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Ensuring Correctness of Model Transformations

while Remaining Decidable ?

Jon Haël Brenas1, Rachid Echahed1, and Martin Strecker2

1 CNRS and Université de Grenoble Alpes
2 Université de Toulouse / IRIT

Abstract. This paper is concerned with the interplay of the expres-
siveness of model and graph transformation languages, of assertion for-
malisms making correctness statements about transformations, and the
decidability of the resulting veri�cation problems. We put a particular
focus on transformations arising in graph-based knowledge bases and
model-driven engineering. We then identify requirements that should be
satis�ed by logics dedicated to reasoning about model transformations,
and investigate two promising instances which are decidable fragments
of �rst-order logic.

Keywords: Graph Transformation, Model Transformation, Program Veri�ca-
tion, Classical Logic, Modal Logic

1 Introduction

We tackle the problem of model transformations and their correctness, where
transformations are speci�ed with the aid of rules and correctness properties are
stated as logical formulas. By model we intend a graph structure enriched with
logical formulas which label either nodes or edges. In our approach, a rule is
composed of a left-hand side which is a graph annotated with logical formulas,
and a right-hand side which is a sequence of actions. The shape of the graph and
the formulas yield an applicability condition of the rule at a matching subgraph
of the model; the right-hand side transforms this subgraph with actions such as
creation, deletion or cloning of nodes or insertion and deletion of arcs.

Rewrite systems come with a speci�cation in the form of pre- and postcon-
ditions, and we aim at full deductive veri�cation, ascertaining that any model
satisfying the precondition is transformed into a model satisfying the postcon-
dition.

The correctness of model transformations has attracted some attention in the
last years. One prominent approach is model checking, such as implemented by
the Groove tool [13]. The idea is to carry out a symbolic exploration of the state
space, starting from a given model, in order to �nd out whether certain invariants
are maintained or certain states (i.e. , model con�gurations) are reachable. The
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Viatra tool has similar model checking capabilities [25] and in addition allows
the veri�cation of elaborate well-formedness constraints imposed on models [23].
Well-formedness is within the realm of our approach (and amounts to checking
the consistency of a formula), but is not the primary goal of this paper which is
on the dynamics of models.

The Alloy analyser [17] uses bounded model checking for exploring rela-
tional designs and transformations (see for example [5] for an application in
graph transformations). Counter-examples are presented in graphical form. All
the aforementioned techniques use powerful SAT- or SMT-solvers, but do not
carry out a complete deductive veri�cation. In our paper, we aim at full-�edged
veri�cation of transformations.

General-purpose program veri�cation with systems such as AutoProof [24]
and Dafny [18] becomes increasingly automated and thus interesting as push-
button technology for model transformations. In this context, fragments of �rst-
order logic have been proposed that are decidable and are useful for dealing with
pointer structures [16].

The question explored in this paper is: which requirements does a logic have
to ful�ll in order to allow for such a veri�cation technique to succeed?

Several di�erent logics have been proposed over the years to tackle the prob-
lem of graph transformation veri�cation. Among the most prominent approaches
�gure nested conditions [15,20] that are explicitly created to describe graph prop-
erties. Another widely used logic in graph transformation veri�cation is monadic
second-order logic [10,21] that allows to go beyond �rst-order de�nable proper-
ties. [4] introduces a logic closer to modal logic that allows to express both graph
properties and the transformations at the same time.

Nonetheless, these approaches are not �awless. They are all undecidable in
general and thus either cannot be used to prove correctness of graph transfor-
mations in an automated way or only work on limited classes of graphs. Starting
from the other side of the logical spectrum, one could consider using Descrip-
tion Logics to describe graph properties [1,6] that are decidable. Another choice
could be the use of modal logics as they are suited to reason about programs.
Obviously, this comes at a cost in term of expressiveness.

Separation logic [22] is another choice that is worth considering when dealing
with transformations of graphs. It has been developed especially to be able to
talk about pointers in conventional programming languages.

In this paper, we proceed in an orthogonal direction. Instead of introducing
a logic and advising users to tailor their problem so that it is expressible in our
logic and that its models comply with the restrictions so that the veri�cation is
actually possible, we aim at providing a means for the users to decide whether
the logic they have used to represent their problem will actually allow them to
prove their transformations correct or whether they have to use several di�erent
systems in parallel.

We are in particular interested in decidable logics, and so we instantiate our
general framework with two decidable logics: Two-variable logic with counting
(in Section 5.1) and logics with exists-forall-pre�x (in Section 5.2). The fragment



of e�ectively propositional logic [19], that is implemented by the Z3 prover [11]
and is closely related to the logical fragment we discuss in Section 5.2, has been
known for a long time to be decidable [8]. The use of two-variable logics [14]
for the veri�cation of model transformation is relatively novel even though it
contains all Description Logics without role inclusions. Once more the goal is
not to advocate the use of any logic but to give the user the ability to decide if
the logics that are planned to be used satisfy some minimal conditions so that
the veri�cation can be carried out e�ectively.

