CK and ORION) that we considered

representative of the current research in the field of object clustering. The actual performance

evaluation was performed using simulation. Simulation experiments showed that the Cactis

algorithm is better than the ORION algorithm and that the CK algorithm totally outperforms

both other algorithms in terms of response time and clustering overhead.

Keywords: Clustering, Computer systems performance evaluation methodology, Object-

oriented databases, Simulation

- 2 -

1. INTRODUCTION

 In Object-Oriented Databases (OODBs), a good object clustering is critical to

performance [TSAN91]. Clustering means storing related objects close together on secondary

storage so that when one object is accessed from disk, all its related objects are also brought

into memory. Then access to these related objects is a main memory access that is much faster

than a disk access.

 Several methods can be used to evaluate the performances of a Database Management

System (DBMS). Benchmarks generally propose a standard database and a series of

operations that run on this database. Thus, performance measurement directly depends on the

reactions of the tested DBMS. Several benchmarks have been specifically designed for object-

oriented databases, like the Synthetic Benchmark [KIM90], the HyperModel Benchmark

[ANDE90, BERR91], the OO1 Benchmark [CATT91] or the CluB-0 Benchmark [BANC92].

However, some OODB designers or clustering algorithm authors prefer the use of simulation

[CHAN89, CHEN91, HE93], because simulation allows to specifically measure performance

improvements due to one or another clustering policy. [TSAN92] proposes a dual

performance evaluation method, performing simulations that use the database introduced by

the CluB-0 Benchmark. One last way to determine the advantages of a given clustering

method is mathematical analysis as it is performed by [CHAB93]. This approach is however

limited because the obtained results are qualitative rather than quantitative and sharp

performance criteria cannot be extracted.

 The aim of this paper is to propose a methodology in order to compare the performance of

the different clustering strategies that can be implemented in OODBs. Modelling may lead

either to simulation or to the application of exact analytical methods whenever possible. We

applied our methodology to three object-oriented clustering algorithms that are representative

of the current research in the field of OODBs: Cactis [HUDS89], CK [CHAN90] and ORION

[BANE87, KIM90].

 The main advantage of our approach opposed to the use of benchmarks is that it allows,

by providing a common environment, to specifically compare clustering algorithms, in a way

that is totally independent of any environment associated with the DBMSs that implement the

clustering algorithms we intend to compare. For instance, physical storage methods and

buffering strategies also influence the DBMS global performance. Furthermore, our approach

also allows to a priori study the behavior of algorithms (like CK) that are not implemented in

any DBMS. Thus we can compare their performances to those of already implemented

algorithms.

 This paper is organized as follows. We start by presenting the modelling methodology we

used. Section 3 is dedicated to our study: we apply our modelling methodology to obtain a

knowledge model and an action model. Then we present in Section 4 the three studied

- 3 -

clustering algorithms. The simulation results are given in Section 5. They expand those

already provided by [DARM95]. We end this paper with a conclusion and a brief discussion

about future research directions.

2. MODELLING METHODOLOGY

 OODBs are complex systems. Modelling their behavior may as well be a complex task.

This is the reason why we propose an approach dedicated to the study of such systems. This

modelling approach carry out a model according to an iterative process. [GOUR91]. This

process is divided into four phases (Figure 1).

Real system

Knowledge

model

Action model

Performance

criteria

Phase 4

Actions on
the system

Phase 1

or usual language

Phase 2

Translation into a

mathematical or

Phase 3

Action model

exploitation

Description with

graphical formalism

programming formalism

Figure 1. Modelling iterative process

• Phase 1: Analysis and formalizing of data. This system specification phase leads to the

design of the knowledge model. Designing the knowledge model is a crucial step in the

modelling process.

• Phase 2: Translation of the knowledge model into an action model using a formalism

allowing its exploitation to provide performance criteria.

• Phase 3: Exploitation of the action model to provide performance criteria.

• Phase 4: Results interpretation and decisions about actions to perform on the system.

 The analysis approach of a system in order to model it is performed through several steps:

• decomposition of the system to identify the different levels;

• decomposition of the system into three subsystems;

• logical subsystem specification;

• physical subsystem specification;

- 4 -

• decision subsystem specification;

• specification of the communications between the three subsystems.

Note: The system analysis must be iterative so that the same level of detail is achieved for all

the subsystems.

3. STUDY

 We present in this section the application of the methodology we introduced in the

previous section to the domain of object-oriented databases. Though we focus on the

efficiency of clustering strategies, we do not make any reference in this section to any precise

clustering algorithm.

