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Using a unified approach, simple derivations for the recursive determination of different types of generalized inverses of a matrix are presented. These include results for the generalized inverse, the least-squares generalized inverse, the minimum-norm generalized inverse, and the Moore-Penrose inverse of a matrix.

INTRODUCTION

The recursive determination of a generalized inverse of a matrix finds extensive applications in the fields of statistical inference [START_REF] Rao | A note on a generalized inverse of a matrix with applications to problems in mathematical statistics[END_REF][START_REF] Greville | Some applications of the pseudoinverse of a matrix[END_REF][START_REF] Greville | Note on fitting of functions of several independent variables[END_REF], filtering theory, estimation theory [START_REF] Graybill | Matrices and Applications to Statistics[END_REF], and system identification [START_REF] Kalaba | Associative memory approach to the identification of structural and mechanical systems[END_REF]. More recently, generalized inverses have found renewed applicability in the field of analytical dynamics [START_REF] Udwadia | A new perspective on constrained motion[END_REF][START_REF] Franklin | Least squares solution of equations of motion under inconsistent constraints[END_REF]. The reason for the extensive applicability of recursive relations is that they provide a systematic method to generate 'updates' whenever sequential addition of data or new information becomes available, and updated estimates which take into account this additional information are required.

The recursive scheme for the computation of the Moore-Penrose (MP) inverse [START_REF] Penrose | A generalized inverse for matrices[END_REF][START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF] of a matrix was ingeniously obtained in a famous paper by Greville in 1960 [START_REF] Greville | Some applications of the pseudoinverse of a matrix[END_REF]. Because of its extensive applicability, Greville's result is widely stated in almost every book that touches on the subject of generalized inverses of matrices. Yet, because of the complexity of his solution technique, Greville's proof is seldom, if ever, quoted or outlined, even in specialized texts which deal solely with generalized inverses of matrices. For example, in books like [START_REF] Graybill | Matrices and Applications to Statistics[END_REF][START_REF] Albert | Regression and the Moore-Penrose Pseudoinverse[END_REF][START_REF] Pringle | Generalized Inverse Matrices[END_REF][START_REF] Rao | Further contributions to the theory of generalized inverse of matrices and its applications[END_REF]], Greville's result is stated, but no constructive proof is provided, most likely because of its perceived complexity.

In the same vein, Mitra and Bhimasankaram [START_REF] Mitra | Generalized inverses of partitioned matrices and recalculation of least squares estimates for data or model changes[END_REF] provide several results for the recursive determination of generalized inverses of matrices; they state their results as several Ansatze and prove them by directly verifying their validity using a number of specialized results related to generalized inverses of matrices. Their results are equivalent to those presented here. However, they provide no constructive proofs for their results and their proofs for the various types of gen- In this paper, we present a simple constructive approach inspired in part by Bellman's optimality principle, to the recursive determination of various generalized inverses of a matrix. The approach relies on a unified underlying theme and shows clearly why and how the differences in the recursive forms of the various generalized inverses arise. Thus, our results encompass those of Greville [START_REF] Greville | Some applications of the pseudoinverse of a matrix[END_REF], and our method of proof, being constructive, provides deeper insights into the nature of the recursive determination of generalized inverses.

For convenience, we introduce the following notation. Given a real matrix A, its MP-inverse G satisfies the following four conditions:

(1) AGA = A, (2) GAG = G, (3) AG is symmetric, and (4) GA is symmetric.

We shall denote a matrix G which satisfies all four of these conditions by A {1'2'a'4}. Similarly, a matrix which satisfies only the first and fourth condition above shall be denoted as A {1,4} and shall be referred to as the {1,4}-inverse of A, etc.