The rest of the paper is structured as follows: we start with an example, in
Section 2, motivating our model transformation approach, which we then make
more formal in Section 3. In Section 4, we propose general principles that a
logic has to ful�ll to be usable for verifying model transformations. Then, in
Section 5, we illustrate our proposal through the two aforementioned logics.
Concluding remarks are provided in Section 6.

2 Motivating Example

In order to better illustrate our purpose, an example modelling a sample of the
information system of a hospital is introduced. Figure 1 is the UML model of
this sample.

Fig. 1: A sample UML model for the hospital example

We consider persons (shortened to PE). Some of them work in the hospital
and form the medical sta� (MS) and others are patients (PA). The medical sta�
is partitioned into physicians (PH) and nurses (NU). In addition, the hospital



is split into several departments (DE) or services. Documents pertaining to
patients are stored in folders (FO).

Each member of the medical sta� is assigned (denoted by works_in) to a
department. The same way, each patient is hospitalized (hospitalized_in) in one
of the departments. There may be several members of the medical sta� that
may collaborate to treat (treats) a patient at a given time but one of them is
considered as the referent physician (referent_phys), that is to say she is in
charge of the patient. Part of the medical sta� can access the folder containing
the documents about (is_about) a patient either to read (read_access) or to
write (write_access) information.

The fact is the hospital is bound to evolve: new patients arrive to be cured
and others leave, new medical sta�ers are hired and others move out. To illustrate
our purpose, four possible transformations are speci�ed below.

Transformation 1 The �rst transformation is New_Ph(ph1, d1). It creates a
new physician to which is associated an identi�er ph1. This physician will be
working in the department identi�ed with d1.

Transformation 2 The second transformation is New_Pa(pa1, ph1, fo1). It
adds a new patient. The patient pa1 is created alongside his folder fo1. She is
then assigned ph1 as referent physician.

Transformation 3 The third transformation is Del_Pa(pa1). It modi�es data
so that patient pa1is no more hospitalized.

Transformation 4 The last transformation is Del_Ph(ph1, ph2). It deletes the
physician ph1 and forwards all his patients to the physician ph2. ph1 and ph2

have to work in the same department.

Despite the transformations, there are some properties of the hospital that
should not be altered. We give a list of six such expected properties in the
following.

Expected property 1 Each member of the medical sta� is either a nurse or
a physician but not both.

Expected property 2 All patients and all medical sta�ers are persons.

Expected property 3 Each person that can write in a folder can also read it.

Expected property 4 Each person that can read a folder about a patient treats
that patient.

Expected property 5 Only medical sta�ers can treat persons and only pa-
tients can be treated.

Expected property 6 Every patient has exactly one referent physician.



3 A Model Transformation Framework

In this section, a framework used to describe models as well as their transfor-
mations is introduced. A model is considered hereafter as a graph, labeled by
logical formulae. The logic in which these formulae are expressed is considered
as a parameter, say L, of the proposed framework. Required features of such a
logic are discussed in the next section. Nevertheless, we assume in this section
that the logic L is endowed with a relation |= over its formulae. That is to say,
n |= B (resp. e |= B) should be understood as �formula B is satis�ed at node n
(resp. edge e)�.

De�nition 1 (Graph). Let L be a logic. A graph G is a tuple (N , E, C, R,
φN , φE, s, t) where N is a set of nodes, E is a set of edges, C is a set of (node)
formulae (of L) or concepts, R is the set of edge formulae (of L) or roles, φN
is the node labeling function, φN : N → P(C), φE is the edge labeling function,
φE : E → R, s is the source function s : E → N and t is the target function
t : E → N .

Labeling a graph with logical formulae is quite usual in Kripke structures. In
this paper, labeling formulae will play a role either in the transformation process
or in the generation of proof obligations for the properties intended to be proved.

Transformations of models are performed by means of graph rewrite systems.
These rewrite systems are extensions of those de�ned in [12] where graphs are
labeled with formulae. Thus, the left-hand sides of the rules are labeled graphs
as de�ned in De�nition 1, whereas the right-hand sides are de�ned as sequences
of elementary actions. Elementary actions constitute a set of basic transforma-
tions used in graph transformation processes. They are given in the following
de�nition.

De�nition 2 (Elementary action, action). An elementary action, say a,
has one of the following forms:

� a concept assignment c := i where i is a node and c is an atomic formula
(a unary predicate). It sets the valuation of c such that the only node labeled
by c is i.

� a concept addition c := c+ i (resp. concept deletion c := c− i) where i is a
node and c is an atomic formula (a unary predicate). It adds the node i to
(resp. removes the node i from) the valuation of the formula c.

� a role addition r := r+ (i, j) (resp. role deletion r := r− (i, j)) where i and
j are nodes and r is an atomic role (a binary predicate). It adds the pair
(i, j) to (resp. removes the pair (i, j) from) the valuation of the role r.