3.1 Domain analysis

 Proceeding to a domain analysis is equivalent to designing a knowledge model of the

studied system domain. Domain analysis as we performed it specifies the different entities that

characterize object-oriented databases. It is shown by Figure 2 as an entity-relationship (E/R)

model [CHEN76]. We could have preferred to E/R a more sophisticated semantic model ,

such as OMT or OOA; but while simple, E/R provides a description capability that is

particularly adapted to our needs (that are limited to flat representations). Furthermore, the

E/R model’s relative simplicity greatly helps the dialogue between DBMSs designers or users

and modelling experts. Eventually, translating an E/R model into an object-oriented model is

in most cases not difficult.

 The object-oriented approach presents several advantages in the field of modelling. In

addition to the usual advantages of object-oriented approaches (they are natural and reliable

approaches, etc.), it is particularly sensible in the field of modelling that the object-oriented

approach is unifying because, by using the same approach (or even the same formalism) at all

the modelling process levels, communications between the modeller and the modelled system

experts is made a lot easier. Furthermore, transitions between one step of the analysis and the

next step is also made easier by the use of same concepts and notations.

- 5 -

1,N

1,1

0,N

0,N

0,1

0,1

0,N

0,N

0,N

0,N

0,N

0,N

1,1

1,N

1,1

1,N

1,N

1,N

1,N

0,N

0,N

0,N

Access

Characteristic

Instance

Group

Storage

EquivalenceConfigurationVersionInheritance

Composition

Type
Starting object

Segment ID

Attribute ID
Size
Value
Type (copy/ref.)
Usage counter

Page ID
Free space
Page update flag

OID
Size
Access
frequency
Relationship
traversal
frequency:
- ancestor
- descendant
- composite
- component
- equivalent

Class ID
Access
frequency:
- version
- configuration
- equivalence

CREATIONUP DATEQUERY

TRANSAC-
TION

ATTRIBUTE

SEGMENT

PAGE

OBJECT

CLASS

DATABASE

Figure 2. Domain analysis

3.2 Knowledge model

 We need to describe in our model the execution of transactions on an object-oriented

database. We assimilated those transactions to flows running through a system and thus

designed a knowledge model using the SADT actigrams formalism (Figures 3, 4, 5, 6).

- 6 -

Transactions

probabilities

Result

OODB

A-0

1

Perform
Transaction

Figure 3. Knowledge model (level A-0)

Result

Clustering

Message

Transaction

Client

Clustering
Manager

Transaction
Manager

Transactions

probabilities

Perform Transaction

3

2

1

Perform
Clustering

Run

Generate
Transaction

A0

Transaction

Figure 4. Knowledge model (level A0)

- 7 -

Transaction

Object

Object in
Memory

Result

Running
Transaction

Object Manager

Transaction
Manager

Run Transaction

3

Perform
Operation

2

Access Object

1

Extract Object

A2

Figure 5. Knowledge model (level A2)

- 8 -

Object

Object in

Memory

I/O Request

Buffering
Manager

I/O Subsystem

Access Object

2

1

Access Page

Access Page #

A22

Figure 6. Knowledge model (level A22)

3.2.1 Logical subsystem

 The logical subsystem specifies what are the flows running through the system. In the

case of DBMSs, these flows are transactions flows. The transactions are described on two

levels: first, their type and then the steps of their execution. The HyperModel Benchmark

[ANDE90, BERR91] provides 20 different types of transactions. From those 20, we have

isolated and used 15 types of transactions (Figure 7).

CLUST: Reclustering

U1: Attribute update

U2: Instance creation
Update

Q1: Name lookup

Q2: Range lookup

Q3: Group lookup along versions

Q4: Group lookup along configurations

Q5: Group lookup along equivalencies

Q6: Reference lookup along versions

Q7: Reference lookup along configurations

Q8: Sequential scan

Q9: Closure traversal along versions

Q10: Closure traversal along configurations

Q11: Closure traversal along equivalencies

Q12: Random closure traversal

Query

Transaction

OR branches

Figure 7. Transactions’ types

- 9 -

• Name Lookup: Retrieve a randomly selected object.

• Range Lookup: Fetch all the instances of a given class such that a given attribute value is in

a given range.

• Group Lookup: Given a randomly selected starting object, fetch all its descendant versions

(Group lookup along versions), all its component objects (Group lookup along

configuration) or all its equivalent objects (Group lookup along equivalencies).

• Reference Lookup: It is a "reverse" group lookup. Given a randomly selected starting

object, fetch either all its ancestor versions (Reference lookup along versions) or its

composite object (Reference lookup along configurations).

• Sequential scan: Fetch all the instances of a given class.

• Closure Traversal: Given a randomly selected starting object, follow one of the three

structural relationships (i.e., version, configuration or equivalence) to a certain predefined

depth; fetch the resulting object; the followed relationship can be either always the same

(Closure traversal along versions, configurations or equivalencies) or randomly selected

(Random closure traversal).

