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Optimal stopping with f -expectations: the irregular

case

Miryana Grigorova ∗ Peter Imkeller † Youssef Ouknine ‡

Marie-Claire Quenez §

Abstract

We consider the optimal stopping problem with non-linear f -expectation (induced

by a BSDE) without making any regularity assumptions on the pay-off process ξ. We

show that the value family can be aggregated by an optional process Y . We charac-

terize the process Y as the Ef -Snell envelope of ξ. We also establish an infinitesimal

characterization of the value process Y in terms of a Reflected BSDE with ξ as the

obstacle. This characterization is established by first showing existence and uniqueness

for the Reflected BSDE with irregular obstacle and also a comparison theorem.

1 Introduction

The classical optimal stopping probem with linear expectations has been largely studied.

General results on the topic can be found in El Karoui (1981) ([8]) where no regularity

assumptions on the pay-off process ξ are made.

In this paper, we are interested in a generalizion of the classical optimal stopping problem

where the linear expectation is replaced by a possibly non-linear functional, the so-called

f -expectation (f -evaluation), induced by a BSDE with Lipschitz driver f . For a stopping

time S such that 0 ≤ S ≤ T a.s. (where T > 0 is a fixed terminal horizon), we define

V (S) := ess sup
τ∈TS,T

Ef
S,τ (ξτ), (1.1)

where TS,T denotes the set of stopping times valued a.s. in [S, T ] and Ef
S,τ(·) denotes the

f -conditional expectation/evaluation at time S when the terminal time is τ .
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The above non-linear problem has been introduced in [10] in the case of a Brownian

filtration and a continuous pay-off process ξ. The problem has been generalized to the case

of a Wiener-Poisson filtration and a right-continuous pay-off process ξ in [32]. To the best of

our knowledge, [13] is the first paper dealing with the stopping problem (1.1) in the case of

a non-right-continuous pay-off process ξ. In [13] the usual assumption of right-continuity of

ξ is replaced by the weaker assumption of right- uppersemicontinuity. In the present paper,

we study problem (1.1) without making any regularity assumptions on ξ. Due to the lack of

regularity the usual approach (cf., e.g., [32], [13]) of linking directly the value family (V (S))

with the solution of a suitably defined Reflected BSDE (and thus avoiding more technical

aggregation questions) is no longer applicable. We are thus led to following a different

approach: With the help of some results from the general theory of processes, we show that

the value family (V (S)) can be aggregated by a unique right-uppersemicontinuous optional

process (Vt)t∈[0,T ]. We characterize (Vt)t∈[0,T ] as the Ef -Snell envelope of ξ, that is, the

smallest strong Ef -supermartingale greater than or equal to ξ. We then turn to establishing

an infinitesimal characterization of the value process (Vt) in terms of a Reflected BSDE where

the pay-off process ξ from (1.1) plays the role of a lower obstacle.

Let us recall that reflected BSDEs have been introduced by El Karoui et al. in the seminal

paper [9] in the case of a Brownian filtration and a continuous obstacle, and then generalized

to the case of a right-continuous obstacle and/or a larger stochastic basis than the Brownian

one in [16], [3], [17], [11], [18], [32]. In [13], we have formulated a notion of Reflected

BSDE in the case where the obstacle is only right-uppersemicontinuous (but possibly not

right-continuous) and have shown existence and uniqueness of the solution. In the present

paper, we show that the existence and uniqueness result from [13] still holds in the more

general case, without any regularity assumptions on the obstacle. In the recent preprint [21],

existence and uniqueness of the solution (in the Brownian framework) is shown by using a

penalization method. The proof which we give here is different from the proof of [21]; we

rely on an explicit characterization of the solution in the case where the driver f does not

depend on y, z, and k , and on Banach fixed point theorem in the case of a general Lipschitz

driver f . We also establish a comparison result for RBSDEs with irregular obstacles. Due

to the irregularity of the obstacles and the presence of jumps in the filtration, we are led

to using an approach which differs from those existing in the literature on comparison of

RBSDEs (cf. also Remarks 4.3 and 5.5); in particular, we first prove a generalization of

Gal’chouk-Lenglart’s formula (cf. [12] and [25]) to the case of convex functions, which we

then astutely apply in our framework. With the help of our comparison result, we prove that

the (first component of the) solution to the Reflected BSDE with irregular obstacle ξ (and

driver f) coincides with the value process V of problem (1.1), which gives us the desired

infinitesimal characterization for V .

The rest of the paper is organized as follows: In Section 2 we give some preliminary definitions

and some notation. In Section 3 we revisit the classical optimal stopping problem with

irregular pay-off process ξ. We first give some general results such as aggregation, Mertens

decomposition of the value process, minimality of the non-decreasing processes of the Mertens
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decomposition; then, we characterize the value process of the classical problem in terms of the

solution of a Reflected BSDE with irregular obstacle and driver f which does not depend on

the solution. In Section 4 we prove existence and uniqueness of the solution to the Reflected

BSDE with irregular obstacle in the case of a general Lipschitz driver f (Subsection 4.1), and

we establish a comparison theorem for such RBSDEs (Subsection 4.2). Section 5 is devoted

to the study of the non-linear optimal stopping problem (1.1); in particular, we present

the aggregation result, the Snell characterization, and the infinitesimal characterization in

terms of the solution of the RBSDE from Section 4; we also give a financial motivation of

the problem. The Appendix contains a useful corollary of the infinitesimal characterization,

namely a priori estimates with universal constants for RBSDEs with irregular obstacles.

2 Preliminaries

Let T > 0 be a fixed positive real number. Let (E, E ) be a measurable space equipped

with a σ-finite positive measure ν. Let (Ω,F , P ) be a probability space equipped with a

one-dimensional Brownian motion W and with an independent Poisson random measure

N(dt, de) with compensator dt ⊗ ν(de). We denote by Ñ(dt, de) the compensated process,

i.e. Ñ(dt, de) := N(dt, de)− dt⊗ ν(de). Let IF = {Ft : t ∈ [0, T ]} be the (complete) natural

filtration associated with W and N . For t ∈ [0, T ], we denote by Tt,T the set of stopping

times τ such that P (t ≤ τ ≤ T ) = 1. More generally, for a given stopping time ν ∈ T0, we

denote by Tν,T the set of stopping times τ such that P (ν ≤ τ ≤ T ) = 1.

We use also the following notation:

• P (resp. O) is the predictable (resp. optional) σ-algebra on Ω× [0, T ].

• Prog is the progressive σ-algebra on Ω× [0, T ].

• B(R) (resp. B(R2)) is the Borel σ-algebra on R (resp. R
2).

• L2(FT ) is the set of random variables which are FT -measurable and square-integrable.

• L2
ν is the set of (E ,B(R))-measurable functions ℓ : E → R such that ‖ℓ‖2ν :=

∫

E
|ℓ(e)|2ν(de) <

∞. For ℓ ∈ L2
ν, k ∈ L2

ν , we define 〈ℓ, k 〉ν :=
∫

E
ℓ(e)k (e)ν(de).

• B(L2
ν) is the Borel σ-algebra on L2

ν .

• IH2 is the set of R-valued predictable processes φ with ‖φ‖2
IH2 := E

[

∫ T

0
|φt|

2dt
]

< ∞.

• IH2
ν is the set of R-valued processes l : (ω, t, e) ∈ (Ω× [0, T ]×E) 7→ lt(ω, e) which are

predictable, that is (P⊗E ,B(R))-measurable, and such that ‖l‖2
IH2

ν
:= E

[

∫ T

0
‖lt‖

2
ν dt

]

<

∞.
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As in [13], we denote by S2 the vector space of R-valued optional (not necessarily cad-

lag) processes φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |
2] < ∞. By Proposition 2.1 in [13], the

mapping |||·|||S2 is a norm on the space S2, and S2 endowed with this norm is a Banach space.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R
2 × L2

ν → R

(ω, t, y, z, k ) 7→ f(ω, t, y, z, k ) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• E[
∫ T

0
f(t, 0, 0, 0)2dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that
dP ⊗ dt-a.e. , for each (y1, z1, k1) ∈ R

2 × L2
ν , (y2, z2, k2) ∈ R

2 × L2
ν ,

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

Let T > 0 be a fixed terminal time. Let f be a driver. Let ξ = (ξt)t∈[0,T ] be a left-limited

process in S2.