� a node addition new(i) (resp. node deletion delI(i)) where i is a new node
(resp. an existing node). It creates the node i. i has no incoming nor outgoing
edge and there is no atomic formula such that i belongs to its valuation (resp.
it deletes i and all its incoming and outgoing edges).

� a global incoming edge redirection i �in j where i and j are nodes. It
redirects all incoming edges of i towards j.



� a global outgoing edge redirection i �out j where i and j are nodes. It
rede�nes the source of all outgoing edges of i as j.

� a node cloning clone(i, i′) where i is a node, i′ is a node that does not exist
yet. It creates a new node i′ that has the same labels as i and the same
incoming and outgoing edges3.

The result of performing the elementary action α on a graph G = (NG, EG, CG,RG,
φGN , φ

G
E , s

G, tG) produces the graph G′ = (NG′ , EG
′
, CG′ ,RG′ , φG′N , φG

′

E s
G′ , tG

′
) as

de�ned in Figure 2 and write G′ = G[α] or G ⇒α G′. An action, say α, is a
sequence of elementary actions of the form α = a1; a2; . . . ; an. The result of per-
forming α on a graph G is written G[α]. G[a;α] = (G[a])[α] and G[ε] = G, ε
being the empty sequence.

De�nition 3 (Rule, Graph Rewrite Systems). A rule ρ[n] is a pair (lhs,α)
where n is a vector of concept variables. These variables are instantiated by
means of actual concepts when a rule is applied. lhs, called the left-hand side, is
a graph and α, called the right-hand side, is an action. Rules are usually written
ρ[n] : lhs → α. Concept variables ni in n may appear both in lhs and in α. A
graph rewrite system is a set of rules.

Notice that a rule ρ[n] : lhs→ α may be considered as a generic rule which
yields an actual rewrite rule for every instance of the variables n. We write ρ[c]
to denote the rule obtained from ρ[n] : lhs → α by replacing every variable
concept ni appearing either in lhs or in α by the actual concept ci. Now let us
de�ne when a rule can be applied to a graph.

De�nition 4 (Match). Let ρ[n] : lhs → α be a rule and G be a graph. Let
ρ[c] be an instance of rule ρ[n] and inst be the instance function de�ned as
inst(ni) = ci for i ∈ {0, . . . , k}. We say that the instance ρ[c] matches the graph
G via the match h = (hN , hE), where hN : N lhs → NG and hE : Elhs → EG if
the following conditions hold:

1. ∀n ∈ N lhs,∀d ∈ φNlhs(n), hN (n) |= inst(d)
2. ∀e ∈ Elhs,∀r ∈ φElhs(e), hE(e) |= inst(r)4

3. ∀e ∈ Elhs, sG(hE(e)) = hN (slhs(e))
4. ∀e ∈ Elhs, tG(hE(e)) = hN (tlhs(e))

The third and the fourth conditions are classical and say that the source and
target functions and the match have to agree. The �rst condition says that for
every node n of the left-hand side, the node to which it is associated, hN (n), in
G has to satisfy every concept that n satis�es. This condition clearly expresses
additional negative and positive conditions which are added to the �structural�
pattern matching. The second condition expresses the same conditions on the
edges.

3 This action has the same e�ect as the one de�ned by means of sesquipushout [9].
4 inst(r) (resp. inst(d)) replaces in r (resp. in d) every occurrence of a concept variable
ni by its instance ci. The formal de�nition of the function inst depends on the
structure of the considered concepts and roles.



If α = c := i then: If α = new(i) then:

NG′ = NG,EG
′
= EG,CG

′
= CG,RG

′
= RG NG′ = NG ∪ {i} where i is a new node,

φG
′

N (n) =

{
φGN (n) ∪ {c} if n = i
φGN (n)\{c} if n 6= i

,φG
′

E = φGE ,

sG
′
= sG, tG

′
= tG

EG
′
= EG,CG

′
= CG,RG

′
= RG,

φG
′

N (n) =

{
∅ if n = i
φGN (n′) if n 6= i

If α = c := c+ i then: φG
′

E = φGE , s
G′ = sG, tG

′
= tG

NG′ = NG,EG
′
= EG,CG

′
= CG,RG

′
= RG, If α = del(i) then:

φG
′

E = φGE ,φ
G′
N (n) =

{
φGN (n) ∪ {c} if n = i
φGN (n) if n 6= i

NG′ = NG\{i}, CG
′
= CG,RG

′
= RG,

EG
′
= EG\{e|sG(e) = i ∨ tG(e) = i}

sG
′
= sG, tG

′
= tG φG

′
N is the restriction of φGN to NG′

If α = c := c− i then: φG
′

E is the restriction of φGE to EG
′

NG′ = NG,EG
′
= EG,CG

′
= CG,RG

′
= RG, sG

′
is the restriction of sG to EG

′

φG
′

E = φGE , φ
G′
N (n) =

{
φGN (n)\{c} if n = i
φGN (n) if n 6= i

tG
′
is the restriction of tG to EG

′

If α = i�in j then :

sG
′
= sG, tG

′
= tG NG′ = NG, EG

′
= EG, CG

′
= CG,

If α = r := r + (i, j) then : RG
′
= RG, φG

′
N = φGN ,φ

G′
E = φGE ,

NG′ = NG, CG
′
= CG,RG

′
= RG,

EG
′
= EG ∪ {e} where e is a new element

sG
′
= sG,tG

′
(e) =

{
j if tG(e) = i
tG(e) if tG(e) 6= i

φG
′

N = φGN , φ
G′
E (e′) =

{
r if e′ = e
φGE(e

′) if e′ 6= e
,

If α = i�out j then:

NG′ = NG, EG
′
= EG, CG

′
= CG,

sG
′
(e′) =

{
i if e′ = e
sG(e′) if e′ 6= e

,

tG
′
(e′) =

{
j if e′ = e
tG(e′) if e′ 6= e

RG
′
= RG, φG

′
N = φGN , φ

G′
E = φGE ,

φG
′

N = φGN , t
G′ = tG,

sG
′
(e) =

{
j if sG(e) = i
sG(e) if sG(e) 6= i

If α = r := r − (i, j) then: If α = clone(i, i′) then:

NG′ = NG,CG
′
= CG,RG

′
= RG CG

′
= CG,RG

′
= RG

EG
′
= EG\ri,j , where NG′ = NG ∪ {i′}, EG

′
= EG ∪ E′i where

ri,j = {e ∈ EG|sG(e) = i ∧ tG(e) = j ∧ φGE(e) = r}
φG
′

N = φGN , φ
G′
E is the restriction of φGE to EG

′

sG
′
is the restriction of sG to EG

′

E′i = Eini ∪ Eouti ∪ Eloopi with
Eini = {ein| ∃e ∈ EG, tG(e) = i}
Eouti = {eout| ∃e ∈ EG, sG(e) = i}
Eloopi = {eloop|∃e ∈ EG, sG(e) = tG(e) = i}

tG
′
is the restriction of tG to EG

′

φG
′

N (n) =

{
φGN (n) if n 6= i′

φGN (i) otherwise

φG
′

E (e) =

{
φGE(e) if e 6∈ E′i
φGE(co(e)) otherwise

tG
′
(e) =


tG(e) if e 6∈ E′i
tG(co(e)) if e ∈ Eouti

i′ if e ∈ Eini ∪ Eloopi

sG
′
(e) =


sG(e) if e 6∈ E′i
sG(co(e)) if e ∈ Eini
i′ if e ∈ Eouti ∪ Eloopi

where for e′ ∈ E′, co(e′) is the edge e
that e′ is a copy of.

Fig. 2: Summary of the e�ects of atomic actions



i : C i : C i′ : C

Fig. 3: Example of node cloning. The action clone(i, i′) is performed.

De�nition 5 (Rule application). We de�ne the applicability condition as:
App(ρ[c], G) i� there exists a match h from the instance ρ[c] to G. A graph G
rewrites to graph G′ using a rule ρ[c] : lhs→ α i� App(ρ[c], G) holds and G′ is
obtained from G by performing actions in h(α)5. Formally, G′ = G[h(α)]. We
write G→ρ[c] G

′ or G→ρ[c],h G
′.

Example 1. Let us consider again the example given in Section 2. We provide in
Figure 4, for every transformation already presented informally, a corresponding
rewrite rule.

i : {d1, DE}

Transformation 1:

New_Ph[ph1,d1]:
new(j); ph1:= j; PH:= PH + j;

MS:= MS + j; PE:= PE + j;

works_in:= works_in + (j, i);

i : {ph1, PH} j
works_in

Transformation 2:

New_Pa[pa1,ph1,fo1]:

new(k); pa1:= k; PA:= PA + k;

PE:= PE + k;

new(l); fo1:= l; FO:= FO + l;

treats:= treats + (i, k);

referent_phys:= referent_phys + (i, k)

is_about:= is_about + (l, k);

read_access:= read_access + (i, l);

write_access:= write_access + (i, l);

hospitalized_in:= hospitalized_in + (k, j)

i : {pa1, PA} j
hospitalized_in

hospitalized_in:= hospitalized_in - (i, j)

Transformation 3:
Del_Pa[pa1]:

i : {ph1, PH} j

k : {ph2, PH}

works_in

works_in

Transformation 4:

Del_Ph[ph1,ph2]:
works_in:= works_in - (i, j);

i�in k; i�out k

Fig. 4: Transformation rules for the sample hospital model

5 h(α) is obtained from α by replacing every node name, n, of lhs by h(n).



Very often, transforming models by means of rewrite rules necessitates the
use of the notion of strategies. Informally, a strategy acts as a recipe indicating
in which order the rules are applied.

