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DYNAMICS AND IMPACT IN A SYSTEM WITH UNILATERAL CONSTRAINTS THE RELEVANCE OF DRY FRICTION

sulla dinamica e sull'urto di un sistema rigido, soggetto a vincoli unilaterali. Tale problema e particolarmente interessante per la comprensione del comportamento meccanico delle strutture monumentali costituite da blocchi lapidei, in presenza di forze est erne variabili. L 'analisi fornisce informazioni sulla evoluzione dinamica del sistema; tali informazioni sono indispensabili per uno studio sulla stabilitd.

SUMMARY. The aim of the present work is to investigate the impact and the dynamics of a rigid system, subject to unilateral constraints. The problem is particularly interesting to understand the mechanical behaviour of stone structures subject to external forces and to give informations about the dynamical evolution; such informations are basic for a stability study.

INTRODUCTION

In the last years particular attention has been devoted to problems with unilateral constraints.

At the same time, studies on masonry structures have also received many contributions. Experimental and numerical researches have been undertaken to understand the mechanical behaviour; moreover, analytical studies have been developed to define constitutive laws.

The problem mentioned above are strictly connected; in fact, it is well known that masonry structures are characterized by a very weak (or null) tensile strenght, due to the presence and the degradation of the mortar.

In particular, stone monumental structures can be modeled as rigid-labile systems with unilateral constraints.

The possibility to define a stability degree for such systems, in the case of monodimensional structures (arches, portals, etc.) with one degree of freedom has been investigated in former works [1], [2], (3]. The most interesting result is that, due to unilateral constraints, the equilibrium configuration is stable, so that it is possible to define a stability degree. Further, the stability definition is strictly connected to the possibility of stable oscillations around the equilibrium configuration, particularly in presence of external forces; this is the case of earthquakes. Therefore, a dynamical analysis of stone structures, under the assumptions above, is mandatory. The oscillations are expected to have a peculiar character, because they are possible by means of inversion of the mechanisms. Then the problem is non linear, due to the fact that the inversion is characterized by an impact.

The free dynamics of particular systems, both in the case of small and large amplitude oscillations has been studied

[1], [2], [4], under the restrictive assumption that such systems are conservative.

The amount of energy dissipation during the impulsive phenomen is, to the author opinion, an open problem.

The dynamical analysis of a column has been undertaken in [5], with a numerical approach, but an «a priori» assumption about the motion after the impact has been imposed.

Such assumption is the same made by Housner [6]. Its fundamental work analyses both the free and forced motion only for very slender stone structures, the behaviour of which is assumed similar to the inverted pendulum.

In this work, the dynamics and the impact of a stone element are investigated, assuming as fundamental parameter the dimensional ratio, which is allowed to vary in a very large range. As a consequence, even if the analytical expression for the solution of the free motion is the same of Hausner, the difference from Hausner periods increases with the dimensional ratio.

The large range of variation of the dimensional ratio permits to define the relevance of dry friction and to identify the only possible motion after the impact.

Both the dynamics and the impact are studied for two extreme cases: a) absence of dry friction; b) dry friction large enough to prevent sliding. Such cases are useful to define the boundary of the behaviour for all the possible values of dry friction.

DYNAMICS WITHOUT FRICTION

Referring to Fig. 1, let us assume that: a) the system is constituted by a rigid bloc, simply supported by a rigid ground; b) h, b are its dimensions; h is the height and b the base length (the base are is b x 1); c) (x, y) is an inertial reference system with its origin initially coincident with point A.

Let us consider the free dynamics of this system, under the assumption that friction is negligible. Moreover, initially, let A be the only point in contact with the ground. This corresponds to consider one of the two possible mechanisms of the system.

Let xG, YG and e be the lagrangian coordinates (respectively the two center of mass translations and the rotation angle), then the equazions of motion are: where m is the mass of the system, X is the constraint reaction, g the gravity acceleration and IG the baricentric inertia moment.