Remark 2.1 Let us note that in the following definitions and results we can relax the as-
sumption of existence of left limits for the obstacle ξ. All the results still hold true provided
we replace the process (ξt−)t∈]0,T ] by the process (ξ

t
)t∈]0,T ] defined by ξ

t
:= lim sups↑t,s<t ξs, for

all t ∈]0, T ]. We recall that ξ is a predictable process (cf. [5, Thm. 90, page 225]). We call
the process ξ the left upper-semicontinuous envelope of ξ.

Definition 2.2 A process (Y, Z, k, A, C) is said to be a solution to the reflected BSDE with
parameters (f, ξ), where f is a driver and ξ is a left-limited process in S2, if

(Y, Z, k, A, C) ∈ S2 × IH2 × IH2
ν × S2 × S2and a.s. for all t ∈ [0, T ]

Yt = ξT +

∫ T

t

f(s, Ys, Zs, ks)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

ks(e)Ñ(ds, de) + AT −At + CT− − Ct−,

(2.2)

Yt ≥ ξt for all t ∈ [0, T ] a.s., (2.3)

A is a nondecreasing right-continuous predictable process with A0 = 0 and such that
∫ T

0

1{Yt>ξt}dA
c
t = 0 a.s. and (Yτ− − ξτ−)(A

d
τ − Ad

τ−) = 0 a.s. for all predictable τ ∈ T0,T ,

(2.4)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0

and such that (Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T . (2.5)
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Here Ac denotes the continuous part of the process A and Ad its discontinuous part.

Equations (2.4) and (2.5) are referred to as minimality conditions or Skorokhod conditions.
For real-valued random variables X and Xn, n ∈ IN , the notation "Xn ↑ X" will stand

for "the sequence (Xn) is nondecreasing and converges to X a.s.".

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at

t. We denote by ∆+φt := φt+ −φt the size of the right jump of φ at t, and by ∆φt := φt−φt−

the size of the left jump of φ at t.

Definition 2.3 Let τ ∈ T0. An optional process (φt) is said to be right upper-semicontinuous

(r.u.s.c.) along stopping times if for all stopping time τ ∈ T0 and for all nonincreasing
sequence of stopping times (τn) such that τn ↓ τ a.s. , φτ ≥ lim supn→∞ φτn a.s..

3 The classical optimal stopping problem

Let (ξt)t∈[0,T ] be a left-limited process belonging to S2, called the reward process. Let f =

(ft)t∈[0,T ] be a predictable process with E[
∫ T

0
f 2
t dt] < +∞, called the instantaneous reward

process. For each S ∈ T0,T , we define the value function Y (S) at time S by

Y (S) := ess sup
τ∈TS,T

E[ξτ +

∫ τ

S

fudu | FS]. (3.6)

3.1 General results

Lemma 3.1 (i) There exists a ladlag optional process (Yt)t∈[0,T ] which aggregates the family
(Y (S))S∈T0,T (i.e. YS = Y (S) a.s. for all S ∈ T0,T ).
Moreover, the process (Yt+

∫ t

0
fudu)t∈[0,T ] is the smallest strong supermartingale greater

than or equal to (ξt +
∫ t

0
fudu)t∈[0,T ].

(ii) We have YS = ξS ∨ YS+ a.s. for all S.

(iii) For each S ∈ T0,T and for each λ ∈]0, 1[, we set

τλS := inf{t ≥ S , λYt(ω) ≤ ξt}.

The process (Yt +
∫ t

0
fudu)t∈[0,T ] is a martingale on [S, τλS ].

Proof. These results follow from results of classical optimal stopping theory. For a sketch

of the proof of the first two assertions, the reader is referred to the proof of Proposition A.5

in the Appendix of [13] (which still holds for a general process ξ ∈ S2). The last assertion

corresponds to a result of optimal stopping theory (cf. [26], [8] or Lemma 2.7 in [22]). Its

proof is based on a penalization method, introduced by Maingueneau (1978) ([26]), which

does not require any regularity assumption on the reward process ξ. �
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Remark 3.2 It follows from (ii) in the above lemma that ∆+YS = 1{YS=ξS}∆+YS a.s.

Theorem 3.1 (i) The value process Y of Lemma 3.1 belongs to S2 and admits the following
(Mertens) decomposition:

Yt = −

∫ t

0

fudu+Mt − At − Ct− for all t ∈ [0, T ] a.s., (3.7)

where M is a square integrable martingale, A is a nondecreasing right-continuous pre-
dictable process such that A0 = 0, E(A2

T ) < ∞, and C is a nondecreasing right-
continuous adapted purely discontinuous process such that C0− = 0, E(C2

T ) < ∞.

(ii) For each τ ∈ T0,T , we have ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s.

(iii) For each predictable τ ∈ T0,T , we have ∆Aτ = 1{Yτ−= ξτ−}∆Aτ a.s.

(iv) The continuous part Ac of A satisfies the equality
∫ T

0
1{Yt>ξt}dA

c
t = 0 a.s.

Proof. By Lemma 3.1 (i), the process (Yt +
∫ t

0
fudu)t∈[0,T ] is a strong supermartingale.

Moreover, it can be shown (cf. [13]) that

E[ess sup
S∈T0,T

|YS|
2] ≤ cE[X2] ≤ cT‖f‖2IH2 + c|||ξ|||2S2, (3.8)

Hence, the process (Yt +
∫ t

0
fudu)t∈[0,T ] is in S2 (a fortiori, of class (D)). Applying Mertens

decomposition for strong supermartingales of class (D) (cf.,e.g., [6, Theorem 20, page 429,

combined with Remark 3(b), page 205] and [6, Appendix 1, Thm.20, equalities (20.2)])

gives the decomposition (3.7), where M is a cadlag uniformly integrable martingale, A is a

nondecreasing right-continuous predictable process such that A0 = 0, E(AT ) < ∞, and C is

a nondecreasing right-continuous adapted purely discontinuous process such that C0− = 0,

E(CT ) < ∞. By applying the same arguments as in the proof of Lemma 3.3 (step 3) in [13],

we show that A ∈ S2 and C ∈ S2, which gives the assertion (i).

Let τ ∈ T0,T . By Remark 3.2 together with Mertens decomposition (3.7), we get ∆Cτ =

−∆+Yτ a.s. It follows that ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s. , which corresponds to (ii).

From Lemma 3.1 (iii) together with Mertens decomposition (3.7), it follows that, for each

S ∈ T0,T and for each λ ∈]0, 1[, we have

AS = Aτλ
S

a.s. (3.9)

Assertion (iii) (concerning the jumps of A) is due to El Karoui ([8]). Its proof is based

on the equality (3.9). For details, the reader is also referred to the proof of Proposition 2.34

in [8].

Let us now show the assertion (iv). As for the discontinuous part of A, the proof is based

on the equality (3.9), and also on some analytic arguments similar to those used in the proof

of Theorem D13 in Karatzas and Shreve (1998) ([20]).
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We have to show that
∫ T

0
(Yt−ξt)dA

c
t = 0 a.s. , or, equivalently, that

∫ T

0
(Yt−−ξt−)dA

c
t = 0

a.s. (since Ac is continuous). Without loss of generality, we can assume that for each ω, the

map t 7→ Ac
t(ω) is continuous, that the maps t 7→ Yt(ω) and t 7→ ξt(ω) are left-limited, and

that, for all λ ∈]0, 1[∩Q and t ∈ [0, T [∩Q, we have At(ω) = Aτλt
(ω). Let us denote by J (ω)

the set on which the nondecreasing function t 7→ Ac
t(ω) is “flat”:

J (ω) := {t ∈]0, T [ , ∃δ > 0 with Ac
t−δ(ω) = Ac

t+δ(ω)}

The set J (ω) is clearly open and hence can be written as a countable union of disjoint

intervals: J (ω) = ∪i]αi(ω), βi(ω)[. We consider

Ĵ (ω) := ∪i]αi(ω), βi(ω)] = {t ∈]0, T ] , ∃δ > 0 with Ac
t−δ(ω) = Ac

t(ω)}. (3.10)

We have
∫ T

0
1Ĵ (ω)dA

c
t(ω) =

∑

i(A
c
βi(ω)

(ω)−Ac
αi(ω)

(ω)) = 0. Hence, the nondecreasing function

t 7→ Ac
t(ω) is “flat” on Ĵ (ω). We now introduce

K(ω) := {t ∈]0, T ] s.t. Yt−(ω) > ξt−(ω)}

We next show that for almost every ω, K(ω) ⊂ Ĵ (ω), which clearly provides the desired

result. Let t ∈ K(ω). Let us prove that t ∈ Ĵ (ω). By (3.10), we thus have to show

that there exists δ > 0 such that Ac
t−δ(ω) = Ac

t(ω). Since t ∈ K(ω), we have Yt−(ω) >

ξt−(ω). Hence, there exists δ > 0 and λ ∈]0, 1[∩Q such that t − δ ∈ [0, T [∩Q and for

each r ∈ [t − δ, t[, λYr(ω) > ξr(ω). By definition of τλt−δ(ω), it follows that τλt−δ(ω) ≥ t.

