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VIBRATIONS OF AN AXIAL BAR EXPERIENCING PERIODIC UNILATERAL
CONTACT USING THE WAVELET BALANCE METHOD
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Department of Mechanical Engineering
Terre Haute, Indiana, USA 47803
Email: jones5@rose-hulman.edu

ABSTRACT

Efficiently predicting the vibratory responses of flexible struc-
tures which experience unilateral contact is becoming of high
engineering importance. An example of such a system is a rotor
blade within a turbine engine; small operating clearances and
varying loading conditions often result in contact between the
blade and the casing.

The method of weighted residuals is a effective approach
to simulating such behaviour as it can efficiently enforce time-
periodic solutions of lightly damped, flexible structures experienc-
ing unilateral contact. The Harmonic Balance Method (HBM)
based on Fourier expansion of the sought solution is a common
formulation, though it is hypothesized wavelet bases that can
sparsely define nonsmooth solutions may be superior. This is
investigated herein using an axially vibrating rod with unilat-
eral contact conditions. A distributional formulation in time is
introduced allowing periodic, square-integrable trial functions
to approximate the second-order equations. The mixed wavelet
Petrov-Galerkin solutions are found to yield consistent or better
results than HBM, with similar convergence rates and seemingly
more accurate contact force prediction.

INTRODUCTION

Efficiently predicting the vibratory responses of flexible struc-
tures which experience unilateral contact is becoming of high
engineering importance. For example, consider aircraft engines
where slender, twisted blades rotate at high rotational velocity
within stationary casings where minimal clearance is desirable for
turbine energy efficiency. Simulating contact between the blades
and casing is not a trivial exercise since unilateral contact is usu-
ally described by inequalities and complementary conditions [1].
In the time domain, structural displacements and velocities which
satisfy these contact conditions are known to respectively feature
absolute continuity and bounded variation only [2]. This implies
displacements are not necessarily differentiable everywhere in the
domain and velocities may exhibit jumps; these types of problems
are generally referred to as nonsmooth [3,4].

This class of unilateral problems can also be approached us-
ing periodic vibration theory. This allows the original initial-value
formulations to be transformed into partial differential equations
periodic in time [5]. In structural mechanics, two families of
numerical techniques can efficiently predict periodic solutions in
time. The first is the shooting method which consists of finding
the initial conditions that result in periodic motion. The overall
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approach relies on time integration of the governing equations
over one period using a nonlinear solver which iterates on the
initial conditions, and possibly the period. The second technique
is based on weighted residual formulations, which are of interest
in the current investigation. This method involves approximating
the solution using a set of time-dependent basis functions, called
trial functions, and enforcing the respective residual error to be
orthogonal to an independent set of weighting functions [6, 7].
Unlike the shooting method which can become numerically sen-
sitive to possible jumps in the velocity field, weighted residual
techniques directly enforce the periodicity conditions while the
remaining unilateral contact constraints and governing local equa-
tions of motion are satisfied in a weak integral sense [8]. It is
worth noting that the well-known Harmonic Balance Method
(HBM) is a weighted residual approach where both the trial and
weighting functions are identical Fourier series. The main goal
of the current work is to explore relevant basis functions whose
order of smoothness can be adapted to a particular system to attain
accurate approximations and rapid convergence.

The paper is broken into five sections: Section 2 introduces
the system of interest; Section 3 reviews the weighted residual
formulation in time; Section 4 provides an overview of the dif-
ferent basis functions under investigation; Section 5 specifies the
unilateral contact model; and Section 6 presents and compares
results for a number of basis function combinations.

1 System of interest

A schematic of a simple unilateral contact system showing
a one-dimensional bar clamped on the left is depicted in Fig. 1;
such a system is known to be a well-posed unilateral contact
problem [9]. A gap g exists between the tip and a rigid foundation.
When the tip displacement is sufficiently large, the bar comes into
contact with the rigid foundation and unilateral contact conditions
must be satisfied. The existence of periodic solutions of period T’
are assumed where T is the period of the external forcing f(x,t)
acting on the bar. Accordingly, the unknown displacement has to
satisfy the following complementary boundary value problem:

1. local equation of motion

pSii(x,t) + ESu xx(x,t) = f(x,1),Vx €]0,£[,Vt (1)



2. conditions of periodicity in time

ux,t +7T) =u(x,t)

. . , Vxel0,£], Vt 2)
ulx,t +7T)=u(x,t)

3. boundary condition in displacement
u(0,1) =0, V¢ 3
4. unilateral contact conditions

g—ul,t)=0,A()>0,A(t)(g —u(l,t)) =0,Vr.
“)

Here p signifies density, S cross-sectional area, and E elastic
modulus. The dot superscript represents a temporal derivative,
whereas the subscript x represents a spatial derivative. Structural
damping is incorporated later by assuming f-damping of the
elastic modulus, as detailed in Section 2.