 The different steps in the execution of the transactions include the following operations:

• select an object to access,

• access to the page number of the disk page containing an object,

• read or write a page on disk (i.e., perform an I/O),

• access to the attributes of an object,

• update an attribute value,

• place an object in a disk page.

3.2.2 Physical subsystem

 The physical resources that make up the physical subsystem are divided into two

categories: active resources that perform some task and passive resources that do not directly

participate into any treatment but are used by the active resources to perform their operations.

 Our model active resources follow:

• AR1: User (transactions generation);

• AR2: Transactions manager (transactions execution);

• AR3: Object manager (access to objects);

• AR4: Buffering manager (application of a buffering strategy);

• AR5: I/O subsystem (disk accesses to pages);

• AR6: Clustering manager (implementation of one of the clustering algorithms that we want

to evaluate).

- 10 -

 Physical passive resources are the following:

• PR1: Main processor,

• PR2: Main memory,

• PR3: I/O processor and disk(s).

 We added a fourth passive resource (PR4: Scheduler) intended to apply a scheduling

policy for the transactions.

3.2.3 Decision subsystem

 The decision subsystem specifies what are the functioning or supervision rules in the

DBMS. Each decision rule listed below as examples (Table 1) is associated to an SADT

activity and is also a method of an object identified in the domain analysis.

Rule code Rule designation Method of object

R1 Generate transaction Transaction

R2.1 Extract object Transaction

R2.2.1 Access page # Object

R2.2.2 Access page Page

R2.3 Perform operation Attribute

R3 Perform clustering Database

Table 1. Decision rules list

• Rule R1 is the transaction random generation by User (AR1). These transactions are then

submitted to the Transaction manager (AR2).

• Rule R2.1 is the extraction of the objects to access according to the transaction type. It is

executed by the Transaction manager (AR2).

• Rule R2.2.1 is the access by the Buffering manager (AR4), via several hash tables, to the

disk page number of the page containing an object to access.

• Rule R2.2.2 is the execution of an I/O performed by the I/O subsystem (AR5).

• Rule R2.3 is the execution of an operation proper to a transaction and concerning the

attributes of the accessed objects by the Transaction manager (AR2).

• Rule R3 represents the execution of an object reclustering by the Clustering manager

(AR6).

- 11 -

3.3 Action Model

 We first translated our knowledge model in a generic action model. Tables 2 and 3

provide the simulation parameters we used for our simulation experiments. After being

validated, the generic action model has been instanced for each tested clustering algorithm.

Parameter name Designation Value References

MULTI Multiprogramming level 10 [GRUE91]

WDSIZE Memory word size 4 bytes [GRUE91]

PGSIZE Disk page size 2048 bytes [CHEN91]

MINTER Mean time between two

transaction generations

4 s [CHAN89]

CCT Time necessary for

concurrency control

0.5 ms [SRIN91]

ACCM Memory word access time 0.0001 ms [GRUE91]

TEST Testing time (in memory) 0.0007 ms [GRUE91]

SEEK Disk seek time 28 ms [CHEN91]

LATENCY Disk latency time 8.33 ms [CHEN91]

TRANSFER Disk transfer time 1.28 ms [CHEN91]

Table 2. Static parameters

Parameter name Designation Default value Range

NCL Number of classes 20 10-30

NOBJ Initial number of objects 400 100-1000

MNVER Mean number of versions

of a class

3 1-5

MNATTR Mean number of attributes 10 5-20

MSATTR Mean size for an attribute 1 word 1-3 words

BUFSIZE Buffer size 10 pages 10-100 pages

MAXDEPTH Maximum depth in

closure traversals

5 3-10

PSUPER Probability of having a

superclass

0.9 0-1

PCOMP Probability of being a

component class

0.5 0-1

PEQUI Probability of having an

equivalent class

0.1 0-1

PQ1-PQ12 Query probabilities 0.065 0-1

PU1 Attribute update

probability

Depends on tested

algorithm

0-1

PU2 Instance creation

probability

0.05 0-1

PCLUST Reclustering probability Depends on tested

algorithm

0-1

Table 3. Dynamic parameters

- 12 -

 To implement our action model (here, a simulation model), we used the QNAP2

(Queuing Network Analysis Package 2
nd

 generation) software, version 9.0. We selected this

simulation language for several reasons:

• QNAP2 is a validated simulation tool;

• QNAP2 allows the use of an object-oriented approach (since version 6.0);

• QNAP2 algorithmic language (derived from PASCAL) allows a relatively easy

implementation of such complex algorithms as clustering algorithms.