Now, we have Ac
τλ
t−δ

(ω) = Ac
t−δ(ω). Since the map s 7→ Ac

s(ω) is nondecreasing, we derive

that Ac
t(ω) = Ac

t−δ(ω), which implies that t ∈ Ĵ (ω). We thus have K(ω) ⊂ Ĵ (ω), which

completes the proof. �

Remark 3.1 We see from the above proof that Theorem 3.1 also holds true in the case of a
general filtration assumed to satisfy the usual hypotheses.

Remark 3.2 The assertion (iv) of Theorem 3.1 generalizes a result shown in [21] (cf. Propo-
sition 7.3) in a Brownian framework. The proof given in [21] uses analytic arguments which
are different from the ones used in our proof.

3.2 Characterization of the value function as the solution of an

RBSDE

Using Theorem 3.1, we show that the value process Y of the optimal stopping problem

(3.6) solves the RBSDE from Definition 2.2 with parameters the driver process (ft) and the

obstacle (ξt), and that, moreover, Y is the unique solution of the RBSDE. We thus have an

"infinitesimal characterization" of the value process Y .
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Theorem 3.2 Let Y be the value process of the optimal stopping problem (3.6). Let A and C

be the non decreasing processes associated with the Mertens decomposition (3.7) of Y . There
exists a unique pair (Z, k) ∈ IH2 × IH2

ν such that the process (Y, Z, k, A, C) is a solution of
the RBSDE from Definition 2.2 associated with the driver process f(ω, t, y, z, k ) = ft(ω) and
the obstacle (ξt). Moreover, the solution of this RBSDE is unique.

Proof. The proof relies on Theorem 3.1 and the same arguments as in the proof given in

the case of a right-uppersemicontinuous (r.u.s.c.) obstacle ξ (cf. [13]).

By Lemma 3.1 (ii), the value process Y corresponding to the optimal stopping problem

(3.6) satisfies YT = Y (T ) = ξT a.s. and Yt ≥ ξt, 0 ≤ t ≤ T , a.s. By Theorem 3.1 (ii),

the process C of the Mertens decomposition of Y (3.7) satisfies the minimality condition

(2.5). Moreover, by Theorem 3.1 (iii) and (iv), the process A satisfies the minimality

condition (2.4). By the martingale representation theorem (cf., e.g., Lemma 2.3 in [35])

there exists a unique predictable process Z ∈ IH2 and a unique predictable k ∈ IH2
ν such

that dMt = ZtdWt +
∫

E
kt(e)Ñ(dt, de). The process (Y, Z, k, A, C) is thus a solution of the

RBSDE (2.2) associated with the driver process (ft) and with the obstacle ξ.

Let us show the uniqueness of the solution. We note that the a priori estimates provided

in [13] (cf. [13, Lemma 3.2]) still hold in our framework. Using these estimates and the same

arguments as in step 5 of the proof of Lemma 3.3 in [13], we obtain the desired result. �

4 Reflected BSDE with a non-linear driver and irregular

obstacle

4.1 Existence and uniqueness of the solution

In Theorem 3.2 of the previous section, we have shown that, in the case where the driver

does not depend on y, z, and k , the RBSDE from Definition 2.2 admits a unique solution.

Using this theorem and the same arguments as in [13], we derive the following existence and

uniqueness result in the case of a general Lipschitz driver f .

Theorem 4.3 (Existence and uniqueness of the solution of the RBSDE) Let ξ be
a left-limited process in S2 and let f be a Lipschitz driver. The RBSDE with parameters
(f, ξ) from Definition 2.2 admits a unique solution (Y, Z, k, A, C) ∈ S2×IH2×IH2

ν ×S2×S2.

Proof. The proof relies on the existence and uniqueness result for RBSDEs with a driver

which does not depend on the solution (Theorem 3.2), the a priori estimates provided in [13]

(cf. [13, Lemma 3.2]), which still hold in our framework, and a fixed point theorem. For

details, the reader is referred to the proof of Theorem 3.4 in [13]. �

Remark 4.1 In [21] the above existence and uniqueness result is shown by using a penaliza-
tion method. Our approach provides an alternative proof of this result.
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4.2 Comparison theorem

The following lemma will be used in the proof of the comparison theorem for RBSDEs with

irregular obstacles. The lemma can be seen as an extension of Theorem 66 of [30, Chapter

IV] from the case of right-continuous semimartingales to the more general case of strong

optional semimartingales.

Lemma 4.2 Let X be a (real-valued) strong optional semimartingale with decomposition
X = X0 + M + A + B, where M is a local (cadlag) martingale, A is a right-continuous
adapted process of finite variation such that A0 = 0, B is a left-continuous adapted purely
discontinuous process of finite variation such that B0 = 0. Let f : R −→ R be a convex
function. Then, f(X) is a strong optional semimartingale. Moreover, denoting by f ′ the
left-hand derivative of the convex function f , we have

f(Xt) = f(X0) +

∫

]0,t]

f ′(Xs−)d(As +Ms) +

∫

[0,t[

f ′(Xs)dBs+ +Kt,

where K is a nondecreasing adapted process such that

∆Kt = f(Xt)− f(Xt−)− f ′(Xt−)∆Xt and ∆+Kt = f(Xt+)− f(Xt)− f ′(Xt)∆+Xt.

Note that the process K in the above lemma is in general neither left-continuous nor

right-continuous.

Proof: Our proof follows the proof of Theorem 66 of [30, Chapter IV] with suitable changes.

Step 1 We assume that X is bounded; more precisely, we assume that there exists N ∈ IN

such that |X| ≤ N . We know (cf. [30]) that there exists a sequence (fn) of twice continuously

differentiable convex functions such that (fn) converges to f , and (f ′
n) converges to f ′ from

below. By applying Gal’chouk-Lenglart’s formula (cf. [12] and [25]) to fn(Xt), we obtain for

all τ ∈ T0,T

fn(Xτ ) = fn(X0) +

∫

]0,τ ]

f ′
n(Xs−)d(As +Ms) +

∫

[0,τ [

f ′
n(Xs)dBs+ +Kn

τ , a.s., where (4.11)

Kn
τ :=

∑

0<s≤τ

[fn(Xs)− fn(Xs−)− f ′
n(Xs−)∆Xs] +

∑

0≤s<τ

[fn(Xs+)− fn(Xs)− f ′
n(Xs)∆+Xs]

+
1

2

∫

]0,τ ]

f ′′
n(Xs−)d〈M

c,M c〉s a.s.

(4.12)

We show that (Kn
τ ) is a convergent sequence by showing that the other terms in Equation

(4.11) converge. The convergence
∫

]0,τ ]
f ′
n(Xs−)d(As + Ms) −→

n→∞

∫

]0,τ ]
f ′(Xs−)d(As + Ms) is

shown by using the same arguments as in the proof of [30, Thorem 66, Ch. IV]. The con-

vergence of the term
∫

[0,τ [
f ′
n(Xs)dBs+, which is specific to the non-right-continuous case,

9



is shown by using dominated convergence. We conclude that (Kn
τ ) converges and we set

Kτ := limn→∞Kn
τ . The process (Kt) is adapted as the limit of adapted processes. Moreover,

we have from Eq. (4.12) and from the convexity of fn that, for each n, Kn
t is nondecreasing

in t. Hence, the limit Kt is nondecreasing.