The periodicity conditions result in a problem which can be
formulated on a circle in time. Without loss of generality, the basis
functions are taken from an L2(S!)" Hilbert space [10], where
the period of the steady-state solution 7 has been normalized
to 1 [11].

/—vf(x,t)

| \—> u(x,t)

FIGURE 1. ONE-DIMENSIONAL LINEAR BAR UNDERGOING
UNILATERAL CONTACT CONDITIONS

The quantity A(¢) in Eq. (4) is a contact force, which stems
from the enforced non-penetration condition g — u(£,¢) > 0 and
is necessarily positive (by convention). The complementarity con-
dition A(7)-(g—u(¢, 1)) = O states that the contact force A(r) and
the distance g — u(¥, t) separating the rod’s end-tip from the rigid
foundation may not be zero at the same time. These three con-
ditions are such that the mathematical object pairing the contact
force to the displacement is not a function in the usual sense. It is
also known that the displacement field may be non-differentiable
at given instants within the period of motion and the velocity field
may be discontinuous. This motivates the derivation of numerical
techniques capable of efficiently handling nonsmoothness. As
a first approach, the unilateral contact inequalities from Eq. (4)
are simplified and replaced by a penalty function; an exponential
spring K, is used to approximate the contact forces. The gap g
in Fig. 1 separates the tip of the rod and the exponential spring.
The penalty function is of the form

fo(u(l, 1)) = max(ac(e*®EN=80) _ 1) 0). (5)

Specific values for the penalty function are provided with the
other model parameters in Section 4.

2 Weighted residual formulations in time

The method of weighted residuals is a classic method of
obtaining numerical solutions to boundary value problems by
expanding the sought solution as a finite sequence of basis func-
tions (i.e. trial functions) in a proper functional space [6]. The
subsequent residual is rendered orthogonal to a set a linearly
independent functions of the same space (i.e. weightnig func-
tions) through an inner product. Trial and weighting functions
may contain the same basis function but not necessarily: The
Galerkin method is a special case where the weighting functions
are taken from the same function basis as that of the trial functions;
the Petrov-Galerkin method involves the selection of weighting
function comprising a basis which is independent of the trial
function [12]. The functional space into which the solution is
sought is such that the boundary conditions in space and time are
satisfied. In this study, the displacement of the investigated rod is
numerically sought in various Hilbert spaces of square integrable
functions defined on the circle S!.

To solve Egs. (1), (2), (3), and (4), the unknown displacement
is expanded into a truncated series of N functions separated in
space and time:

N
u(x, 1) = Y )it ©6)
i=1

The standard Finite Element Method is implemented for the
spatial variable using two-node linear rod elements [13, 14].
This yields the following vector ordinary differential equation
of size N:

Mii(7) 4 Ca(r) + Ku(r) = fexi(u(?). 1) @)

together with the remaining periodicity conditions in time and the
unilateral contact condition. It should be noted that Eq. (7) is an
approximate equation of a vibrating structure which may be of
one, two or three dimensions. The system is constrained so that
condition (3) is now satisfied. Here M and K are the standard mass
and stiffness matrices for a rod, and S-damping is enforced such
that C = BK to account for structural damping. The displacement
vector u(z) in Eq. (7) stores the temporal unknowns u;(¢), i =
1,..., N, where N is the number of spatial degrees-of-freedom.
Similarly, fex(u(¢), t) stores the external forcing functions for
each degree-of-freedom as well as the contact forces stemming
from Eq. (5).

The remainder of the derivation involves a weighted residual
formulation in the time dimension. Three forms of the weighted
residual method are discussed: the strong integral form, the weak
form, and the distributional formulation. For this discussion it is
understood that u and v are time-dependent vectors, i.e. u(t) and
v(?), but for the sake of clarity the (¢) is omitted below.