 Our actual simulation model (Figure 8) is built as follows.

• User module: After a predefined think time, the user issues the transactions to the

Transaction Manager according to some frequencies of occurrence.

• Transaction Manager module: The Transaction Manager extracts from transactions which

objects need to be accessed or updated, and performs the operations. In the case of a query

(Q1-Q12) or update (U1) operation, object requests are sent to the Object Manager. In the

case of instance creation (U2) or reclustering (CLUST), the Clustering Manager is invoked.

• Object Manager module: The Object Manager extracts the disk page the object belongs to,

and then requests it to the Buffering Manager.

• Buffering Manager module: The Buffering Manager checks if a page is in main memory

and requests it to the I/O Subsystem if it is not. It also deals with page replacement

strategies. We used the following voluntarily simplistic policy: when a new page is needed,

the oldest page in memory is dropped and replaced by the new one.

• Clustering Manager module: The Clustering Manager is activated depending on the

algorithm (i.e., Cactis, CK or ORION) it implements. It deals with reorganizing the

database on secondary storage to achieve better performance.

• I/O Subsystem module: This module deals with physical accesses to secondary storage.

USER

TRANSACTION MGR.

BUFFERING MGR.

CLUSTERING MGR.

I/O SUBSYSTEM

transactions

object requests new objects

object requests

save page

 cluster messages

OBJECT MGR.

results

page in memory

I/O requests

pages

objects

page

requests

objects

- 13 -

Figure 8. QNAP2 simulation model structure

4. STUDIED CLUSTERING ALGORITHMS PRESENTATION

4.1 Cactis [HUDS89]

 Cactis is an object-oriented, multi-user DBMS developed at the University of Colorado. It

is designed to support applications that require rich data modelling capabilities and the ability

to specify functionally-defined data.

 The Cactis clustering algorithm is designed to place objects that are frequently referenced

together into the same block (i.e., page, i.e., I/O unit) on secondary storage. In order to

improve the locality of data references, data is clustered on the basis of usage patterns. A

count of the total number of times each object in the database is accessed is kept, as well as

the number of times each relationship between objects in the process of attribute evaluation or

marking out-of-date is crossed. Then, the database is periodically reorganized on the basis of

this information. The database is packed into blocks using the greedy algorithm shown in

Figure 9.

 This clustering algorithm is also implemented in the Zeitgeist system [FORD88].

Repeat

 Choose the most referenced object in the database that has not yet been assigned a block.

 Place this object into a new block.

 Repeat

 Choose the relationship belonging to some object assigned to the block such that:

 (1) the relationship is connected to an unassigned object outside the block and,

 (2) the total usage count for the relationship is the highest.

 Assign the object attached to this relationship to the block.

 Until the block is full.

Until all objects are assigned blocks.

Figure 9. Cactis clustering algorithm [HUDS89]

4.2 ORION [BANE87, KIM90]

 ORION is a series of next-generation database systems that have been prototyped at MCC

(Microelectronics Computer Technology Corp.) as vehicles for research into the next-

generation database architecture and into the integration of programming languages and

databases. ORION has been designed for Artificial Intelligence (AI), Computer-Aided Design

and Manufacturing (CAD/CAM) and Office Information System (IOS) applications.

- 14 -

 ORION supports only a simple clustering scheme. Instances of the same class are

clustered in the same physical segment (i.e., a number of blocks or pages). Each class is

associated with one single segment.

 Composite objects may also be clustered in multi-classes segments. User assistance is

required to determine which classes should share the segment. The user can dynamically issue

a Cluster message containing a “ListOfClassNames” argument specifying the classes that are

to be placed in the same segment.

4.3 CK [CHAN90]

 The CK algorithm (from its authors' names: Chang and Katz) is defined in the

CAD/CAM context. It is not yet implemented in any OODB.

 The CK algorithm is based on a particular inheritance link called instance-to-instance and

inter-objects access frequencies (given by the user at data type creation time) for each kind of

structural relationship (i.e., versions, configurations and equivalencies). These access

frequencies and a computation of the costs of instance-to-instance inherited attributes give the

page where a new object has to be placed. [BULL95]

 The concept of instance-to-instance inheritance is an extension of the classical inheritance

relationship (the IS-A relationship). Instance-to-instance inheritance not only transfers the

existence of attributes from one object to another (like type inheritance), but moreover the

values of these attributes. For example, instance-to-instance inheritance is important in

computer-aided design databases, since a new version tends to resemble its immediate

ancestor. It is useful if a new version can inherit its attributes values, and more importantly its

constraints, from its ancestor.

 The pseudo code of the CK algorithm is provided in the appendix.