The most commonly used generalized inverses of a matrix are the MP-inverse (also denoted here as the {1,2,3,4}-inverse), the {1,3}-inverse, the {1,4}-inverse, and the {1}-inverse because these inverses are relevant to the solution x of the matrix equation Ax = b or of the relation Ax ~ b. We shall begin by defining these generalized inverses (as in [START_REF] Rao | Further contributions to the theory of generalized inverse of matrices and its applications[END_REF]) in terms of the relevant linear relations which they help solve. The MP-inverse provides the minimum-length solution x = A{1'2's'a}b in the set of least-squares solutions of the possibly inconsistent equation Ax ~ b for any b, the {1,3}-inverse provides a least-squares solution A{1,S}b to the possibly inconsistent equation Ax ~ b for any b, the {1,4}-inverse provides a minimum-length solution A {1,4} b for any b for which the equation is consistent, and the {1}-inverse of A provides a solution A{1}b for any b for which the equation Ax = b is consistent. This paper is concerned with these four commonly used generalized inverses defined above, which we shall denote, in general, by A*. The solution x is then expressed, in general, as A*b. Their generalized forms are given in [START_REF] Udwadia | Analytical Dynamics: A New Approach[END_REF].

Given a real m by k matrix Ak, one can partition it as [Ak-1 a] where Ak-1 consists of the first (k-1) columns of the matrix Ak and a is its last column. The column vector a comprises 'new' or additional information, while the matrix Ak-1 comprises accumulated past data. The generalized inverse A~ of the updated matrix Ak is then sought in terms of the generalized inverse A~_ 1 of the matrix Ak-1 which corresponds to past accumulated data, and the vector a containing new or additional information. The MP-inverse of a matrix A is unique. The other generalized inverses ~{1,4} which we shall deal with here are not in general unique, and so, in what follows, by say "'k-1 , we shall mean any one of the set of {1,4}-inverses of the matrix Ak-1. 

MAIN RESULT Let

and u = any arbitrary m-vector q.(3) and v = d. ( 4)

and v = any arbitrary m-vector q.(5)

From equations (la) and (lb), notice that the form of the inverse A~_lis the same for c = 0 and for c ~ 0. We have used separate equations here only for convenience.

PROOF OF PART 1. We consider the solution of the least squares problem [START_REF] Udwadia | A new perspective on constrained motion[END_REF] where we have partitioned the vector x into the (k -1)-vector z and the scalar s. To determine the minimum-length-least-squares solution x of Akx ~ b, we consider all those pairs (z, s) which minimize J(z, s) = IIAk_lz + as -bll 2, and from these pairs select the one whose length zT z + s 2 is a minimum. We begin by setting s = so, where So is some fixed scalar. Thus, we have

J (z, So) = IIAk-lz -(b -aso)II 2. ( 7 
)
Minimizing ( 7) such that ~7-~ is also a minimum from among all (k -1)wectors z, we obtain, from the definition of the MP-inverse, 4{1'2'3'4} (b -aso) .

(

) (So) = "'k-1 8 
Thus, for a given value of the scalar So, the (k-1)-vector ~ is a function of so. Using equation ( 8) in equation [START_REF] Franklin | Least squares solution of equations of motion under inconsistent constraints[END_REF], we can now find so such that (b -aso) + aSo b : J (~. (so), So) = A21k_l.~k_la{1,2,3 4} ( 9)

= (I-A A{1,2,3,4}, -(I-A A (1'2'a'4}' k-1-%_1 ) aso k-1 k-1 ,} b 2
is a minimum. Depending on c (I " ,U,2,3,4}, = -.'ik-l~k_l )a , we must now deal with two cases: the first when c ¢ 0; the second when c --0. The first case occurs when a does not lie in the column space of Ak-1; the second, when the vector a lies in the column space of the matrix Ak-1.

(i) For c ~ 0, the unique value of so which minimizes ( 9) is given by

aT(I_A A{1,2,3,4}, (1 _ ~ a{1,2,3,4}, k-l k_l ) k-l k-i )b cTc ( 10 
) C T C{1,2,3,4} b : = "~c b = uTb,
where in the first equality, we have used the fact that the matrix (I --.,"l.k_lZlk_ 1"4 A{1,2,3,4}\) is symmetric, and in the second equality, that it is idempotent. Having found the unique value so which minimizes [START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF], we now obtain from ( 8), the minimum-length-least-squares solution of Akx .~. b as

--2tk_ 1' ' t~'t$ | x = A~l,2,3,4}b _ | ~ = |"k-1 b, (11) 