In order to solve system ( 1 ), the constraint equation due to ground impenetrability must also be imposed; this is a unilateral constraint:

(2) If we assume that, during the motion, point A never gets off the ground, eq. (2) can be written as:

dy G + (: sene -~ cos e) de = 0 (3)
From eqs. ( 2) and (3) the dynamical system becomes:
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It is noted that system ( 4) has only two degrees of freedom, corresponding to the lagrangian coordinates x G and B; further, the pertinent equations are uncoupled.

The horizontal motion of the center of mass is characterized by:

(5)

Regarding to rotation, if we assume that 8 is small enough, so that sen 8 ~ e and cos e ~ 1, the corresponding equation can be written as:

( I + m b 2 -m bh e) 0 + G 4 2 (6) ( h2 -b 2 bh ) h b + m --4-e -4 iJ2-mg 2 8 =-mg 2
Let use note that in eq. ( 6), in spite of the small amplitude assumption, a term proportional to 0 2 is present. In this respect some observations both of mathematical and physical character must be made. We are concerned to study the small amplitude motion around the equilibrium configuration corresponding to e = 0.

This configuration is stable only because of ground impenetrability; such constraint, introduced when the bloc reaches the ground, cannot be taken into account by eq. ( 6), but it must be imposed, by means of another relationship. In fact if we consider solutions with the form: e(t) = const, eq. ( 4) ~ives the two equilibrium configurations: e = + arctg t , which are, respectively, stable and unstable.

Regarding to motion near (} = 0, it is far from natural equilibrium configurations of the system and in particular, it can be considered as a large amplitude motion around the unstable configuration. As a consequence, the angular velocity can assume finite values, so that 0 2 cannot be neglected. In proof of this argument, it is worth to remark that the potential energy U(e), for e = 0, exhibits a boundary minimum characterized by ~~ 4= 0.

Eq. ( 6) is a non linear equation, with variable coefficients. In order to find a solution which takes into account infinitesimal values of 8 and finite values of 8 let us consider a solution with the form: (7) that is, the angle 8 i~ obtained as the difference between two finite terms, where e 0 is the unstable equilibrium con- figuration corresponding to: e = arctg ~ . Substituting (7) in ( 6), and neglecting the first order terms, eq. ( 6) becomes:

.. . 2 ( b2) bh b I +m-e --8 =-mg- G 4 0 4 0 2 (8)
Eq. ( 8) can be easily transformed into a first order differential equation, with the substitution eo= y, so that:

The constants C 1 and C 2 depend on the initial conditions.

If .XG(O) = 0, the motion of the center of mass is along the vertical. At instant tl' when e (t 1 ) = 0, the instantaneous center of rotation is, in a reference system fixed with respect to the bloc, coincident with the point the coordinates of which are (0, 1 ).

The motion, at the same instant, is characterized by:

. Fort> tl' the motion is undetermined; it will depend on the impact between the rigid bloc and the ground. This aspect will be investigated in the following.

DYNAMICS WITH DRY FRICTION

Now let us assume that dry friction is present. Moreover the amount of friction is large enough to prevent sliding of point A in Fig. 1. Then the dynamical equations are:

mxG = A. 1 mjiG = A. 2 -mg
with the constraints equations:

dxG + (: sen (} + : cos(}) d(J = 0 dy G + (: sen (} -: cos (}) d(} = 0 (11) (12)
where A. 1 and A. 2 , represent, respectively, the horizontal and vertical constraint reactions.

The motion, in this case, is a rotations around the fixed point A. Then, let us assume the rotation angle (}, as lagrangian coordinate. The corresponding dynamical equation is:

.. mg

IA (} -- (h sen 8 -b cos(}) = 0 2
where fA is the inertia moment with respect to A. (13) With the assumption of small values of(}, eq. ( 13), on the contrary of eq. ( 6), does not contain 8 terms, so that it can be solved and the solution of the first order approximation is:

b 8 (t) = -+ C 1 cosh (ext+ C 2 ) h where: (14)
It is particularly interesting to calculate A. 1 /A. 2 , that is the ratio between the horizontal and the vertical reaction. Such ratio, in fact provides information about our assumption of friction large enough to prevent sliding of point A.