De�nition 6 (Strategy). Given a graph rewriting system R, a strategy is a
word of the following language de�ned by s:
s := ρ[c0, . . . , ck] (Rule application) s∗ (Closure)

s; s (Composition) s⊕ s (Choice)
where ρ[c0, . . . , ck] is an instance of a rule in R.

We write G ⇒S G′ when G rewrites to G′ following the rules given by the
strategy S.

Informally, the strategy ”ρ1; ρ2” means that rule ρ1 should be applied �rst,
followed by the application of rule ρ2. Notice that the strategies as de�ned above
allow one to de�ne in�nite derivations from a given graph G because we have
included the Kleene star construct s∗ as a constructor of strategies. Handling
the Kleene star does not introduce much more di�culties but requires the use
of the notion of invariants in the veri�cation procedures, as it is the case for
while loops in imperative languages. It also requires us to extend the notion of
applicability from rules to strategies:
App(s∗, G) = true App(s0; s1, G) = App(s0, G)
App(s0 ⊕ s1, G) = App(s0, G) ∨ App(s1, G)

In Figure 5, we provide the rules that specify how strategies are used to
rewrite a model (graph). Notice that a closure free strategy is always terminating
while a choice free strategy is always con�uent.

(Rule application)
G→ρ[c] G

′

G⇒ρ[c] G
′

(Choice left)
G⇒s0

G
′

G⇒s0⊕s1 G
′

(Choice right)
G⇒s1

G
′

G⇒s0⊕s1 G
′

(Composition)
G⇒s0 G

′′
G
′′ ⇒s1 G

′

G⇒s0;s1
G
′

(Closure applicable)
G⇒s G

′′
G
′′ ⇒s∗ G

′
App(s,G)

G⇒s∗ G
′

(Closure Inapplicable)
¬App(s,G)

G⇒s∗ G

Fig. 5: Strategy application rules

To end this section we de�ne the notion of a speci�cation which consists in
providing Pre and Post conditions that one may want to ensure for a given
strategy. More precisely, we propose the following de�nitions.

De�nition 7 (Program, Speci�cation). A program is a tuple (R,S) where
R is a graph rewrite system and S is a strategy. A speci�cation SP is a tuple
(Pre, Post, P) where Pre and Post are formulae and P is a program.



Notice that Pre and Post are supposed to be formulae of a given logic. We
do not specify such a logic in the above de�nition. We provide actual examples
in Section 5. A speci�cation (Pre, Post, P) asserts that for all models G that
satis�es the formula Pre, all models G′ obtained after rewriting G according to
strategy S of program P = (R,S), (i.e. G⇒S G′), G′ satis�es formula Post.

4 General Logical Framework

Our aim in this section is to discuss general requirements for a logic, say L, that
might be considered either to specify pre and post conditions of speci�cations
or to label models.

Let SP = (Pre, Post, P) be a speci�cation. If SP is correct, then if a model
G satis�es Pre (G |= Pre) and G rewrites to model G′ via a strategy S of a
program P = (R,S) (G⇒S G′), then G′ satis�es Post (G′ |= Post). In addition
to the general requirements for logics L, a Hoare-like calculus dedicated to prove
the correctness of speci�cations is also discussed in this section .

The �rst, and most obvious, requirements for a logic, L, is that it can express
the labeling of models with formulae which specify nodes and edges.

Requirement 1 Node formulae (concepts in C) should be adequate to the notion
of nodes. That is to say, nodes might be candidates to interpret node formulae.

Requirement 2 Edge formulae (roles in R) should be adequate to the notion
of edges. That is to say, edges might be candidates to interpret edge formulae.

The conditions Pre and Post are properties of models. Thus, we have the
following requirement.

Requirement 3 Assertions Pre and Post should be adequate to the notion of
graphs (i.e. models). That is to say, models might be candidates to interpret Pre
and Post assertions.

The main ingredient of the veri�cation calculus consists in computing weakest
preconditions of postconditions (see function wp de�ned in Fig 6). The basic
cases of the computations of weakest precondition deal with elementary actions.
For that, to every elementary action is associated a so called substitution. Such
substitutions are the elementary building blocks allowing the veri�cation of a
program.

De�nition 8. Let a be an elementary action, as de�ned in De�nition 2. The
substitution [a] associated to the elementary action a is the formula constructor
which associates, to each formula φ of L, the formula φ[a]. Given a model M,
φ[a] is de�ned such that M |= φ[a] ⇔ for all models M′,M ⇒a M′ implies
M′ |= φ.

A logic L′ is said to be closed under substitutions if for each action a, for
each formula φ of L′, φ[a] is also a formula of L′.



wp(ρ[c], Q) = App(tag(ρ[c]))⇒ wp(tag(αρ[c]), Q)
wp(s0; s1, Q) = wp(s0, wp(s1, Q)) wp(s∗) = invs
wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q)

Fig. 6: Weakest preconditions for strategies.

vc(ρ[c], Q) = true vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = (invs ∧App(s)⇒ wp(s, invs)) ∧ (invs ∧ ¬App(s)⇒ Q)

∧vc(s, invs) ∧ vc(s1, Q)

Fig. 7: Veri�cation conditions for strategies.