2.1 Strong integral form

The standard weighted residual formulation of a differential
equation is commonly termed the strong form. Taking the inner
product of Eq. (7) with a weighting function stored column-wise
in v results in the strong integral form of the equation: find u €



H?(SHN such that Vv € L2(S")V:
f (vVIMii +v' Ca+ v Ku— v fo(u, 7)) dt =0 (8)
sl

and the superscript 7' denotes a transpose. This strong form of
the equation is not necessarily the best framework for obtaining
a solution [14]; for this example involving a vector ordinary
differential equation of order 2, the solution must be at least H 2,
limiting the permissible basis of trial functions.

2.2 Weak form

The respective weak form of the weighted residual statement
can be obtained by performing one integration by parts over the
domain S! for all terms containing a double time derivative in
Eq. (8). This results in: find u € H!'(S")" such that Vv €
H! (Sl )N ,

/ (v M+ v Cia + vV Ku— v fo (7)) dt =0 (9)
sl

The integral form of the weak formulation offers the advantage of
shifting a portion of the functional smoothness requirement from
the trial functions onto the weighting functions. More precisely,
both the trial and weighting functions must now be H!. This
allows the trial functions to be chosen from a wider permissible
space [14].

2.3 Formulation in a distributional sense

The above procedure of obtaining the solution from the weak
formulation by performing integration by parts on the weighted
residual statement can be extended one step further. Theoretically,
this extension is not necessary since it is known that displacements
should be absolutely continuous in time, though it may assist in
the numerical derivations and allow very simple basis functions
to be considered [15]. A weaker formulation is proposed by
integrating again the terms involving time derivatives of the trial
functions. This formulation can be understood in the sense of
distributions, also known as generalized functions, ie: find u €
L*(SY)N such that Vv € H2(SHV:

/1 (VIMu— Vv Cu+ v Ku—vfuu)d =0 (10
S

Here the double time differential on the field variable is trans-
ferred to the weighting function and the continuity requirement
on the trial function is reduced. As discussed later, the desired
displacement functions u can now be described using a series of
constant piecewise functions for instance.

2.4 Time discretization

Let each nodal displacement u;(¢) be approximated by a
combination of M linearly independent trial functions g (z),
k=1,...,M definedont € [0, 1). Similarly, let each v;(¢) be
approximated by a combination of linearly independent weighting

functions pg(t), k = 1,..., M also definedon t € SL. Collec-
tively, this leads to

M
wit) =Y auqe(t). i=1....N an
k=1
and
M
vit) =) buepk(®). i=1....N (12)
k=1

or, equivalently in a vector form:
u(t) =0()a and v(t)=T(@)b (13)

In Eq. (13), ©(¢) and I' (¢) are rectangular matrices of dimension
N x NM; a and b are vectors of size NM x 1.

Each of the strong, weak, and distributional formulations can
now be discretized with proper basis functions. The overall goal of
this paper is to discuss the numerical properties of certain wavelet
bases to efficiently solve the problem of interest. Depending on
the selected formulation, the order of derivation acting on u(#) and
v(t) (i.e. O(t) and I' (¢) respectively) will affect the admissible
basis functions. The corresponding discretized versions are:

e Strong integral form:

/Sl ((FTM@ +T7CO +TTKO)a—TIfey(Oa, z)) dr =0 (14)
e Weak form:

/Sl((—fTMG +TTCO+TTKO)a—Tfe(Oa, z)) dr=0 (15)
e Distributional integral form:

/Sl ((fTM@) —ITCO +TTKO)a—Tf.(Oa, z)) dt = 0 (16)

The resulting nonlinear equations can generically be recast in the
following form

Ga—f(a)=0 a7

where Ga and f(a) respectively stand as the linear internal and
the nonlinear external contributions in Eq. (14), (15), and (16).

3 Trial and weighting function bases

The selection of functional bases to be used in the above
approaches is an important factor in approximation accuracy and
computational efficiency [13, 14]. A priori selection of the opti-
mal bases for unilateral contact problems is not a trivial matter
due to potential nonsmoothness of the response. In the current
investigation a number of bases are investigated to compare the
quality of approximation, including Fourier functions, B-spline
wavelets, Daubechies wavelets, and Haar wavelets.



3.1 Harmonic balance and Fourier series

The harmonic balance method (HBM) is a special case of
the weighted residual method where the Fourier basis is used for
both the trial and weighting functions [16]. This technique is
particularly effective when dealing with smooth nonlinear sys-
tems; convergence is often reached with very few terms. It has
been used to study steady state response of turbine engine blades
with friction dampers using a multiterm approximation [17]. This
approach was extended to unilateral contact and friction condi-
tions [18] through an Alternating Frequency/Time domain strategy
proposed by Cameron ef al. [19] and Pilipchuk [20]. It is worthy
to note that the HBM formulations of Eqs. (14), (15), and (16) are
identical.