5. SIMULATION RESULTS

5.1 Performance criteria

• The first performance criteria we came up with is the mean response time. It is a good

metric for overall performance. Response time is measured for each type of transaction and

takes into account the clustering overhead in the case of queries and updates.

• We also measured the mean number of I/Os, that we further divided into two categories.

Transactions I/Os is the number of I/Os performed to complete regular transactions (i.e.,

- 15 -

queries and updates). Transactions I/Os may be an indication on how well objects are

clustered. Clustering I/O overhead directly gives clustering overhead.

• Storage space is a crucial parameter when speaking of databases. Thus we measured the

mean number of disk pages necessary to each algorithm to cluster the database.

• We last selected the mean system throughput as a performance criteria. However, it

appeared after our simulation experiments that this criteria was not significant since the

average transaction execution time is far less than the mean time between two transaction

generations (4 seconds). Hence, the system throughput was always close to the optimal

(0.25 transaction per second) and did not vary much.

5.2 Results

5.2.1 Effects of the database initial size

 Database size directly influence DBMSs performances, and in particular clustering

algorithms performances. In this series of simulations, we varied the database initial size, i.e.,

the database size before simulation (before new instances are created).

 Mean response time for each clustering algorithm is given by Figure 10. Two graphs are

necessary because each of them use a very different scale. Figure 10 shows indeed that Cactis

is better than ORION (2.5 times better). The CK algorithm performances are far greater than

those of Cactis and ORION (they are 1,100 times better that those of Cactis).

Database inital size (number of objects)

R
e
sp

o
n

se
 t

im
e
 (

m
s)

0

350000

700000

1050000

1400000

1750000

2100000

2450000

100 200 400 600 800 1000

Cactis

ORION

- 16 -

Database inital size (number of objects)

R
e
sp

o
n

se
 t

im
e
 (

m
s)

0

50

100

150

200

250

300

350

100 200 400 600 800 1000

CK

Figure 10. Mean response time function of database initial size

- 17 -

 These results can be explained by looking at the mean number of I/Os (both transactions

I/Os and clustering I/O overhead) function of the database initial size (Figures 11 and 12).

Transactions I/Os giving an idea of how well a clustering algorithm places the objects, we can

deduce from Figure 11 that objects are better clustered by CK and Cactis than by ORION (2.2

times better for Cactis). Cactis even appears to be slightly better (1.3 times) than CK.

Database initial size (number of objects)

T
r
a
n

sa
c
ti

o
n

s
I/

O
s

0
25000
50000
75000

100000
125000
150000
175000
200000

100 200 400 600 800 1000

Cactis

ORION

CK

Figure 11. Mean number of transaction I/O function of database initial size

 The fact that Cactis seems to cluster objects better than CK but shows worse overall

performances can be explained by looking at Figure 12. They show that clustering overhead is

7,000 times greater for Cactis than for CK (clustering overhead for ORION being 1.4 times

greater than for Cactis).

 Such an outstanding performance is due to the true dynamic nature of CK, which is called

only at object creation time and only accesses the object to cluster related objects, and not to

the whole database as Cactis and ORION. Variations in clustering overhead come from

variations in the number of created objects.

- 18 -

Database initial size (number of objects)

C
lu

st
e

r
in

g
 I

/O
 o

v
e

r
h

e
a

d
0

100000
200000
300000
400000
500000
600000
700000
800000

100 200 400 600 800 1000

Cactis

ORION

Database initial size (number of objects)

C
lu

st
e

r
in

g
 I

/O
 o

v
e

r
h

e
a

d

30

32

34

36

38

40

42

100 200 400 600 800 1000

CK

Figure 12. Mean number of clustering I/O function of database initial size

 In terms of disk space, we expected the more sophisticated to use more space. Actually,

the more a clustering algorithm is complex (i.e., the more it clusters object according to

precise rules), the less a large number of objects are likely to share the same physical space

(either page or segment). The mean number of disk pages used (Figure 13), as expected, is

higher for the more complex algorithms, i.e., CK needs 1.7 times as many pages as Cactis and

Cactis needs 2.8 times as many pages as ORION, for which the number of pages increases

linearly.

Database initial size (number of objects)

N
u

m
b

er
 o

f
p

ag
es

0

200

400

600

800

1000

1200

100 200 400 600 800 1000

Cactis

ORION

CK

Figure 13. Mean number of pages function of the database initial size

- 19 -

5.2.2 Effects of the buffer capacity

 This series of simulations has been performed on a database of initial size 400 objects. By

increasing the buffer capacity, we expect a decrease of the number of I/Os. As expected,

Figure 14 shows that transactions I/Os decrease whatever clustering algorithm is used.