Step 2 We treat the general case where X is not necessarily bounded by using a localization

argument similar to that used in [30, Th. 66, Ch. IV].

�

We make the following assumption on the driver (cf., e.g., Theorem 4.2 in [31]). The

assumption will be used, in particular, in the proof of the comparison theorem for RBSDE.

Assumption 4.1 Assume that dP ⊗ dt-a.e. for each (y, z, k1, k2) ∈ R2 × (L2
ν)

2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈θy,z,k1,k2t , k1 − k2〉ν ,

with
θ : [0, T ]× Ω× R2 × (L2

ν)
2 → L2

ν ; (ω, t, y, z, k1, k2) 7→ θ
y,z,k1,k2
t (ω, ·)

P ⊗ B(R2)⊗ B((L2
ν)

2)-measurable, satisfying ‖θy,z,k1,k2t (·)‖ν ≤ K for all (y, z, k1, k2) ∈ R2 ×

(L2
ν)

2, dP ⊗ dt-a.e. , where K is a positive constant, and such that

θ
y,z,k1,k2
t (e) ≥ −1, (4.13)

for all (y, z, k1, k2) ∈ R2 × (L2
ν)

2, dP ⊗ dt⊗ dν(e)− a.e.

The above assumption is satisfied if, for example, f is of class C1 with respect to k such

that ∇kf is bounded (in L2
ν) and ∇kf ≥ −1 (cf. Proposition A.2. in [7]).

Theorem 4.2 (Comparison) Let ξ ∈ S2, ξ′ ∈ S2 be two left-limited processes. Let f be
a Lipschitz driver satisfying Assumption 4.1. Let (Y, Z, k, A, C) (resp. (Y ′, Z ′, k′, A′, C ′)) be
the solution of the RBSDE associated with obstacle ξ (resp. ξ′) and with driver f . If ξt ≤ ξ′t,
0 ≤ t ≤ T a.s., then Yt ≤ Y ′

t , 0 ≤ t ≤ T a.s.

Proof: We set Ȳt = Yt − Y ′
t , Z̄t = Zt − Z ′

t, k̄t = kt − k′
t, Āt = At − A′

t, C̄t = Ct − C ′
t, and

f̄t = f(t, Yt−, Zt, kt)− f(t, Y ′
t−, Z

′
t, k

′
t). Then,

−dȲt = f̄tdt+ dĀt + dC̄t− − Z̄tdWt −

∫

E

k̄t(e)Ñ(dt, de), ȲT = 0.

Applying Lemma 4.2 to the positive part of Ȳt, we obtain

Ȳ +
t =−

∫

]t,T ]

1{Ȳs−>0}Z̄sdWs −

∫

]t,T ]

∫

E

1{Ȳs−>0}k̄s(e)Ñ(ds, de) +

∫

]t,T ]

1{Ȳs−>0}f̄sds

+

∫

]t,T ]

1{Ȳs−>0}dĀs +

∫

[t,T [

1{Ȳs>0}dC̄s + (Kt −KT ).

(4.14)
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We set δt :=
f(t,Yt−,Zt,kt)−f(t,Y ′

t−,Zt,kt)

Yt−−Y ′

t−
1{Ȳt− 6=0} and βt :=

f(t,Y ′

t−,Zt,kt)−f(t,Y ′

t−,Z′

t,kt)

Zt−Z′

t
1{Z̄t 6=0}.

Due to the Lipschitz-continuity of f , the processes δ and β are bounded. We note that

f̄t = δtȲt + βtZ̄t + f(Y ′
t−, Z

′
t, kt) − f(Y ′

t−, Z
′
t, k

′
t). Using this, together with Assumption 4.1,

we obtain

f̄t ≤ δtȲt + βtZ̄t + 〈γt , k̄t〉ν , 0 ≤ t ≤ T, dP ⊗ dt− a.e., (4.15)

where we have set γt := θ
Y ′

t−,Z′

t,k
′

t,kt
t .

For t ∈ [0, T ], let Γt,· be the unique solution of the following forward SDE

dΓτ,s = Γτ,s−

[

δsds+ βsdWs +

∫

E

γs(e)Ñ(ds, de)

]

; Γτ,τ = 1. (4.16)

To simplify the notation, we denote Γt,s by Γs for s ≥ t.

By applying Gal’chouk-Lenglart’s formula to the product (ΓtȲ
+
t ) we get

Γτ Ȳ
+
τ =−

∫ θ

τ

Γs−(1{Ȳs−>0}Z̄s + Ȳ +
s−βs)dWs −

∫ θ

τ

Γs(Ȳ
+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

+

∫ θ

τ

Γs−1{Ȳs−>0}dĀs −

∫ θ

τ

Γs−dK
c
s −

∫ θ

τ

Γs−dK
d,−
s +

∫ θ

τ

Γs1{Ȳs>0}dC̄s

−

∫ θ

τ

ΓsdK
d,+
s −

∫ θ

τ

∫

E

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e))Ñ(ds, de)−

∑

τ≤s≤θ

∆Γs∆Ȳ +
s .

(4.17)

We have
∫ θ

τ
Γs1{Ȳs>0}dC̄s =

∫ θ

τ
Γs1{Ȳs>0}dCs −

∫ θ

τ
Γs1{Ȳs>0}dC

′
s. For the first term, it holds

∫ θ

τ
Γs1{Ȳs>0}dCs = 0. Indeed, {Ȳs > 0} = {Ys > Y ′

s} ⊂ {Ys > ξs} (as Y ′
s ≥ ξ′s ≥

ξs). This, together with the Skorokhod condition for C gives the equality. For the sec-

ond term, it holds −
∫ θ

τ
Γs1{Ȳs>0}dC

′
s ≤ 0, as Γ ≥ 0 and dC ′ is a nonnegative measure.

Hence,
∫ θ

τ
Γs1{Ȳs>0}dC̄s ≤ 0. Similarly, we obtain

∫ θ

τ
Γs−1{Ȳs−>0}dĀs ≤ 0. We also have

−
∫ θ

τ
Γs−dK

c
s ≤ 0 and −

∫ θ

τ
ΓsdK

d,+
s ≤ 0. Hence,

Γτ Ȳ
+
τ ≤−

∫ θ

τ

Γs−(1{Ȳs−>0}Z̄s + Ȳ +
s−βs)dWs −

∫ θ

τ

Γs(Ȳ
+
s−δs + Z̄s1{Ȳs−>0}βs − f̄s1{Ȳs−>0})ds

−

∫ θ

τ

Γs−dK
d,−
s −

∫ θ

τ

∫

E

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e))Ñ(ds, de)−

∑

τ≤s≤θ

∆Γs∆Ȳ +
s .

(4.18)

We compute the last term
∑

τ≤s≤θ ∆Γs∆Ȳ +
s .

Let (ps) be the point process associated with the Poisson random measure N (cf. [6, VIII

Section 2. 67], or [19, Section III §d]).
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We have ∆Γs = Γs−γs(ps) and ∆Ȳ +
s = 1{Ȳs−>0}k̄s(ps)− 1{Ȳs−>0}∆Ās +∆Kd,−

s . Hence,
∑

τ≤s≤θ

∆Γs∆Ȳ +
s =

∑

τ≤s≤θ

(

Γs−1{Ȳs−>0}γs(ps)k̄s(ps) + Γs−γs(ps)∆Kd,−
s

)

=

∫ θ

τ

∫

R∗

Γs−1{Ȳs−>0}γs(e)k̄s(e)N(ds, de) +
∑

τ≤s≤θ

Γs−γs(ps)∆Kd,−
s

=

∫ θ

τ

∫

R∗

Γs−1{Ȳs−>0}γs(e)k̄s(e)Ñ(ds, de) +

∫ θ

τ

Γs−1{Ȳs−>0}〈γs, k̄s〉νds

+
∑

τ≤s≤θ

Γs−γs(ps)∆Kd,−
s .

