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A simple proof of the Greville formula for the recursive computation of the Moore-Penrose (MP) inverse of a matrix is presented. The proof utilizes no more than the elementary properties of the MP . mverse.

Introduction

The recursive determination of the MP inverse of a matrix has found extensive application in the fields of statistical inference and estimation theory (Refs. 1 and 2), and more recently in the field of analytical dynamics (Ref. 3). The reason for its extensive applicability is that it provides a systematic method to generate updates, whenever a sequential addition of data or new information is made available and updated estimates which take into account this additional information are required.

The recursive scheme for the computation of the Moore-Penrose (MP) inverse of a matrix (Refs. 4 and 5) was ingeniously obtained in a famous paper by Greville in 1960 (Ref. 6). However, due to the complexity of the solution technique, the Greville proof is not quoted or outlined even in specialized texts which deal solely with generalized inverses of matrices (e.g., books like Refs. 2 and 7-9), though his result is invariably stated because of its wide applicability. In this paper, we present a simple proof of the GreviUe result based on nothing more than the elementary properties of the MP inverse of a matrix.

The Greville result (1960) amounts to the following (Ref. 6). Let B be an m x k matrix, and let it be partitioned as B= [A, a], where A consists of the first k-I columns of B and a is its last column. Since the case where a=O is trivial, we shall consider in what follows only the case where a :PO.

Then, the Moore-Penrose inverse of B can be written, utilizing knowledge of A+, as [START_REF] Rao | A Note on a Generalized Inverse of a Matrix with Applications to Problems in Mathematical Statistics[END_REF] where, In applications, the column vector a comprises new or additional information, while the matrix A comprises accumulated past data. The generalized inverse B+ of the updated matrix B is then sought, given that the generalized inverse A+ of the matrix A corresponding to past accumulated data is available.

c = (1-AA+)a,
Since right multiplication of AA + by any m-vector in the column space of A leaves that vector unchanged, Eq. (2a) when a¢AA+a deals with a vector a, or new data, which is not in the column space of A. When a= AA+a, as in Eq. (2b), the vector a is in the column space of A.

Proof for the Recursive Determination of the Moore-Penrose Inverse of a Matrix

Consider the least-squares problem

(Bx-b) r(Bx-b)= min, over all x.
(3)

Let the m x k matrix B be partitioned as (A, a], where A is an m x (k-1) matrix and a is an m~vector. Similarly, let the column vector x be partitioned as [~]where z is a (k-1)-vector and sis a scalar. Equation (3) can then be expressed in the following form:

(Az +as-b) r(Az +as-b)= min, over all vectors z and scalars s.

( 4)

The least-square minimum-length solution of (3), by the definition of the MP inverse, can be written as

x=[!]=B+h (5)
for arbitrary b. The solution given by Eq. ( 5) can be interpreted as follows.

We are looking for all those pairs (z. s) from among all possible (k-1 )vectors z and scalars s such that

J(z, s)= I[Az+as-bll
is a minimum; from these pairs, we select that pair for which the (k-1)vector z and the scalar s are such that zrz +; is a minimum.

First, we begin by setting s =so, where so is some fixed scalar. Thus, we have

J(z, So)= IIAz-(b-aso)ll. ( 6 
)
Minimizing J(z, so) such that zrz is also a minimum for all (k -I)-vectors z, using the definition of the MP-inverse, we get Thus for a given S 0 , the vector z is a function of S 0 • Using Eq. ( 7) in Eq. (6), we can now find So such that J(z(so), so)= IJAA+(b-aso) +aso-bll

2 = II(/-AA+)aso-(I-AA+)bll 2 (7) (8) 
is a minimum. Depending on the vector c =(I-AA +)a, we must now deal with two distinct cases; c ~0 and c = 0.

(i) For c ' #:-0, the unique value of so which minimizes J (z(s 0 ), so) is given by

s 0 = [(/-AA+)a]+(I-AA+)b=c+(l-AA+)b. ( 9 
)
But the MP inverse of a nonzero m-vector c is given by c+ =cr;crc, and so Eq. ( 9) becomes

So= cT(I-AA+)b/ ere.

Moreover, since

CT =a 7 (J-AA+)T ( 11 
)
and the matrix I-AA+ is symmetric and idempotent, Eq. ( 11) reduces simply to .... +b

S 0 =C • (12)
Combining this last expression with Eq. ( 7), we can rewrite Eq. ( 5) as

[!]=B+b=[:++-A+ac+Jb.

Noting that this is true for all m-vectors b, we obtain

[ A+ -A+ac+J B+ =
for c 4 0.

+ ' r c
(14) (ii) For c = 0, we observe that J (z(so), so) as given in Eq. ( 8) is not a function of So. We thus only need to minimize

J1 (So)= Z(So) T Z(S 0 ) + S~,
over all values of so, where z(so) is given by Eq. [START_REF] Albert | Regression and the Moore-Penrose Pseudoinverse[END_REF]. For convenience, we shall write it as where The value of so that minimizes '• is obtained from It is easy to show that e=O if and only if a=O. The if part of the statement is obvious. Since the denominator of (20) is never zero, e = 0 implies (AAr) +a= 0. Taking the singular value decomposition of A to be A = U A vr (where A is nonsingular and square), e=O then requires UA -lura=O, which in tum requires that ura=O. But our condition c=O implies that a==AA+a, which in tum requires that a== uur a. Using the fact that ur a= 0, the last equation implies a= 0. Hence, a :1= 0 implies e :1= 0. Using Eq. ( 7), Eq. ( 5) can now be written as

[! ]=B+b=[::-A+ aer] b, (21) from which it follows, as before, that for c=O.

(

) 22 
Equations ( 14) and ( 22) constitute the Greville result. Equation ( 14) is identical to Eq. (2a); when er is set equal to c+, Eqs. ( 22) and (2b) become identical because c=ej(ere). In the event that a, or equivalently e, is a null vector, then cis a nun vector.

0

It is perhaps worthwhile noting that the three properties of the MP inverse which we have mainly used in obtaining the recursive relation are: (i) that the MP inverse solves the least-square minimum-length problem; (ii) the MP inverse of a column vector is proportional to its transpose; and (iii) the matrix (I-AA+) is symmetric and idempotent.

  for a#= AA+ a, (2a)c= (1 + ar(AAT)+ a](AAT)+ aj{ar(AAT)+(AAT)+ a),for a= AA+ a, a ¢0.(2b)Thoughout this paper, the superscript + will indicate the MP~inverse.
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 12 oJ.joso=so(l + viv.)-viv2=0t yielding Since (1/2) o 2 J./8s~= (1 +vi v.) zero, the so obtained in Eq. ( 17) indeed gives a minimum for J •. Substituting the values of Vt and v2 into Eq. (17), we then obtain so= (A+ a)T A+b/(1 + ar(A+)T A+ a], (18) which may be simplified to S 0 =a 7 (AAT)+b/[l + ar(AAT)+ a]= erb,