Buffer size (pages)

T
r
a
n

sa
c
ti

o
n

s
I/

O
s

0

10000

20000

30000

40000

50000

60000

70000

10 20 30 40 50 60 70 80 90 100

Cactis

ORION

CK

Figure 14. Mean number of transaction I/O function of buffer capacity

 In the case of CK, the decrease is linear. In the case of Cactis, the number of I/Os

decreases faster when the buffer capacity raises from 10 to 40 pages. Then it also becomes

linear. The effect achieved with ORION is more spectacular. These results are due to the fact

that ORION uses a smaller amount of pages than Cactis and Cactis uses a smaller amount of

pages than CK to store the database. Thus, relatively to the database size, the buffer size

increases faster for ORION than for Cactis and CK, hence allowing a greater and "faster"

performance improvement. For instance, a buffer size of 20 pages represents 12 % of the

database size for ORION against 6 % of the database size for Cactis and only 3 % of the

database size for CK.

 A decrease of clustering I/O overhead is also felt with a similar intensity (Figure 15) for

Cactis and ORION because these algorithms scan all the database to reorganize it and thus

take a great benefit from the increase in buffer capacity. In the case of CK, clustering

overhead does not vary because too few objects are accessed each time for the increase in

buffer capacity to be useful.

- 20 -

Buffer size (pages)

C
lu

st
e

r
in

g
 I

/O
 o

v
e

r
h

e
a

d
0

100000

200000

300000

400000

500000

10 20 30 40 50 60 70 80 90 100

Cactis

ORION

Figure 15. Mean number of clustering I/O function of buffer capacity

 Figure 16 allows to measure in terms of global performance the relative performance

improvements as the buffer capacity increases.

Buffer size (pages)

G
a
in

 i
n
 p

e
r
fo

r
m

a
n
c
e
 (

%
)

-60

-40

-20

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

Cactis

ORION

CK

Figure 16. Performance improvements function of buffer capacity

 We conclude that 50 pages seems to be the critical buffer size for Cactis and ORION

(thus 14 % and 31 % of the database size, respectively). Beyond this critical size, performance

improvements due to the increase in buffer capacity are lesser. CK performances are not

significantly affected by variations in buffer size.

5.2.3 Effects of the read/write ratio

 Read/Write ratio is an important factor when seeking to evaluate DBMSs performances.

Furthermore, [CHAN89] claims that CK algorithm performs better when the read/write ratio

is high. For our simulation experiments, we used an initial database of 400 objects and a

buffer size of 10 pages.

- 21 -

 The performance of the Cactis and ORION algorithms decreases when the read/write

ratio decreases. On the contrary, response time decreases along with the read/write ratio in the

case of CK (Figure 17).

Read/write ratio

R
e
sp

o
n

se
 t

im
e
 (

m
s)

0

50000

100000

150000

200000

250000

0.78 0.60 0.42 0.24

Cactis

ORION

Read/write ratio

R
e
sp

o
n

se
 t

im
e
 (

m
s)

0

25

50

75

100

125

150

0.78 0.60 0.42 0.24

CK

Figure 17. Mean response time function of read/write ratio

 Since Object Creation is a write operation, the more the read/write ratio drops, the more

the database size increases, thus implying more clustering overhead and confirming what is

said in [CHAN89]. At the same time, transactions I/Os are slowly decreasing in number for

Cactis and CK. This is because one single instance creation is less costly than, for instance,

such queries as Q2: Range lookup or Q8: Sequential Scan. That explains the raise in

performance for CK, since transactions I/Os drops from 10,000 to 5000 while clustering I/O

overhead only rises from 100 to 500. In the Cactis case, clustering overhead is too important

to compensate the decrease in transactions I/Os. For ORION, transactions I/Os increase

anyway because of the poor clustering ability of the algorithm.

5.2.4 Impact of the query type on performances

 The queries whose types are presented in Section 3 access to objects according to

different schemes. Hence, a clustering policy that is adapted to a certain type of query may not

- 22 -

be adapted to another type. To evaluate the impact of the type of query on global

performances, we measured transactions I/Os, only allowing each time one type of query to

run. Results are summarized in Figure 18.

Query type

T
r
a
n

sa
c
ti

o
n

 I
/O

s

0

50000

100000

150000

200000

250000

300000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Cactis

ORION

CK

Figure 18. Performances function of query type

 These results first confirm those obtained when evaluating clustering capabilities. It is

also blatant that queries that access all the instances of a class (Q2: Range lookup and

Q8: Sequential scan) do not benefit from clustering at all, whatever the clustering algorithm

used.