The Fourier basis for L?(S') is defined as {I} U
{cosmmt),sinmmt)|m € N*} where m signifies the har-
monic number of the function. The first six functions are shown
in Fig. 2. Fourier basis functions feature an infinite degree of

(a) constant term (b) cos(2mt)

(c) sin(27t) (d) cos(4mt)

(e) sin(47wt)

(f) cos(6mt)

FIGURE 2. FIRST SIX FUNCTIONS OF THE FOURIER BASIS

smoothness. While this property can be beneficial in some cases,
it is unclear whether Fourier functions are optimal when simulat-
ing potentially nonsmooth problems. It is possible that a large
number of harmonics would be required to accurately capture the
nonsmooth response, or the approximation may exhibit Gibbs phe-
nomenon at localized discontinuities in the sought displacement
and velocity fields. Accordingly, other basis functions featuring a
lesser degree of functional smoothness are explored.

3.2 Brief review of discrete orthogonal wavelets
Discrete orthogonal wavelet families are composed of highly
localized, oscillatory functions which provide a basis of L?(R)
and can be adapted to the periodic domain L?(S') [21]. These
localized characteristics, or compact support, allow sparse repre-

sentation of piecewise signals including transients and singulari-
ties [22]. This makes them useful functions for use in the Galerkin
approach when nonsmooth solutions are predicted [23]. There are
a large number of wavelet families and definitions thereof; both
Mallat [21] and Strang [23] provide excellent introductions to
wavelet theory and history. Galerkin methods using appropriate
discrete wavelet families as the trial functions have been shown to
accurately approximate the solutions to both ordinary and partial
differential equations [24,25,26,27,28,29].

The discrete wavelet family is built from scaling functions
¢ (t) and wavelet functions 1 (7). These functions are analogous
to the low-pass and high-pass filters of a filter bank [23]; decom-
position using scaling functions will give a “smoothed” approxi-
mation of the original signal, while decomposition using wavelet
functions provides the details of the signal, or high-frequency
content.

The exact decomposition of a continuous time signal y(t)
can be written

YO = gkbri @)+ Y Y hivi)  (18)
k

j=J ¢
and
dri) =2"2¢27t — k) (19)
Ykt =272yt — k) (20)

where J,k € 7Z; J is the dilation parameter (i.e. level), k is the
translation parameter, and m is the maximum resolution given by
the sampling rate of the function y ().

The span of the scaling functions at level J is commonly
denoted V;, while the wavelet span is denoted W ;. For orthogo-
nal wavelet families, W is the orthogonal complement to V; in

Vit
V_]+1 = VJ @WJ- (21)

Provided the wavelet family is orthogonal [23], the space
of square-integrable functions on the real line L2?(R) can be de-
composed using multiresolution analysis as a nested sequence of
closed subspaces [21]

"'CV_2CV_1CVQCV]CV2C"'CL2(R) (22)
such that

lim V; = L?(R). (23)
J—00

This implies that V 7, the subspace composed of the set of scaling
functions at level J, can approximate any function in L2(R). A
reduced orthonormal basis of L?(R) is constructed by truncating
the wavelet terms, resulting in

u(t) =Y urdst) (24)
k



The accuracy of this approximation increases as the level J is
increased. This property of the scaling functions makes them
excellent trial and weighting functions in weighted residual meth-
ods because they can be adapted to the accuracy level required.
The reduced orthonormal basis of scaling functions is used in the
current investigation.

3.2.1 Periodization of wavelet families Standard
wavelet definitions (i.e. scaling and wavelet functions) are com-
monly built on the real line. The functions can be adapted to
periodic functions of L2(S') by utilizing a standard periodization
technique [21,30,31]. Let P (¢) be the periodized form of the
scaling function ¢ (¢) defined on R

¢§’,’Z(t) = ¢sxlt—0) 0<k<2'—1. (25

LeZ

This is equivalent to “wrapping around” the support R on S!
through summation. The finite size of the interval results in the
condition J > 0

Vo CV, CVzCV3C"'CL2(Sl) (26)
such that
lim Vy = L3(SY). 27
J—o00

A number of periodic discrete wavelet families exist [21]. The
investigation considers three families to determine how they
perform in unilateral, nonsmooth contact problems: B-spline,
Daubechies, and Haar.