(4.19)

By plugging this expression in equation (4.18) and by putting together the terms in ”ds”

and in ”dKd,−
s ”, we get

Γτ Ȳ
+
τ ≤−

∫ θ

τ

Γs−(1{Ȳs−>0}Z̄s + Ȳ +
s−βs)dWs

−

∫ θ

τ

Γs−(Ȳ
+
s−δs + Z̄s1{Ȳs−>0}βs + 1{Ȳs−>0}〈γs, k̄s〉ν − f̄s1{Ȳs−>0})ds

−
∑

τ≤s≤θ

Γs−(1 + γs(ps))∆Kd,−
s

−

∫ θ

τ

∫

R∗

Γs−(k̄s(e)1{Ȳs−>0} + Ȳ +
s−γs(e) + 1{Ȳs−>0}γs(e)k̄s(e))Ñ(ds, de).

(4.20)

We have −
∫ θ

τ
Γs−(Ȳ

+
s−1{Ȳs−>0}δs + Z̄s1{Ȳs−>0}βs + 1{Ȳs−>0}〈γs, k̄s〉ν − f̄s1{Ȳs−>0})ds ≤ 0

due to the inequality 4.15. The term −
∑

τ≤s≤θ Γs−(1 + γs(ps))∆Kd,−
s is nonpositive, as

1 + γs ≥ 0 by Assumption 4.1. The stochastic integrals "with respect to dWs" and "with

respect to Ñ(ds, de)" are equal to zero in expectation. We conclude that E[Γτ Ȳ
+
τ ] ≤ 0,

which (as Γτ = 1) implies Ȳ +
τ = 0 a.s. The proof is thus complete. �

Remark 4.3 Note that due to the irregularity of the obstacles, together with the presence of
jumps, we cannot adopt the approaches used up to now in the literature (see e.g. [9], [3],
[32] and [13]) to show the comparison theorem for our RBSDE (cf. also Remark 5.5 for
additional comments).

Definition 4.4 Let f be a Lipschitz driver. For a left-limited process (φt) ∈ S2, we denote
by Ref f [φ] the first component of the solution to the Reflected BSDE with (lower) barrier φ

and with Lipschitz driver f .

The operator Ref f [·] is well-defined due to Theorem 4.3 and to Remark 2.1. Moreover,

Ref f [·] is valued in S2,rusc, where S2,rusc := {φ ∈ S2 : φ is right-uppersemicontinuous (r.u.s.c.)};

this is due to Equation (2.2). We give some properties of the operator Ref f in the following

proposition. Note that equalities (resp. inequalities) between processes are to be understood

in the "up to indistinguishability"-sense.
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Lemma 4.5 Let f be a Lipschitz driver satisfying Assumption 4.1. The operator Ref f :

S2 → S2,rusc, defined in Definition 4.4, has the following properties:

1. The operator Ref f is nondecreasing, that is, for ξ, ξ′ ∈ S2 such that ξ ≤ ξ′ we have
Ref f [ξ] ≤ Ref f [ξ′].

2. If ξ ∈ S2 is a (r.u.s.c.) strong Ef-supermartingale, then Ref f [ξ] = ξ.

3. For each ξ ∈ S2, Ref f [ξ] is a strong Ef -supermartingale and satisfies Ref f [ξ] ≥ ξ.

Remark 4.3 We recall that a strong supermartingale in S2 is necessarily r.u.s.c. (cf., e.g.,
Remark A.16 in [13]).

Proof: The first assertion follows from our comparison theorem for reflected BSDEs with

irregular obstacles (Theorem 4.2).

Let us prove the second assertion. Let ξ be a (r.u.s.c.) strong Ef -supermartingale in S2. By

definition of Ref f , we have to show that ξ is the solution of the reflected BSDE associated

with driver f and obstacle ξ. By the Ef -Mertens decomposition for strong (r.u.s.c.) Ef -

supermartingales shown in Theorem 5.2 in [13] (cf. also [2]), together with the martingale

representation theorem, there exists (Z, k, A, C) ∈ IH2 × IH2
ν ×S2 ×S2 such that a.s. for all

t ∈ [0, T ],

ξt = ξT +

∫ T

t

f(s, Ys, Zs, ks)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

ks(e)Ñ(ds, de) +AT −At +CT− −Ct−,

where A is predictable right-continuous nondecreasing with A0 = 0, and C is adapted right-

continuous nondecreasing and purely discontinuous, with C0− = 0. Moreover, the Skorokhod

conditions (for RBSDEs) are here trivially satisfied. Hence, ξ = Ref f [ξ], which is the desired

conclusion.

The third assertion follows directly from the definition of the solution of a reflected BSDE

and from Proposition A.4 in [13]. �

In the following theorem, we characterize the first component of the solution of the

RBSDE with irregular obstacle ξ in terms of the smallest strong f -supermartingale greater

than or equal to ξ. In the case of a right-continuous obstacle ξ this characterization has

been established in [32]; it has been generalized to the case of a right-upper-semicontinuous

obstacle in [13, Prop. 4.4].

Theorem 4.4 Let (ξt, 0 ≤ t ≤ T ) be a left-limited process in S2 and let f be a Lipschitz
driver satisfying Assumption 4.1. Let (Y, Z, k, A, C) be the solution to the reflected BSDE
with parameters (ξ, f). The first component Y of the solution is the Ef -Snell envelope of ξ,
that is, the smallest strong Ef -supermartingale greater than or equal to ξ.
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Proof: By the previous Lemma 4.5, third assertion, the process Y is a strong Ef -supermartingale

satisfying Y ≥ ξ. It remains to show the minimality property. Let Y ′ be a strong Ef -

supermartingale such that Y ′ ≥ ξ. We have Ref f [Y ′] ≥ Ref f [ξ], due to the nondecreasing-

ness of the operator Ref f (cf. Lemma 4.5, 1st assertion). On the other hand, Ref f [Y ′] = Y ′

(due to Lemma 4.5, 2nd assertion) and Ref f [ξ] = Y (by definition of Y and of the operator

Ref f ). Hence, Y ′ ≥ Y , which is the desired conclusion.

�

5 Optimal stopping with non-linear expectation and ir-

regular pay-off

Let (ξt)t∈[0,T ] be a left-limited process in S2. Let f be a Lipschitz driver satisfying Assumption

4.1.

For each S ∈ T0,T , we consider the random variable

V (S) := ess sup
τ∈TS,T

Ef
S,τ (ξτ). (5.21)

As mentioned in the introduction, the above optimal stopping problem has been studied

in [10] in the case of a continuous pay-off process ξ and a Brownian filtration, then in [32]

in the case of a right-continuous pay-off ξ, and in [13] in the case of a pay-off process which

is only right-upper-semicontinuous. Here, we do not make any regularity assumptions on ξ

(cf. also Remark 2.1).

Under Assumption 4.1 on the driver f , the functional Ef
S,τ(·) is nondecreasing (cf. [31,

Thm. 4.2]). If we interpret ξτ as the profit and loss of a financial position at time τ and the

functional Ef
S,τ(·) as a (nondecreasing) risk measure (cf.,e.g., [29], [33]), then (up to a minus

sign) V (S) can be seen as the minimal risk at time S. The fact that we do not impose any

regularity assumption on the process ξ allows for more flexibility in the modelling (compared

to "the more regular cases"). In particular, our general framework allows for situations

where economic and/or financial shocks affect the financial position ξ immediately after

their occurrence resulting in a (positive or negative) right-hand jump of ξ. If, for instance,

we place ourselves in a situation where the jump times of the Poisson random measure model

times of default (which, being totally inaccessible, cannot be foreseen), it might be plausible

to allow for an immediate, but non-smooth, impact on ξ after the default occurs.

5.1 Preliminary results on the value family

Let us first introduce the definition of an admissible family of random variables indexed by

stopping times in T0,T (or T0,T -system in the vocabulary of Dellacherie and Lenglart [4]).
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Definition 5.1 We say that a family U = (U(τ), τ ∈ T0,T ) is admissible if it satisfies the
following conditions

1. for all τ ∈ T0,T , U(τ) is a real-valued Fτ -measurable random variable.
2. for all τ, τ ′ ∈ T0,T , U(τ) = U(τ ′) a.s. on {τ = τ ′}.
Moreover, we say that an admissible family U is square-integrable if for all τ ∈ T0,T ,

U(τ) is square-integrable.