6. CONCLUSIONS

 Our simulation experiments clearly show that the CK algorithm outperforms both Cactis

and ORION in terms of overall performance. This is due to both a good clustering capability

and to the dynamic conception of the algorithm that allows an extremely low clustering

overhead. Since the CK algorithm is activated only at object creation time and only accesses

the few objects that are related to the newly created object, transactions are never blocked very

long during clustering, as they are when the Cactis or the ORION algorithm is used. (The

Cactis and ORION algorithms have to access all the objects in the database, even several

times in the case of ORION, to reorganize the database; and transactions cannot be run when a

reorganization occurs.) CK good clustering capability is based on the users' hints that specify

the inter-objects access frequencies for each structural relationship and thus allows to cluster

together objects that are likely to be accessed together.

 Our simulations also showed that Cactis had a good clustering capability too, due to the

use of statistics. Indeed, objects access frequencies and relationships use frequencies allow to

cluster together objects that are actually accessed together. Though, the performances of the

Cactis algorithm are greatly handicapped by clustering overhead that increases very quickly

with the number of objects. However, this algorithm has been designed to run when the

- 23 -

database is idle so that reclustering does not alter the database performance. Hence, if

clustering overhead was not taken into account, the Cactis algorithm should perform about as

well as CK algorithm as long as the statistics used during the last reorganization are pertinent.

 In terms of disk space, the ORION algorithm is the less greedy algorithm. Then the Cactis

algorithm follows, using almost half the number of disk pages needed by CK to cluster the

database. However, when reorganizing the database, the Cactis and ORION algorithms need

to build a new set of pages before deleting the old one. Thus they require about twice as much

space as our graphs show. Hence, Cactis and CK are almost equivalent, ORION staying the

less greedy algorithm in terms of disk space.

 We have presented in this paper a methodology allowing the design of a tool enabling the

a priori study or a posteriori comparison of the performances of clustering algorithms. This

tool may be re-used since it is very easy to instance our generic action model with other

clustering policies than those we chose to study. This tool may also be modified. It is

particularly interesting in future developments to take into account buffering management

strategies because it is mostly the use of both clustering and buffering techniques rather than

clustering techniques alone that are found in the literature when speaking of performance

improvement.

 Our modelling methodology itself may also be re-used to model either another

environment, or to build models designed to test the performances of other components of an

OODB, or even to a priori model the global behavior of a DBMS in order to determine some

management strategies to use.

- 24 -

APPENDIX: CK CLUSTERING ALGORITHM [CHAN90]

PROCEDURE cluster_object(target_objet)

BEGIN

 /* step 1: get initial information */

 cluster_policy:=get_policy(); /* Is page splitting enabled? */

 copy_set:=get_by_copy_set(); /* Inherited attributes implemented by copy. */

 ref_set:=get_by_ref_set(); /* Inherited attributes implemented by reference. */

 inh_page_set:=get_all_inh_page(); /* Source pages for inherited attributes. */

 struct_page_set:=get_all_struct_page(); /* Source pages for structural objects. */

 page_set:=inh_page_set+struct_page_set;

 /* step 2: calculate ref_set lookup cost for each page */

 FOR p IN page_set /* If by-reference attribute r is */

 FOR r IN ref_set /* not in page p, storing target object */

 IF r NOT_IN p /* in page p requires one run-time */

 BEGIN /* lookup for attribute r. */

 weight(p):=1/(prob(p,struct_rel));

 Ref_LookUp(p):=Ref_LookUp(p)+weight(p);

 END;

 /* step 3: calculate copy_set lookup and storage cost for each page */

 FOR c IN copy_set /* If by-copy attribute c is not in page */

 FOR p IN page_set /* p, we could either cache it in page p */

 IF c NOT_IN p /* or change its implementation to be */

 BEGIN /* by-reference. */

 weight(p):=1/(prob(p,struct_rel));

 Copy_storage(p):=Copy_storage(p)+size_of(c);

 Copy_LookUp(p):=Copy_LookUp(p)+weight(p);

 END;

 /* step 4: calculate total cost of every page. If by-copy attributes are */

 /* implemented by reference, the total cost of storing target object */

 /* in page p is represented by Total(p,1). Otherwise, the cost */

 /* is represented by Total(p,2). */

 FOR p IN page_set

 Total_cost(p,1):=Ref_LookUp(p)*Lookup_cost+Copy_LookUp(p)*Lookup_cost;

 Total_cost(p,2):=Ref_LookUp(p)*Lookup_cost+Copy_storage(p)*Storage_cost;

 /* step 5: pick up best candidate page and try to insert the object */

 candidate_page:=Minimum(Total_cost);

 IF (cluster_policy EQ no_split)

 WHILE (NOT_FIT(candidate_page))

 candidate_page:=Next_Min(Total_cost);

 IF ((cluster_policy EQ page_split) AND (NOT_FIT(candidate_page))