Weakest preconditions for actions come in two �avors: for elementary ac-
tions a, we have wp(a,Q) = Q[a], and for composite actions, wp(a;α, Q) =
wp(a, wp(α, Q)). On this basis, weakest preconditions for strategies can be eas-
ily computed as depicted in Figure 6. These preconditions follow the principles of
Hoare Logic calculi except for the one dedicated to rules, viz. wp(ρ[c], Q). This
latter corresponds essentially to an �if-then� structure in imperative programs.
Put it simply, it checks three properties that are required for the application
of a rule to be correct. Up to now, App depended on G. However, correctness
proofs should hold for all possible models (graphs). That is way we modify
App to be dependent only on the rules and strategies. First, App is a function
which applies to a rule ρ[c] and returns a formula of L stating that there ex-
ists a match from the left-hand side of ρ[c] to a potential graph. If the formula
App(ρ[c]) is satis�ed, the rule can be performed. Second, whenever the formula
App(ρ[c]) ⇒ wp(αρ[c], Q) is valid, then if there exists a match, the conditions,
viz. wp(αρ[c], Q), which ensure the postcondition to be satis�ed, are satis�ed too.
This corresponds to the usual weakest-precondition in Hoare Logic.

There is one additional issue which deserves to be handled carefully. Actually,
one same rule can be �red several times during the execution of a program. It is
thus mandatory to keep track of where each occurence of the rule is applied. To
be more precise, App introduces a condition that uses the names of the nodes in
the left-hand sides of rules. As these names uniquely de�ne nodes and edges, if a
same rule were used several times with the same names of nodes and edges, the
rule would be applied to the exact same nodes and edges. This issue is solved by
renaming the individuals (i.e., nodes and edges) each time the rule is �red. This
is done through the function tag. That is why wp(ρ[c], Q) = App(tag(ρ[c])) ⇒
wp(tag(αρ[c]), Q).

Finally, the closure of a strategy, s∗, which is close to while structures in
imperative programs, needs the de�nition of an invariant, invs, and the intro-



duction of veri�cation conditions, vc(s∗, Q), shown in Figure 7. Basically, the
idea is that a closure is considered as a subprogram whose correctness is proven
on the side. The veri�cation condition checks that the speci�cation of this sub-
program whose pre and post conditions are the invariant.

From the discussion above, we come to a new requirement about the logic L,
regarding the use of substitutions within weakest preconditions.

Requirement 4 L must be closed under substitutions.

If this last requirement is not satis�ed, the computation of weakest precondi-
tions may lead to formulas not expressible in L. In this case, the veri�cation of
the correctness of speci�cations would need new proof procedures di�erent from
those of L.

In addition, App(ρ[c])must be de�nable in L. Obviously, this depends mainly
on the rules one wants to use. It is thus possible, for a given problem, to use
one logic that may not be powerful enough for other problems. Nonetheless,
one of the requirements this entails on L is that it must allow some kind of
existential quanti�cation so that the graph can be traversed to look for a match.
Obviously, the ∃-quanti�er of �rst-order logic is a prime candidate but some
other mechanisms like individual assertions a : C in Description Logics[3] or the
@ operator of hybrid logic[2] can be used.

Requirement 5 L must be able to express App(ρ[c]) for all rules ρ[c] of the
graph rewrite system under study.

Theorem 1 (Soundness). Let L be a logic satisfying requirements 1 to 5.
Let SP = (Pre, Post, (R,S)) be a speci�cation. If (Pre ⇒ wp(S, Post)) ∧
vc(S, Post) is valid in L, then for all graphs G, G′ such that G⇒S G′, G |= Pre
implies G′ |= Post.

Proof (Sketch). The proof of this theorem is quite straightforward. One just has
to check for every atomic strategy s that if Pre ⇒ wp(s, Post) and G |= Pre
then G′ |= Post. We give the proof for the rule application which is the most
complex.

Assume S = ρ[c] where ρ[c] is a rule ofR. Let us assume Pre⇒ wp(ρ[c], Post)
is valid. Because wp(ρ[c], Post) = App(tag(ρ[c])) ⇒ wp(tag(αρ[c]), Post), also
(Pre ∧ App(tag(ρ[c]))) ⇒ wp(tag(αρ[c]), Post) is valid. Let G be a graph. If
G |= App(ρ[c]), there is a match h. Let G′ be such that G ⇒ρ[c],h G

′. By def-
inition of the substitutions, G ⇒ρ[c],h G

′ and G |= wp(tag(αρ[c]), Post) implies
G′ |= Post. On the other hand, if G 6|= App(ρ[c]), there does not exist any G′

such that G ⇒ρ[c] G
′ and thus the program fails. Thus G |= Pre implies that

G′ |= Post �.