3.3 Orthogonal cubic B-spline scaling functions
The scaling function ¢ for the orthogonal cubic B-spline
wavelet family built on R is given as [32]

$(0) =) cxBs(t —k) (28)
k

where cubic B-spline B3(¢) can be written using the following
formulas

3/6 O0=<t=1
—13/242t> -2t +2/3  (1<t<2)

B3(t) =14 t3/2—412 410t -22/3 (2<t<3) (29
—13/6 +2t2 -8t +32/3 (3<t<4)
0 (otherwise).

The coefficients cx can be determined using [32]

1 (" cos(k§)
Ck =cCp =

= — —d
7 Jo +/p3(cosé&) J

(k= 0) (30)

where k is an integer. The cubic polynomial pj is given as

1
p3(y) = @(ﬁ + 60y2 + 297y + 272). 31

Numerical simulations showed that truncating the summation
in Eq. (28) at =50 < k < 50 is sufficient; larger k terms add
negligibly to the summation. After periodization to S! and nor-
malization by fol ¢ (t)dt = 1[33], sample orthogonal cubic
B-spline scaling functions for / = 0, 1, ..., 5 are shown in Fig. 3

(@) ¢0.0 (b) ¢1.1

() ¢2.3 d) ¢35
20 40
15 4 30 .
10} 1 20) .
5 1 10 .
0 ~/ \r

—5L 4 —10k .
0 1 0 1

(e) ¢a.9 ) ¢5.17

FIGURE 3. EXAMPLES OF THE FIRST SIX LEVELS OF PERI-
ODIZED ORTHOGONAL CUBIC B-SPLINE SCALING FUNCTIONS

3.4 Daubechies Wavelets

The Daubechies wavelet family is defined by a set of L
filter coefficients {py : £ = 0,1,..., L — 1}, where L is an even
integer. The scaling function is defined by the fundamental two-
scale equation [33,34]

L—-1

P) =Y pip2t—10) (32)

£=0

which has fundamental support over the finite intervals [0, L — 1].
This equation can be used to determine the value of the scaling
function at dyadic points t = n/ZJ, n = 0,1,... using the
algorithm provided by Chen et al. [33].

The corresponding scaling functions are highly nonsmooth
and fractal in nature: as one increases the resolution of the func-
tions, the shape does not converge but rather continues to increase



in complexity. This makes accurately estimating the inner prod-
ucts of such scaling functions with each other prone to error when
numerical integration is used [35].

(@) ¢0.0 () ¢1.1

() ¢2.3 ) ¢35
24 48
16 |
8| 1 1ef :
0 0 v‘
50 1 % 1
(e) Pa9 0 ¢5.17

FIGURE 4. EXAMPLES OF THE FIRST SIX LEVELS OF PERI-
ODIZED 6 COEFFICIENT DAUBECHIES SCALING FUNCTIONS
(DB6)

When Daubechies scaling functions are used in a Galerkin
approach, it is necessary to derive the inner products of the scaling
function with itself or derivatives of itself. The exact solution to
these inner products can be found by using the recursive nature
of the fundamental equation on L?(R) [24,33]; the solution to
these inner products are commonly referred to as connection
coefficients. When Daubechies scaling functions are periodized
on S, the wrapping procedure results in functions which are no
longer scale-invariant at low J values (scale-invariance requires
wavelets at any scale to be a pure dilation of the mother-wavelet).
Fig. 4 provides examples of the periodized scaling functions for
L = 6. Interestingly, the lack of scale-invariance for small J
values does not invalidate the connection coefficient algorithms
derived for unbounded domains; the connection coefficients can
simply be wrapped around the periodic domain as necessary [35].

3.5 Haar scaling functions

The simplest Daubechies wavelet family requires only two
filter coefficients (p9 = p; = 1) and is commonly known as
the Haar wavelet family [36]. The Haar scaling functions are
rectangular tophat-type functions; the father scaling function is

definedont € R as

1 O0<t<l1)
@) = 0 (33)

(otherwise).

Since the compact support of the father scaling function is S', the
periodized function is equivalent. Example Haar scaling functions
forJ =0,1,...,5 are shown in Fig. 5.