 Split_page(candidate_page);

END;

- 25 -

REFERENCES

[ANDE90], T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B Scheider, "The

HyperModel Benchmark", International Conference on Extending Database Technology,

Venice, Italy, March 1990

[BANC92], F. Bancilhon, C. Delobel, P. Kanellakis, "Building an Object-Oriented Database

System: The Story of O2", Morgan Kaufmann Publishers, 1992

[BANE87], J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, H.-J. Kim,

"Data Model Issues for Object-Oriented Applications", ACM Transactions on Office

Information Systems, Vol. 5, No. 1, January 1987

[BERR91], A.J. Berre, T.L. Anderson, "The HyperModel Benchmark for Evaluating Object-

Oriented Databases", in "Object-Oriented Databases with Applications to CASE, Networks

and VLSI CAD", Edited by R. Gupta and E. Horowitz, Prentice Hall Series in Data and

Knowledge Base Systems, 1991

[BULL95], F. Bullat, "Regroupement physique d'objets dans les bases de données", to appear

in ISI, Vol. 3, No. 4, September 1995

[CATT91], R.G.G. Cattell, "An Engineering Database Benchmark", in "The Benchmark

Handbook for Database Transaction Processing Systems", Edited by Jim Gray, Morgan

Kaufmann Publishers, 1991

[CHAB93], S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald, "Clustering Techniques for

Object-Oriented Database Systems", 38
th

 IEEE Computer Society International Conference,

San Francisco, February 1993

[CHAN89], E.E. Chang, R.H. Katz, "Exploiting Inheritance and Structure Semantics for

Effective Clustering and Buffering in an Object-Oriented DBMS", ACM SIGMOD

International Conference on Management of Data, Portland, Oregon, June 1989

[CHAN90], E.E. Chang, R.H. Katz, "Inheritance in computer-aided design databases:

semantics and implementation issues", CAD, Vol. 22, No. 8, October 1990

[CHEN76], D. Chen, "The Entity Relationship Model – Toward a Unified View of Data",

ACM Transactions on Database Systems, March 76

[CHEN91], J.R. Cheng, A.R. Hurson, "Effective clustering of complex objects in object-

oriented databases", ACM SIGMOD International Conference on Management of Data,

Denver, Colorado, May 1991

[DARM95], J. Darmont, A. Attoui, M. Gourgand, "Performance Evaluation for Clustering

Algorithms in Object-Oriented Database Systems", Springer Verlag Lecture Notes in

Computer Science, DEXA 95 proceedings, London, September 1995

[FORD88], S. Ford, J. Joseph, D.E. Langworthy, D.F. Lively, G. Pathak, E.R. Perez,

R.W. Peterson, D.M. Sparacin, S.M. Thatte, D.L. Wells, S. Agarwala, "ZEITGEIST: Database

- 26 -

Support for Object-Oriented Programming", 2
nd

 International Workshop on Object-Oriented

Database Systems, Bad Münster am Stein-Ebernburg, FRG, September 1988

- 27 -

[GOUR91], M. Gourgand, P. Kellert, "Conception d'un Environnement de Modélisation des

Systèmes de Production", 3
rd

 Industrial Engineering International Congress, Tours, France,

March 1991

[GRUE91], L. Gruenwald, M.H. Eich, "MMDB Reload Algorithms", ACM SIGMOD

International Conference on Management of Data, Denver, Colorado, May 1991

[HE93], M. He, A.R. Hurson, L.L. Miller, D. Sheth, "An Efficient Storage Protocol for

Distributed Object-Oriented Databases", IEEE Parallel & Distributed Processing, 1993

[HUDS89], S.E. Hudson, R. King, "Cactis: A Self-Adaptive Concurrent Implementation of an

Object-Oriented Database Management System", ACM Transactions on Database Systems,

Vol. 14, No. 3, September 1989

[KIM90], W. Kim, J.F. Garza, N. Ballou, D. Woelk, "Architecture of the ORION Next-

Generation Database System", IEEE Transactions on Knowledge and Data Engineering,

Vol. 2, No. 1, March 1990

[SRIN91], V. Srinivasan, M.J. Carey, "Performance of B-Tree Concurrency Control

Algorithms", ACM SIGMOD International Conference on Management of Data, Denver,

Colorado, May 1991

[TSAN91], M.M. Tsangaris, J.F. Naughton, "A Stochastic Approach for Clustering in Object

Bases", ACM SIGMOD International Conference on Management of Data, Denver, Colorado,

May 1991

[TSAN92], M.M. Tsangaris, J.F. Naughton, "On the Performance of Object Clustering

Techniques", ACM SIGMOD International Conference on Management of Data, San Diego,

California, June 1992