After performing the calculus, one gets a formula vc(S, Post) ∧ (Pre ⇒
wp(S, Post)). Obviously, in order to be able to decide whether or not a pro-
gram is correct, one has to prove that the obtained formula is valid. Hence the
following requirement.



Requirement 6 The validity problem for L is decidable.

Nevertheless, this last requirement could be optional if interactive theorem
provers are preferred.

5 Instances of the Example

Hereafter, we illustrate the general logical framework proposed in the previous
section through the Hospital example by providing logics which ful�ll the six
proposed requirements. In [7] another instance is proposed using an extension of
propositional dynamic logic is proposed.

First, let us observe that all of the invariants that we de�ned can be expressed
in �rst-order logic (Formulae on the right).

Property 1:
MS = NU] PH  ∀x. MS(x)⇔ (NU(x) ∧ ¬ PH(x))∨

(¬NU(x)∧ PH(x))
Property 2:
PA ∪ MS ⊆ PE  ∀x.PA(x)∨MS(x)⇒ PE(x)
Property 3:
write_access ⊆ read_access  ∀x, y.write_access(x, y)⇒

read_access(x, y)
Property 4:
read_access ◦ is_about⊆ treats  ∀x, y, z.read_access(x, y)∧is_about(y, z)

⇒ treats(x, z)
Property 5:
treats ⊆ MS× PA  ∀x, y.treats(x, y)⇒ MS(x)∧ PA(y)
Property 6:
PA⇒ ∃=1 referent_phys  ∀x.PA(x)⇒ (∃y. referent_phys(x, y)∧

∀z.referent_phys(x, z)⇒ z = y)
First-order logic is not decidable though, and thus one may want to use a

di�erent logic in order to be able to decide the correctness of the considered
properties. In the following, we use the 2-variable fragment of �rst-order logic
with counting (C2)[14] and ∃∗∀∗, the fragment of �rst-order logic whose formula
in prenex form are of the form ∃i0, . . . , ik.∀j0, . . . , jl.A(i0, . . . , ik, j0, . . . , jl).

In order to be able to distinguish between nodes of a model (active nodes)
and those which are not part of a given model, we add to the signature of
the logic a unary predicate Active which ranges over nodes and edges. Creating
a new node becomes adding it to the Active nodes. This also requires to add that
∀x, y.¬Active(x)⇒ (

∧
ψ an atomic unary predicate ¬ψ(x)∧

∧
r an atomic binary predicate

¬r(x, y) ∧ ¬r(y, x)). I.e., non active nodes are not assumed to satisfy any prop-
erty.

Let SPH be the speci�cation (Pre, Post,P) associated to the hospital ex-
ample. Assume the strategy is S = New_Ph[nph,neonat];Del_Pa[opa] while
the considered rewrite systemR is the one from Figure 4. This program P creates
a new physician nph and lets the patient opa leave the hospital. Let inv denote



the conjunction of the expected properties. Let the precondition Pre be inv ∧
∃x.(neonat(x)∧DE(x))∧∃x.(opa(x)∧PA(x))∧∀x.¬nph(x). Let the postcondi-
tion Post be inv∧∃x, y.(nph(x)∧PH(x)∧works_in(x, y)∧neonat(y)∧DE(y)).
Proving the correctness of SPH amounts to proving that Pre⇒ wp(S, Post) is
valid. This is a formula in �rst-order logic. In the following two subsections, this
speci�cation is proven to be correct using two di�erent decidable logics that are
able to express parts of Pre and Post.

5.1 Two-Variable Logic with Counting : C2

C2 is the two-variable fragment of �rst-order logic with counting. Its formulas
are those of �rst-order logic than can be expressed with only two variables and
using the counting quanti�er constructor ∃<nx.P expressing that there are less
than n values x that satisfy P . In our case, this constructor will mostly be used
to express that there exist less than n di�erent r-successors of a given node.

De�nition 9. Let U be a set of unary predicates, u ∈ U , B be a set of binary
predicates, b ∈ B, n an integer. A formula φ of C2 is de�ned as:
φ := > | φ ∧ φ | ¬φ | ∃<nx.φx | ∃<ny.φy
φx := φ | u(x) | b(x, x) | φx ∧ φx | ¬φx | ∃<nx.φx | ∃<ny.φx,y
φy := φ | u(y) | b(y, y) | φy ∧ φy | ¬φy | ∃<ny.φy | ∃<nx.φx,y
φx,y := φx | φy | b(x, y) | b(y, x) | φx,y ∧ φx,y | ¬φx,y | ∃<nx.φx,y | ∃<ny.φx,y

As usual, ⊥ means ¬>, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ,
∃≥nv.φ means ¬∃<nv.φ, ∃v.φ means ∃≥1v.φ, ∀v.φ means ¬∃v.¬φ.