1 2+
1 - |
o 1 o0 .
0 1 0 1
(@) ¢0.0 (b) ¢1.1
af — 1 8 — ]
2| 4 a4 .
0 0
0 1 0 1
©) ¢2.3 d) ¢3.5
16 - 1 82 - ]
8| 4 16| .
0 0
0 1 0 1
(©) ¢4.9 ) ¢5.17

FIGURE 5. EXAMPLES OF THE FIRST SIX LEVELS OF PERI-
ODIZED HAAR SCALING FUNCTIONS

4 Model development

The mixed finite-element/wavelet-Galerkin model of the ax-
ial bar undergoing unilateral contact introduced in Section 1 has
the following properties: elastic modulus E = 70 GPa; cross-
sectional area S = 25 cm?; density p = 2700 kg/m?>; total length
L = 1 m; external force amplitude F' = 250k N ; and damping
factor 8. A total of 25 finite elements are used. The fundamental
frequency of this rod is approximately 1273 Hz.

The values of a. and « in Eq. (5) were selected to simulate a
reasonably rigid penalty function while maintaining good condi-
tioning of the system of nonlinear equations. Table 1 lists the two
forcing frequency cases considered: 150 Hz and 1275 Hz. The
maximum tip displacements without contact for this system are
approximately 1.4 mm at 150 Hz and 29 mm at 1275 Hz.

To act as a comparison solution, the unilateral contact finite-
element equations detailed above are solved using a variable-
order numerical differentiation formula (NDF) time-stepping al-
gorithm [37]. As the time-stepping solution does not solve for
the periodic response directly, the solution is deemed to have



Case 1 Case 2

forcing frequency 150 Hz 1275 Hz
penalty constant, a. 1 x 108 1 x 108
penalty exponent, o 50 20

damping factor, I1x107% 5x107°
initial gap, go 1.0 mm 14.5 mm

TABLE 1. Test cases

converged to its periodic state when the rms of the relative error
between the tip displacements for the i and i — 1 periods is be-
low 10~7. This is possible due to the structural damping terms
listed in Table 1 causing any transient response to decay relatively
quickly.

4.1 Weighted residual formulation

Table 2 lists the combination of trial and weighting functions
employed in the current investigation; where wavelet families
are listed (B-spline, Haar, Daubechies), it is implied the scaling
functions are used according to Eq. (24). The integrals involved

Trial function = Weighting function

Fourier Fourier
B-spline B-spline
Daubechies 6 Daubechies 6

Haar Fourier
Daubechies 6 Fourier
Haar B-spline

TABLE 2. List of trial and weighting function combinations

in Eq. (17) are computed as discrete inner products using 256
points for all but the Galerkin formulations using Daubechies
functions. For the Daubechies Galerkin cases, the inner products
are derived using the connection coefficients as mentioned in
Section 3.4.

5 Results

The six combinations of trial and weighting functions listed
in Table 2 are employed to solve the nonlinear weighted residual
formulation for forcing frequencies of 150 Hz and 1275 Hz.

5.1 Tip displacement

Samples of the approximate tip displacement responses at
150 Hz at 1275 Hz using 64 (i.e J = 6) basis functions are
provided in Fig. 6 and Fig. 7, respectively.

For this number of basis functions HBM (Fourier:Fourier) ap-
proximates the tip displacements well at both 150 Hz and 1275 Hz
compared to the time-stepping solution. However, close examina-
tion of the contact plateau for the 150 Hz case shows oscillations
due to Gibbs phenomenon and rounding off of the sharp gradient
changes. This will be further discussed in Section 5.3.

contact boundary

time stepping
integral form.

Tip Displacement (mm)
o
T

(a) Fourier:Fourier

(b) DB6:DB6

Tip Displacement (mm)

(c) DB6:Fourier (d) Bspline:Bspline

Tip Displacement (mm)

(e) Haar:Fourier

(f) Haar:Bspline

FIGURE 6. TIP DISPLACEMENT VERSUS NORMALIZED TIME
FOR CASE 1

»

contact boundary

<]
T
I

T

I

T

I

Tip Displacement (mm)

[
=]
[S)
—
=}
—_
o
—_

(a) Fourier:Fourier (b) DB6:DB6 (c) Haar:Fourier

FIGURE 7. TIP DISPLACEMENT VERSUS NORMALIZED TIME
FOR CASE 2

Alternatively, the Haar:Fourier combination appears to ap-
proximate the tip displacement outside the contact zone less well
due to the blocky nature of the Haar scaling functions. However,
the contact plateau is well represented by the constant Haar scal-
ing functions. The Haar basis appears to be less suited for the
response at 1275 Hz as the contact plateau is smaller and not as
flat; the tip penetration through the contact boundary is a result of
the inexact modeling of hard contact using the exponential spring
penalty function.