Lemma 5.3 (Admissibility of the family V ) The family V = (V (S), S ∈ T0,T ) defined
in (5.21) is a square-integrable admissible family.

The proof uses arguments similar to those used in the "classical" case of linear expecta-

tions (cf., e.g., [24]), combined with some properties of f -expectations.

Proof: For each S ∈ T0,T , V(S) is an FS-measurable square-integrable random variable, due

to the definitions of the f -conditional expectation and of the essential supremum (cf. [27]).

Let us prove Property 2 of the definition of admissibility. Let S and S ′ be two stopping

times in T0,T . We set A := {S = S ′} and we show that V (S) = V (S ′), P -a.s. on A. For each

τ ∈ TS,T , we set τA := τ1A + T1Ac . We have τA ≥ S ′ a.s. By using the fact that S = S ′ a.s.

on A, the fact that τA = τ a.s. on A, and a standard property of f -conditional expectations

(cf., e.g., Proposition A.3 in [15]), we obtain

1AE
g
S,τ [ξτ ] = 1AE

g
S′,τ [ξτ ] = Egτ1A

S′,T [ξτ1A] = EgτA1A

S′,T [ξτA1A] = 1AE
g
S′,τA

[ξτA] ≤ 1AV (S ′).

By taking the ess sup over TS,T on both sides, we get 1AV (S) ≤ 1AV (S ′). We obtain the

converse inequality by interchanging the roles of S and S ′.

�

Lemma 5.4 (Optimizing sequence) For each S ∈ T0,T , there exists a sequence (τn)n∈N
of stopping times in TS,T such that the sequence (Ef

S,τn
(ξτn))n∈N is nondecreasing and

V (S) = lim
n→∞

↑ Ef
S,τn

(ξτn) a.s.

Proof: Due to a classical result on essential suprema (cf. [27]), it is sufficient to show that,

for each S ∈ T0,T , the family (ES,τ(ξτ ), τ ∈ TS,T ) is stable under pairwise maximization. Let

us fix S ∈ T0,T . Let τ ∈ TS,T and τ ′ ∈ TS,T . We define A := { Ef
S,τ ′(ξτ ′) ≤ Ef

S,τ(ξτ ) }. The

set A is in FS. We define ν := τ1A + τ ′1Ac . We have ν ∈ TS,T . We compute 1AE
f
S,ν(ξν) =

Efν
1A

S,T (ξν1A) = Efτ
1A

S,T (ξτ1A) = 1AE
f
S,τ(ξτ ) a.s. Similarly, we show 1AcEf

S,ν(ξν) = 1AcEf
S,τ ′(ξτ ′).

It follows that Ef
S,ν(ξν) = Ef

S,τ(ξτ )1A + Ef
S,τ ′(ξτ ′)1Ac = Ef

S,τ(ξτ )∨ Ef
S,τ ′(ξτ ′), which shows the

stability under pairwise maximization and concludes the proof. �

We need two more definitions.
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Definition 5.2 (Ef-supermartingale family) An admissible square-integrable family U :=

(U(S), S ∈ T0,T ) is said to be a strong Ef -supermartingale family if for all S, S
′

∈ T0,T such
that S ≤ S

′

a.s.,

Ef
S,S′(U(S ′)) ≤ U(S) a.s.

Definition 5.3 (Right-uppersemicontinuous family) An admissible family U := (U(S), S ∈

T0,T ) is said to be a right-uppersemicontinuous (along stopping times) family if, for all (τn)
nonincreasing sequence in T0,T , U(τ) ≥ lim supn→∞ U(τn) a.s. on {τ = lim ↓ τn}.

The following lemma gives a link between the previous two notions.

Lemma 5.5 Let U := (U(S), S ∈ T0,T ) be a strong Ef -supermartingale family. Then,
(U(S), S ∈ T0,T ) is a right-uppersemicontinuous (along stopping times) family in the sense
of Definition 5.3.

Proof: Let (τn) and τ be as in the above Definition 5.3. As U is a strong Ef -supermartingale

family and as the sequence (τn) is nonincreasing, we have Ef
τ,τn

(U(τn)) ≤ Ef
τ,τn+1

(U(τn+1)) ≤

U(τ) a.s. Hence, the sequence (Ef
τ,τn

(U(τn)))n is nondecreasing and U(τ) ≥ lim ↑ Ef
τ,τn

(U(τn)).

This inequality, combined with the property of continuity of BSDEs with respect to terminal

time and terminal condition (cf. [31, Prop. A.6]) gives

U(τ) ≥ lim
n→+∞

Ef
τ,τn

(U(τn)) = Ef
τ,τ( lim

n→+∞
U(τn)) = lim

n→+∞
U(τn) a.s.

We conclude that the family (U(S)) is a right-uppersemicontinuous (along stopping times)

family in the sense of Definition 5.3. �

Theorem 5.5 The value family V = (V (S), S ∈ T0,T ) defined in (5.21) is a strong Ef -
supermartingale family. In particular, V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous
(along stopping times) family in the sense of Definition 5.3.

Proof: We know from Lemma 5.3 that V = (V (S), S ∈ T0,T ) is a square-integrable admissi-

ble family. Let S ∈ T0,T and S ′ ∈ TS,T . We will show that Ef
S,S′(V (S ′)) ≤ V (S) a.s., which will

prove that V is a strong Ef -supermartingale family. By Lemma 5.4, there exists a sequence

(τn)n∈N of stopping times such that τn ≥ S ′ a.s. and V (S ′) = limn→∞ ↑ Ef
S′,τn

(ξτn) a.s.

By using this equality, the property of continuity of BSDEs, and the consistency of the

f -conditional expectation, we get

Ef
S,S′(V (S ′)) = Ef

S,S′( lim
n→∞

↑ Ef
S′,τn

(ξτn)) = lim
n→∞

Ef
S,S′(E

f
S′,τn

(ξτn)) = lim
n→∞

Ef
S,τn

(ξτn) ≤ V (S).

We conclude that V is a strong Ef -supermartingale family. This property, together with

Lemma 5.5, gives the property of right-uppersemicontinuity (along stopping times) of the

family V . The proof is thus completed. �
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5.2 Aggregation and Snell characterization

Definition 5.4 Let φ a process in S2. Let f be a Lipschitz driver. The process φ is said
to be a strong E

f

-supermartingale, if E
f

σ,τ
(φτ ) ≤ φσ a.s. on σ ≤ τ , for all σ, τ ∈ T0,T .

The notion of a strong E
f

-martingale is defined similarly.

We now show the following result, which generalizes some results of classical optimal stopping

theory (more precisely, the assertion (i) from Lemma 3.1) to the case of an optimal stopping

problem with f -expectation.

Theorem 5.6 (Aggregation and Snell characterization) There exists a unique right-
uppersemicontinuous optional process, denoted by (Vt)t∈[0,T ], which aggregates the value fam-
ily V = (V (S), S ∈ T0,T ). Moreover, (Vt)t∈[0,T ] is the Ef -Snell envelope of the pay-off process
ξ, that is, the smallest strong Ef -supermartingale greater than or equal to ξ.

The proof of this theorem relies on the preliminary resuts on the value family V =

(V (S), S ∈ T0,T ) presented in the previous subsection.