From eq. ( 11), ( 12) and ( 13), it can be found, at the zero order approximation, that:

(15)

If fa represents the limit value of the dry friction coefficient, during the motion, point A does not slide only if: (16) Neglecting first order terms, eq. ( 16) corresponds to:

'2 g 2 2 (b-hfa)(} (t);;;. 2 2 [3bh-_fo(b + 4h )] 2(h +b) (17)
Inequality ( 17) has been investigated by means of parametric analysis on t and fa. The results are reported in fig. 2, where the lines fa= 0, 75 and fa= t , useful for algebraic considerations, have been drawn. It can be said that, in region for which *;;;.fa and fa> 0,75, enequality ( 17) is verified for any initial conditions and at any instant.

On the contrary, for } ;;;. fa and fA.;:;; 0,75, ( 17) is satisfied only for particular values of the ratio * .

In tab. 1 such values are reported in correspondence to different values of fa. The region where the friction is not sufficient to prevent sliding has been dashed in Fig. 2. 

THE IMPACT PROBLEM

The problem of the impact, which occurs when the rotation angle is zero, is difficult to solve. In fact, using only the fundamental equations of the impulsive phenomenon, the motion after the impact is undetermined, due to the unilaterality of the constraints and to the finite extension of the surface involved.

Moreover, the experimental law of Newton cannot be used, because the impact is not central and direct.

An alternative approach to solve the problem is the one which refers to the symbolic equation of impulsive motion and uses some principle of minimum. The symbolic inequality of impulsive motion for discrete systems with unilateral constraints is:

n [ U;-mi /::,vi) X olj ~ 0 (18) i= 1
where I; is the external impulse applied to the i-th mass point, /::,vi is the corresponding velocity variation and oPi the infinitesimal displacement congruent with the constraints.

For our system, the symbolic inequality, when the bloc has reached the ground, imposes a restriction on the velocities distribution.

But, in the same time, it allows an infinite number of motions after the impact, congruent with the unilateral constraint.

The determination of the unique natural motion is possible by using a varied form of the Gauss principle of least performance, furnished by the constraint reactions. This varied form due to Robin for systems with bilateral constraints, states that the unknown motion after an impact is the one which minimizes the G function between any motion congruent with the constraint system.

In the case of null external impulse such G function is the kinetic energy due to the sudden variations of the velocities.

The validity of the Robin principle for systems with unilateral constraints has been verified by Mayer [9], so that it is used to study the impact in both the cases with and without dry friction.

The impact without friction

Let us consider again the system of Fig. 1. At the instant tl' when (J (! 1 ) = 0, the absolute instaneous center of rotation is coincident with point H (Fig. 3).

Then, the motion before the impact is characterized by:

x 0 (t 1 ) =canst. b . _y-u) = -e- o 1 2 
The unilateral constraint introduced by the impact is:

oyp~o
where Pis any point of the bloc.

Eq. ( 20) can be written as:

oy 0 + (xp-x 0 ) oe ~ o that is: (19) (20) (21) (22) 
Eq. ( 22), as function of the velocities implies that the permitted motion are only those for which:

(23) A consequence of inequality ( 23) is: (24) because xp can assume any value between zero and b. In virtue of the Robin principle, the natural motion is the one which minimizes the kinetic energy, G, due to the sudden
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velocities variations. In our case the expression of G is:

of which we must find the minimum value according to (24). Regarding to eq. ( 25) we can note that: a) x 0 is an independent parameter of the motion; b) from ( 24), the minimum value for G is the one corresponding toy J = ~ 18+ I• because 8-< 0 so that-.Y(; > 0 and.YJ;;;. 0. Then, .eq. ( 25) can be written as:

G= ~ m[<xJ-ic(;) 2 +(i8+i_8-) 2 : 2 ]+ 1 . . + -I 0 (e+ -e-) 2 .
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The minimum of G can be found requiring that:

a a -= 0 a •+ XG a a -. =0.
ae+

The first of eqs. ( 27) corresponds to:

(26)

(28) so that the horizontal motions before and after the impact are the same. On the contrary, the presence of an absolute value for 8+, in the second of eqs. ( 27), requires that two cases must be considered, respectively, for iJ + < 0 and 8+;;;. 0.

The consequent conditions are: and Eq. ( 29) implies that:

h 2 -2b 2 8+ = 8- 4b2 + h 2 (29) 
for e+;;;. 0 (30)

where for 1 0 has been assumed the expression:

JG = ;2 m(b2 + h2).
Because both iJ+ and ir are negative, eq. ( 31) is valid only if ~ > v2. In this case, the motion after the impact is a rototranslation charaterized by an angular rate reduced in value but with the same sign. Regarding to eq. ( 30), we can observe that is implies an absurdity; in fact, if t}+;;;. 0, it is impossible that 8+ = ir < 0. Neverthless, some considerations can be made.

The G function does not have a minimum characterized dG by dO+ = 0, but because it is an increasing function of responding to 8+ = 0.

Then, for t . ; ; ; ; ; .../2, the motion after the impact can be a pure translation; its occurence depends on the value of xJ = x 0 . In fact, if x 0 = x 0 (0) = 0, after the impact the system is at rest.

It is interesting to note that, if x 0 (0) = 0, for any value of : , the kinetic energy depends only on the angular rate 8, so that the amount of dissipated energy can be evaluated.

With reference to the ratio e between the values of kinetic energy after and before the impact, it can be found that: Let us consider the same system in presence of dry friction; let the value of } and fa be the ones (Fig. 2) which permit to point A to act as an hinge.

At instant t 1 , the motion of the system, before the impact, is: Now it is espected that eq. ( 20) is satisfied as an equality for a particular point P*, belonging to the base AB, for which: 
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Table l .

 l 

			h
	0.1	b -.;;; 0.13 h	b and -;;. 29.9 h
	0.2	b -.;;;9.27 h	b and -;;. 14.7 h
	0.3	b -.;;;0.42 h	h and -> 9.58 b
	0.4	b -.;;;0.57 h	h and -;;. 6.92 b
	0.5	b -.;;;0.76	h

b fa range of values for -

Eq. ( 33), for any pointP, is equivalent to: Then, from ( 23) and ( 24), the Robin function, for 8+-:/= 0, becomes: (35) where, even in this case, we have assumed that:y~ = % lfi+ I•

The minimum value of G is the one corresponding to:

and for: o+ > 0.

(37) Regarding eq. ( 36), if * > Jf , the motion is a rotation around point B, with reduced angular velocity. In this case it can be easily shown that the dry friction is sufficient to prevent sliding of point B, also after the impact.

On the contrary, for o+ > 0, eq. ( 37) implies as in the previous section that the function cannot have a minimum with di? = 0 de •

Let us consider again eq. ( 35); foro+> 0, G is an increasing function and it approaches its minimum value when iJ+-+ o+. But, for 8+ = 0, the formulation of G becomes:

(38)

In this case, in virtue of the same arguments used above, in order to find the minimum it must be imposed that:

Then for !!_ .,;;; .J2 the motion after the impact is a transla- ' b 2 tion.

Even in this case we can evaluate the amount of dissipated energy. Fort > Jf the expression of e is:

On the contrary, for ~ <; Jf, it becomes:

The diagram of this coefficient as function of 1can be seen in Fig. 4. Surprisingly enough, it is worthwile to remark that, with the same initial conditions, the impact dissipates more energy in the case without friction than in the case with friction.
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