5.2 Tip velocity

Consideration is also given to the accuracy with which the
trial functions considered can determine velocities. For all dis-
placement approximations where the trial basis functions can be
differentiated pointwise to approximate velocities using Eq. 11,



the following equality is used:

M
(1) = Y aidi(t). (34)

k=1

The only cases where Eq. (34) is not valid are those involving
Haar trial functions; Haar scaling functions are piecewise constant
functions thus they cannot be directly differentiated in the usual
sense (i.e. pointwise) to determine velocities. Velocities for these
cases can be approximated by assuming the derivative of a Haar
scaling function is the combination of a positive delta function at
t1 and a negative delta function at #,, where #; corresponds to the
positive jump discontinuity in the Haar scaling function and ¢,
corresponds to the negative jump. Using a set of these functions
as ¢ () in Eq. (34) provides a reasonable approximation to the
corresponding velocity field for cases involving Haar functions.

The approximate tip velocity response at 150 Hz is plotted
in Fig. 8 for all cases using 64 basis functions. It is visible from
these approximations that there is a sharp jump in velocity due
to the contact condition. As expected, this results in ringing due
to Gibbs phenomenon when the Fourier trial functions are used.
Interestingly, the ringing is more pronounced in the Galerkin B-
spline case. The DB6 trial functions appear to do the best job of
approximating the tip response. This is attributed to the compact
support of the scaling functions allowing accurate representation
of rapid changes in gradient. For cases involving Haar trial func-
tions the velocity function envelope is reasonably approximated
by the delta function representation discussed above.

5.3 Tip contact force

The tip contact force is calculated using the penalty func-
tion provided in Eq. (5) in conjunction with the predicted tip
displacement and presented in Fig. 9; the contact force has been
normalized by the magnitude of the external force input. No-
tice the time duration of the contact forces coincide with the tip
displacement plateaus of Fig. 6 as this is the only period during
which the tip is in contact with the rigid foundation.

The effect of Gibbs phenomenon can be seen in the HBM
and Galerkin B-spline cases. The cases where Haar trial func-
tions are used approximate the contact force relatively well. It is
hypothesized that when a rigid contact law is enforced the Haar
scaling functions will perform even better relative to the other
functions; this will be investigated in future work. Again, the
DB6 trial functions appear to most accurately approximate the
contact forces compared to the other cases.

5.4 Energy norm convergence

Convergence of the normalized energy norms for each basis
combination at 150 Hz and 1275 Hz are given in Fig. 10(a) and
10(b), respectively. For these results the distributional form of the
governing equations are used in all cases.

The system energy is calculated as

1 1
E = E TMu + 5 TKll + Ecomac[~ (35)

The scalar energy norm is calculated as the rms value of the
system energy E over a single period; this is then normalized by
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(a) Fourier:Fourier (b) DB6:DB6

Tip Velocity (m/s)

(c) DB6:Fourier

(d) Bspline:Bspline

Tip Velocity (m/s)
o

(e) Haar:Fourier (f) Haar:Bspline

FIGURE 8. TIP VELOCITY VERSUS NORMALIZED TIME FOR
CASE 1

the energy norm from the time-stepping solution. The velocity
terms u are calculated as detailed in Section 5.2. As shown in
Fig. 10, all combinations of trial and weighting functions converge
to values similar to the time-stepping solution (i.e. energy norms
are approximately unity using 128 basis functions). At 150 Hz,
the HBM and Galerkin B-spline approaches show energy norms
close to unity even using relatively few basis functions. The
Petrov-Galerkin combinations utilizing Haar trial functions over-
predict the system energy when few trial functions are used. This
is evident in Fig. 6(e) where the blocky nature gives a coarse
representation of the periodic response, thus affecting the resulting
energy norm. An interesting comparison is between the DB6:DB6
and the DB6:Fourier curves. When Fourier functions are used as
the weighting functions, the energy norm is better approximated.
This implies projecting the residuals onto the Fourier basis, which
has been shown to represent the solution relatively well, increases
the accuracy of the prediction.