Proof: By Theorem 5.5, the value family V = (V (S), S ∈ T0,T ) is a right-uppersemicontinuous

family (or a right-uppersemicontinuous T0,T -system in the vocabulary of Dellacherie-Lenglart

[4]). Applying Theorem 4 of Dellacherie-Lenglart ([4]), gives the existence of a unique (up to

indistinguishability) right-uppersemicontinuous optional process (Vt)t∈[0,T ] which aggregates
the value family (V (S), S ∈ T0,T ). From this aggregation property, namely the property

VS = V (S) a.s. for each S ∈ T0,T , and from Theorem 5.5, we deduce that the process

(Vt)t∈[0,T ] is a strong Ef -supermartingale. Moreover, Vt ≥ ξt, for all t ∈ [0, T ], a.s. Indeed,

due to the definition of the family (V (S), S ∈ T0,T ) and to the aggregation result, we have

VS ≥ ξS a.s. for each S ∈ T0,T . We deduce that Vt ≥ ξt, for all t ∈ [0, T ], a.s., by applying a

well-known result from the general theory of processes (cf. ([5, Theorem IV.84])

Let us now prove that the process (Vt)t∈[0,T ] is the smallest strong Ef -supermartingale greater

than or equal to ξ. Let (V ′
t )t∈[0,T ] be a strong Ef -supermartingale such that V ′

t ≥ ξt,

for all t ∈ [0, T ], a.s. Let S ∈ T0,T . We have V ′
τ ≥ ξτ a.s. for all τ ∈ TS,T . Hence,

Ef
S,τ(V

′
τ ) ≥ Ef

S,τ(ξτ) a.s., where we have used the monotonicity of the f -conditional ex-

pectation. On the other hand, by using the Ef -supermartingale property of the process

(V ′
t )t∈[0,T ], we have V ′

S ≥ Ef
S,τ(V

′
τ ) a.s. for all τ ∈ TS,T . Hence, V ′

S ≥ Ef
S,τ(ξτ) a.s. for

all τ ∈ TS,T . By taking the essential supremum over τ ∈ TS,T in the inequality, we get

V ′
S ≥ ess supτ∈TS,T

Ef
S,τ(ξτ) = VS a.s. Note that the last equality in the above computation is

due to the definition of V (S) and to the aggregation result. We have thus obtained V ′
S ≥ VS

a.s., which (as S is arbitrary in T0,T ) leads to V ′
t ≥ Vt, for all t ∈ [0, T ], a.s., due to the same

well-known result from the general theory of processes as above. �
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5.3 Characterization in terms of an RBSDE

The following theorem is a direct consequence of Theorem 4.4 and Theorem 5.6. It gives

"an infinitesimal characterization" of the value process (Vt)t∈[0,T ].

Theorem 5.7 (Characterization in terms of an RBSDE) The value process (Vt)t∈[0,T ]

aggregating the family V = (V (S), S ∈ T0,T ) defined by (5.21) coincides (up to indistin-
guishability) with the first component (Yt)t∈[0,T ] of the solution of our RBSDE with driver f

and obstacle ξ. In other words, we have, for all S ∈ T0,T ,

YS = VS = ess sup
τ∈TS,T

Ef
S,τ(ξτ ) a.s. (5.22)

By using this theorem, we derive the following corollary, which generalizes some results

of classical optimal stopping theory (more precisely, the assertions (ii) and (iii) from Lemma

3.1) to the case of an optimal stopping problem with (non-linear) f -expectation.

Corollary 5.1 The value process of our optimal stopping problem (5.22), which is equal to
the first component (Yt) of the solution of our RBSDE, satisfies the following properties:

(i) For each S ∈ T0,T , we have:
YS = ξS ∨ YS+ a.s.

(ii) For each S ∈ T0,T and for each λ ∈]0, 1[, we set

τλS := inf{t ≥ S , λYt(ω) ≤ ξt}. (5.23)

The value process (Yt) is an Ef -martingale on [S, τλS ].

Proof: Let (Y, Z, k, A, C) be the solution to the RBSDE from Definition 2.2 associated

with the obstacle (ξt) and the driver f . We note that (Y, Z, k, A, C) is also the solution

of the RBSDE from Definition 2.2 associated with the obstacle (ξt) and the driver process

gt(ω) := f(t, ω, Yt(ω), Zt(ω), kt(ω)). From this observation and Lemma 3.1 (ii), we deduce

the first assertion. Let us show the second one. By Theorem 3.2, we derive that (Yt) is

equal to the value process of the classical optimal stopping problem (3.6) associated with

the instantaneous reward process (gt). By applying the assertion (iii) from Lemma 3.1, the

process (Yt +
∫ t

0
gudu)t∈[0,T ] is thus a martingale on [S, τλS ]. Since A and C are equal to

the non decreasing processes of the Mertens decomposition of the strong supermartingale

(Yt +
∫ t

0
gudu)t∈[0,T ], we derive that AS = Aτλ

S
a.s. and CS− = C(τλ

S
)− a.s. Hence, Y is the

solution on [S, τλS ] of the BSDE associated with driver f , terminal time τλS and terminal

condition Yτλ
S
. The process (Yt) is thus an Ef -martingale on [S, τλS ], which completes the

proof. �
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Remark 5.4 Alternatively, we can show the assertion (ii) from the above corollary by using
arguments similar to those used in the proof of the assertion (ii) from Lemma 4.1 in [13].

Corollary 5.2 If we assume that the process (ξt) is right-uppersemicontinuous (r.u.s.c.),
then the value process Y of the optimal stopping problem (5.22) satisfies the following prop-
erty: for each S ∈ T0,T and for each λ ∈]0, 1[,

λYτλ
S
≤ ξτλ

S
a.s. , (5.24)

where τλS is defined by (5.23). Moreover, the stopping time τλS satisfies

YS ≤ Ef

S,τλ
S

(ξτλ
S
) + εS(λ) a.s. , (5.25)

where limλ→1 εS(λ) = 0 a.s. In other words, τλS is an εS(λ)-optimal stopping time for problem
(5.22).

Proof: By using similar arguments to those used in the proof of the assertion (i) from

Lemma 4.1 in [13], we show that the inequality (5.24) holds. Let us now show the inequality

(5.25). The arguments are classical. Since by Corollary 5.1 (ii), the value process (Yt) is

an Ef -martingale on [S, τλS ], we get YS = Ef

S,τλ
S

(Yτλ
S
) a.s. By the inequality (5.24), together

with the monoticity property of the f -conditional expectation and the a priori estimates for

BSDEs (cf. [31]), we derive that

YS = Ef

S,τλ
S

(Yτλ
S
) ≤ Ef

S,τλ
S

(
ξτλ

S

λ
) ≤ Ef

S,τλ
S

(ξτλ
S
) + (

1

λ
− 1)αS a.s. ,

with αS := CE[ess supτ∈TS,T
ξ2τ | FS]

1

2 , where C is a positive constant which depends only

on T and the Lipschitz constant K of the driver f . We thus obtain the desired result with

εS(λ) := ( 1
λ
− 1)αS, which ends the proof. �

Remark 5.5 In the general case where the process (ξt) is not r.u.s.c. , the inequality (5.24)

(that is, the inequality λYτλ
S
≤ ξτλ

S
) does not necessarily hold (cf., e.g., the classical optimal

stopping problem in [8]).
Let us emphasize that this introduces some important technical difficulties in the treatment
of the irregular case with respect to the "more regular" cases.

In particular, this lack of regularity prevents us from adopting here the approach used
in [13] (in the r.u.s.c. case) to prove the infinitesimal characterization of the value process
of the (non-linear) optimal stopping problem in terms of the solution of an RBSDE. In the
general framework of the present paper, we are thus led to using a different approach: we first
establish a comparison theorem for RBSDEs, which we then use to prove the infinitesimal
characterization (whereas in [13], the characterization is shown directly by using inequality
(5.24), and the comparison theorem is deduced as an almost immediate corollary).

Also, as the inequality (5.24) does not necessarily hold in our case, we cannot adapt
the approach used in [3] (in the case of right-continuous obstacles) to prove our comparison
theorem, and we use a different approach.
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6 Appendix

The infinitesimal characterization of the previous section (Theorem 5.7) also allows us to

obtain a priori estimates with universal constants for RBSDEs with irregular obstacles.

Proposition 6.1 (A priori estimates for RBSDEs) Let ξ1, ξ2 be two left-limited pro-
cesses in S2. Let f 1, f 2 be Lipschitz drivers satisfying Assumption 4.1 with common Lipschitz
constant K > 0. For i = 1, 2, let (Y i, Z i, ki) be the three first components of the solution of
the RBSDE associated with driver f i and obstacle ξi.

Let Y := Y 1 − Y 2, ξ := ξ1 − ξ2. Let η, β > 0 with β ≥
3

η
+ 2K and η ≤

1

K2
. Let

δfs = f 2(s, Y 2
s , Z

2
s , k

2
s)− f 1(s, Y 2

s , Z
2
s , k

2
s). For each S ∈ T0,T , we have

Y
2

S ≤ eβ(T−S)E[ess sup
τ∈TS,T

ξτ
2
|FS] + ηE[

∫ T

S

eβ(s−S)(δfs)
2ds|FS] a.s. (6.26)

Proof: The proof is divided into two steps.