L So L uT J

where the first equality follows by the definition of the MP-inverse. Hence,

A{1,2,3,4} .(1,2,3,4} T 1 --Ilk 1 au ] A(kl,2,3, 4} __--"~k-1 U T - , for c ~ 0. (12) 
,J

(ii) For c --0, we observe from equation (9) that J(~(so), so) is not a function of so. Thus, we only need to minimize Jl(so) = ~(so)T~.(so) + S 2 over all values of So, where ~(So) is given in equation [START_REF] Penrose | A generalized inverse for matrices[END_REF]. For convenience, we can write this as for some {1,3}-inverse of the m by (k -1) matrix Ak-z. We next minimize

J(z(So), So) = Ak-1A{l'3}''k-X (b-a o)+a o-bl: - Ak_lA{k 1'3'} -(I ,z A{k~3'}) b : (19) 
with respect to so and again need to consider two cases: when c ¢ 0 and where c = 0.

(i) For c ¢ 0, we obtain the unique value of so which minimizes (19) to be (

"*k-l Zi {1'3}'~ (I -~.k-1 ~ -"lk_ {1'3}~ So = a T \I -Ak_ 1 "] " ) b ---uTb, ( 20 
)
cTc
where we have again used the fact that the matrix (I -Ak_1A{kl'31 }) is symmetric and idempotent. Following the same sort of steps as before, we then obtain the required result for this case. (ii) For c --0, equation (19) shows that J(£'(so)so) is not a function of so; hence, the choice of so is arbitrary. If we let so = qTb, where q is any arbitrary m-vector, we obtain statement (3) of our result for this case. The matrix Ak {l'a} so obtained is not unique. Moreover, once a {1,3}-inverse is obtained through the use of equations (la), (lb), and (3), other {1,3}-inverses may be generated by adding to this {1,3}-inverse any matrix R such that AkR = O. |

CONCLUSIONS

In this paper, we present a unified approach for obtaining recursive relations for several of the commonly used generalized inverses of an m by k matrix A. Part 1 of our main result which deals with the MP-inverse was obtained by Greville [START_REF] Greville | Some applications of the pseudoinverse of a matrix[END_REF], but in a more complex manner; our proof of this part is substantially simpler. The unifying theme used in this paper is brought about by defining generalized inverses in terms of the solution(s) x = A*b of the matrix equation Ax = b or of the relation Ax .~ b, and then using a procedure akin to dynamic programming. This results in similar lines of reasoning for obtaining recursive relations for the various types of generalized inverses, while providing insight into why and how the differences among them arise.
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A{1,4}/~ PROOF OF PART 3. The {1,4}-inverse provides a minimum length solution x = "'k v to the consistent equation Akx = b. Again we partition the vector x into a (k -1)-vector z and a scalar s. For a fixed So, we solve the consistent equation (i) For c # 0, the solution of the consistent equation ( 23) yields 8 o = cTc from which the result for this case follows on using equation ( 22). (ii) For c = 0, both the left-and the right-hand sides of equation ( 23) are zero. We then need to find So so as to minimize Jl(so) = ~(so)r~(so) + s 2, where ~(so) is given by equation ( 22).
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Setting Pl = "'k-1 ~ and P2 -= "~k-1 v, and following the reasoning in Part 1, Case (ii), we obtain the result given in (4).

We note in passing that the vector b must lie in the range space of the matrix Ak. Using the {1,4}-inverse obtained from equation (la), (lb), and (4), others can be obtained by adding to this {1,4}-inverse any matrix L which satisfies the relation From this, result (5) follows for this case. When c = 0, as in Part 3, both the left-and right-hand sides of the consistent equation (26) are zero; hence, So can be arbitrary. We can then choose so to equal qTb where q is any arbitrary m-vector yielding the result provided for this case in [START_REF] Kalaba | Associative memory approach to the identification of structural and mechanical systems[END_REF]. Again as in Parts 2 and 3 above, the {1}-inverse obtained from equations (la), (lb), and (5) can be used to obtain other {1}-inverses by adding to this {1}-inverse any matrix (L + R) where L is such that LAk = 0 and R is such that AkR = O. (See [START_REF] Udwadia | Analytical Dynamics: A New Approach[END_REF].) |