At 1275 Hz, the six combinations converge to a common en-
ergy norm more slowly than at the lower forcing frequency. In this
case the HBM and Galerkin B-spline approaches again converge
quickly to the time-stepping solution. The cases with Haar trial
functions show larger difference with respect to the normalizing
solution than that for the 150 Hz case. This is attributed to the
displacement response at this frequency (see Fig. 7(c)); there is
no distinct contact plateau thus the Haar trial functions do not
approximate the solution as closely as the 150 Hz case. Finally, it
is less obvious now that DB6:Fourier combination out performs
the DB6:DB6 method at fewer basis functions.
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5.5 Tip displacement relative error

It is also desirable to quantify the approximation error for the
tip displacements predicted using the weighted residual combina-
tions where the time-stepping solution is again used as a compari-
son solution. It provides a good relative measure to compare the
accuracy of trial:weighting function combinations. The rms error
over one period is plotted for the six basis function combinations
in Fig. 11(a) for 150 Hz and Fig. 11(b) for 1275 Hz. As shown in
Fig. 11(a), the HBM and Galerkin B-spline approaches have the
lowest error when only 8 basis functions are used. This supports
the convergence behaviour noted above for these combinations.
As the number of basis functions is increased, the Galerkin B-
spline case does not perform as well as the HBM method. This is
attributed to a localized error which was found to develop at the
end of the contact plateau (see Fig. 6(d)). The Galerkin DB6 case
performs poorly using 16 trial functions, but rapidly improves to
relative error values comparable to the HBM method. The ability
of the nonsmooth DB6 scaling functions to accurately predict both
the smooth portions of the response as well as the sharp gradient
variation is attributed to both the compact support and vanishing
moment properties of the the Daubechies functions. The relative
error using Haar trial functions is highest out of the combinations
investigated. This is expected due to the blocky nature of the
Haar scaling functions; however the mid-points of the Haar func-
tions match very well to the trend of the time-stepping solution.
This suggests that if only a low resolution approximation of the
response is required, the Haar scaling functions still perform well.

The relative error at 1275 Hz shows similar trends to those
discussed at 150 Hz. One important difference is the Galerkin
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FIGURE 10. SYSTEM ENERGY NORM CONVERGENCE USING
SIX TRIAL:WEIGHTING FUNCTION COMBINATIONS

B-spline error as the number of basis functions increases: as the
unknowns are increased from 32 to 128, the relative error stays
reasonably constant. This suggests that this combination of basis
functions has reached its limit of prediction accuracy.

5.6 Frequency response curve

Another feature of interest is the ability to construct the fre-
quency response function for the unilateral contact condition.
The penalty function simulating contact is effectively a stiffen-
ing condition, thus the resonant peaks for the system are ex-
pected to increase in frequency relative to the no-contact response.
To capture this nonlinear response an arc-length continuation
method [38] is utilized. The frequency response function over the
system’s fundamental frequency is shown in Fig. 12 using both
the Fourier:Fourier and Haar:Fourier combinations with 64 basis
functions.

As shown, the stiffening behaviour of the unilateral contact
condition is captured by both trial:weighting function combina-
tions; other combinations showed similar approximations. These
results are promising as it implies the arc-length continuation
method can be accurately applied to both Galerkin and Petrov-
Galerkin approaches using the distributional formulation for a
number of different bases.

6 Conclusions
The method of weighted residuals for capturing the periodic
responses of unilateral contact problems has been investigated for
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a number of trial:weighting function combinations. The contact
condition is simulated using an exponential penalty function ap-
proach. To extend the allowable trial function bases, a weak and
a distributional formulations are presented which transfer trial
function continuity requirements to the weighting functions. This
allowed piecewise constant Haar scaling functions to be used as a
trial basis in the current investigation. Results show that a number
of trial:weighting function combinations produce accurate solu-
tions which rapidly converge as the size of the discrete spaces is
increased. As expected, Fourier functions perform well as a trial
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basis, though nonsmooth functions such as Haar and Daubechies
scaling functions are also attractive since they provide comparable
prediction accuracy and even out perform the Fourier functions in
some measures. It is also shown that all the basis combinations
considered can be used in an arc-length continuation framework to
capture the nonlinear frequency response of the unilateral contact
problem.

Research is continuing on this subject. The goal is to improve
on the penalty approach by implementing an exact unilateral con-
tact method (e.g Lagrange multiplier, LCP, etc.). This should re-
sult in perfectly flat contact plateaus within the periodic response.
We also intend to apply this method to a standard rotor blade to
validate the method for three-dimensional models involving more
complicated contact interface geometries.
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