Step 1: For i = 1, 2 and for each τ ∈ T0, let (X i,τ , πi,τ , li,τ ) be the solution of the BSDE

associated with driver f i, terminal time τ and terminal condition ξτ . Set X
τ
:= X1,τ −X2,τ .

By an estimate on BSDEs (see Proposition A.4 in [31]), we have

(X
τ

S)
2 ≤ eβ(T−S)E[ξ

2
| FS] + ηE[

∫ T

S

eβ(s−S)[(f 1 − f 2)(s,X2,τ
s , π2,τ

s , l2,τs )]2ds | FS] a.s.

from which we derive that

(X
τ

S)
2 ≤ eβ(T−S)E[ess sup

τ∈TS,T

ξτ
2
|FS] + ηE[

∫ T

S

eβ(s−S)(f s)
2ds|FS] a.s. (6.27)

where f s := supy,z,k |f
1(s, y, z, k)− f 2(s, y, z, k)|. Now, by Theorem 5.7, we have

Y i
S = ess supτ∈TS,T

X
i,τ
S a.s. for i = 1, 2. We thus get |Y S| ≤ ess supτ∈TS,T

|X
τ

S| a.s. By the

inequality (6.27), we derive that

Y
2

S ≤ eβ(T−S)E[ess sup
τ∈TS,T

ξτ
2
|FS] + ηE[

∫ T

S

eβ(s−S)(f s)
2ds|FS] a.s.

Step 2: Note that (Y 2, Z2, k2) is the solution the RBSDE associated with obstacle ξ2 and

driver f 1(t, y, z, k) + δft. By applying the result of Step 1 to the driver f 1(t, y, z, k) and the

driver f 1(t, y, z, k) + δft (instead of f 2), we get the desired result. �

References

[1] Bayraktar E., I. Karatzas, and S. Yao (2010): Optimal Stopping for Dynamic Convex

Risk Measures, Illinois Journal of Mathematics , 54 (3), 1025-1067.

20



[2] Bouchard B., D. Possamaï, and X. Tan (2016): A general Doob-Meyer-Mertens decom-

position for g-supermartingale system, Electronic Journal of Probability 21, paper no.

36, 21 pages.

[3] Crépey S. and A. Matoussi (2008): Reflected and doubly reflected BSDEs with jumps:

a priori estimates and comparison, Annals of Applied Probability, 18(5), 2041-2069.

[4] Dellacherie C. and E. Lenglart (1981): Sur des problèmes de régularisation, de recolle-

ment et d’interpolation en théorie des processus, Sém. de Proba. XVI, lect. notes in

Mathematics, 920, 298-313, Springer-Verlag.

[5] Dellacherie C. and P.-A. Meyer (1975): Probabilité et Potentiel, Chap. I-IV. Nouvelle

édition. Hermann.

[6] Dellacherie C. and P.-A. Meyer (1980): Probabilités et Potentiel, Théorie des Martin-
gales, Chap. V-VIII. Nouvelle édition. Hermann.

[7] Dumitrescu R., M.-C. Quenez, and A. Sulem (2016), Generalized Dynkin Games and

Doubly reflected BSDEs with jumps, Electronic Journal of Probability Vol. 21, 64, 32p.

[8] El Karoui N. (1981): Les aspects probabilistes du contrôle stochastique. École d’été de
Probabilités de Saint-Flour IX-1979 Lect. Notes in Math. 876, 73-238. MR0637469

[9] El Karoui N., Kapoudjian C., Pardoux E., Peng S. and M.-C. Quenez (1997): Reflected

solutions of Backward SDE’s and related obstacle problems for PDE’s, The Annals of
Probability, 25(2), 702-737.

[10] El Karoui N. and M.-C. Quenez (1997): Non-linear Pricing Theory and Backward

Stochastic Differential Equations, Lect. Notes in Mathematics 1656, Ed. W. Rung-

galdier, Springer.

[11] Essaky H. (2008): Reflected backward stochastic differential equation with jumps and

RCLL obstacle. Bulletin des Sciences Mathématiques 132, 690-710.

[12] Gal’chouk L. I. (1981) : Optional martingales, Math. USSR Sbornik 40(4), 435-468.

[13] Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y., Quenez, M.-C., Reflected BSDEs

when the obstacle is not right-continuous and optimal stopping, (2016), submitted.

[14] Grigorova M., P. Imkeller, Y. Ouknine, and M.-C. Quenez (2016): Doubly Reflected

BSDEs and Dynkin games: beyond the right-continuous case, working paper.

[15] Grigorova M. and Quenez, M.-C. (2016): Optimal stopping and a non-zero-sum

Dynkin game in discrete time with risk measures induced by BSDEs, accepted

in Stochastics, An International Journal of Probability and Stochastic Processes,
doi/abs/10.1080/17442508.2016.1166505.

21



[16] Hamadène S. (2002) Reflected BSDE’s with discontinuous barrier and application,

Stochastics and Stochastic Reports 74(3-4), 571-596.

[17] Hamadène S. and Y. Ouknine (2003): Backward stochastic differential equations with

jumps and random obstacle, Electronic Journal of Probability 8, 1-20.

[18] Hamadène S. and Y. Ouknine (2015): Reflected backward SDEs with general jumps,

Teor. Veroyatnost. i Primenen. , 60(2), 357-376.

[19] Jacod J. (1979): Calcul Stochastique et Problèmes de martingales, Springer.

[20] Karatzas I. and S. E. Shreve, Methods of mathematical finance, Applications of Math-

ematics (New York), 39, Springer, New York, 1998.

[21] Klimsiak T., M. Rzymowski, and L. Słomiński (2016): Reflected BSDEs with regulated

trajectories, available at https://arxiv.org/pdf/1608.08926v1.pdf, preprint.

[22] Kobylanski M. and M.-C. Quenez (2012): Optimal stopping time problem in a general

framework, Electronic Journal of Probability 17, 1-28.

[23] Kobylanski M. and M.-C. Quenez (2016): Erratum: Optimal stopping time problem in

a general framework, available at https://hal.archives-ouvertes.fr/hal-01328196.

[24] Kobylanski M., M.-C. Quenez and E. Rouy-Mironescu (2011): Optimal multiple

stopping time problem, Ann. Appl. Probab. 21 , no. 4, 1365–1399. MR2857451

(2012h:60130)

[25] Lenglart E. (1980): Tribus de Meyer et théorie des processus, Séminaire de probabilités

de Strasbourg XIV 1978/79, Lecture Notes in Mathematics Vol. 784, 500-546.

[26] Maingueneau M. A. (1977): Temps d’arrêt optimaux et théorie générale, Séminaire

de Probabilités, XII de Strasbourg, 1976/77, 457–467, Lecture Notes in Math., 649

Springer, Berlin.

[27] Neveu J. (1972): Martingales à Temps Discret, Masson, Paris.

[28] Ouknine Y. (1998) : Reflected backward stochastic differential equation with jumps,

Stochastics and Stoch. Reports 65, 111-125.

[29] Peng S. (2004): Nonlinear expectations, nonlinear evaluations and risk measures, 165-

253, Lecture Notes in Math., 1856, Springer, Berlin.

[30] Protter P.E. (2005): Stochastic Integration and Differential Equations (Stochastic Mod-

elling and Applied Probability), 2nd edition, Springer Verlag.

[31] Quenez M-C. and A. Sulem (2013): BSDEs with jumps, optimization and applications

to dynamic risk measures. Stochastic Processes and Their Applications 123, 0-29.

22



[32] Quenez M.-C. and A. Sulem (2014): Reflected BSDEs and robust optimal stopping for

dynamic risk measures with jumps, Stochastic Processes and their Applications 124(9),

3031-3054.

[33] Rosazza-Gianin E. (2006): Risk measures via g-expectations, Insurance: Mathematics
and Economics 39(1), 19-34.

[34] Royer M. (2006): Backward stochastic differential equations with jumps and related

non-linear expectations, Stochastic Processes and Their Applications 116, 1358-1376.

[35] Tang S.H. and X. Li (1994): Necessary conditions for optimal control of stochastic

systems with random jumps, SIAM J. Cont. and Optim. 32, 1447-1475.

23