De�nition 10. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We de�ne the val-
uation of formulae as follows:
>I = true
(φ ∧ ψ)I = φI and ψI

(¬φ)I = not φI

(∃<nx.φx)I =

 true if there does not exist n nodes m1, . . . ,mn,
mi 6= mj for 0 < i < j ≤ n such that mi |= φx

false otherwise
(∃<ny.φy)I is de�ned the same as (∃<nx.φx)I but replacing x's with y's
Let us now focus on m |= φx:
m |= φ i� φI

m |= u(x) i� u ∈ φN (m)
m |= b(x, x) i� there exists e ∈ E.s(e) = m, t(e) = m and b = φE(e)
m |= (φx ∧ ψx) i� m |= φx and m |= ψx
m |= ¬φx i� m 6|= φx
m |= ∃<nx.φx i� there does not exist n nodes m′1, . . . ,m

′
n,

mi 6= mj for 0 < i < j ≤ n such that m′i |= φx
m |= ∃<ny.φx,y i� there does not exist n nodes w1, . . . , wn,

wi 6= wj for 0 < i < j ≤ n such that (m,wi) |= φx,y
m |= φy is de�ned the same way but swapping the x's and the y's.



Let us now focus on (m,m′) |= φx,y:
(m,m′) |= φx i� m |= φx
(m,m′) |= φy i� m′ |= φy
(m,m′) |= b(x, y) i� there exists e ∈ E.s(e) = m, t(e) = m′ and b = φE(e)
(m,m′) |= b(y, x) i� there exists e ∈ E.s(e) = m′, t(e) = m and b = φE(e)
(m,m′) |= (φx,y ∧ ψx,y) i� (m,m′) |= φx,y and (m,m′) |= ψx,y
(m,m′) |= ¬φx,y i� (m,m′) 6|= φx,y
(m,m′) |= ∃<nx.φx,y i� there does not exist n nodes m1, . . . ,mn,mi 6= mj

for all 0 < i < j ≤ n such that (mi,m
′) |= φx,y

(m,m′) |= ∃<ny.φx,y i� there does not exist n nodes m′1, . . . ,m
′
n, m

′
i 6= m′j

for all 0 < i < j ≤ n such that (m,m′i) |= φx,y

Theorem 2 ([14]). The validity problem of C2 is decidable.

Let us now check the six requirements of the previous section. C2 contains
unary predicates that are interpreted on nodes and binary predicates that are
interpreted on edges. Pre and Post are interpreted on graphs.

Theorem 3. C2 is closed under substitutions.

The proof relies on the fact that �rst-order logic is closed under substitution.
The proof provides a system of rewrite rules that removes substitutions. As it
does not introduce new variables, it also works for C2. We give three example
rules to understand better how does it work:

� (φ ∧ ψ)[σ]  φ[σ] ∧ ψ[σ] as if φ ∧ ψ is satis�ed after performing σ, so must
be φ and ψ and the other way round.

� r(x, y)[r := r + (i, j)] r(x, y) ∨ (i(x) ∧ j(y)) as rI′ is rI ∪ (iI , jI).
� r(x, y)[clone(i, i′)] r(x, y)∨ (i′(x)∧∃x.(i(x)∧ r(x, y)))∨ (i′(y)∧∃y.(i(y)∧
r(x, y))) ∨ (i′(x) ∧ i′(y) ∧ ∃x.(i(x) ∧ r(x, x))).

Example 2. C2 can express all the predicates App(ρ) for the rules of the consid-
ered example (see Figure 4):

� App(New_Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph1(x))
� App(New_Pa[pa1,ph1,fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works_in(x, y)) ∧
∃x.(¬Active(x)∧pa1(x)) ∧ ∃x.(¬Active(x)∧fo1(x))

� App(Del_Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized_in(x, y))
� App(Del_Ph[ph1,ph2]) = ∃x, y.(ph1(x)∧PH(x) ∧ works_in(x, y)∧

∃x.(ph2(x)∧PH(x) ∧ works_in(x, y)))

One should also be interested in the ability of the logic to express the prop-
erties to be veri�ed.

Example 3. C2 is not able to express Property 4: read_access◦ is_about⊆ treats
as one would need to keep track of three variables at a time. On the other hand,
Property 6: ∀x.PA(x)⇒ ∃=1referent_phys.> is a formula of C2.



5.2 Exist-Forall-Pre�x

The logic ∃∗∀∗ is the fragment of �rst-order logic such that its pre�x in prenex
normal form is composed of a sequence of existential quanti�ers and then a
sequence of universal quanti�ers.

De�nition 11. Let U be a set of unary predicates, u ∈ U and B a set of binary
predicates, b ∈ B. Let x1, . . . , xk, a1, . . . , al be variables and v, w denote two of
them. A formula φ of ∃∗∀∗ is de�ned as:
φ := ∃x0, . . . , xk,∀a0, . . . , al.ψ(x1, . . . , xk, a1, . . . , al)
ψ := > | ψ ∧ ψ | ¬φ | u(v) | b(v, w)

As usual, ⊥ means ¬>, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ⇒ ψ means ¬φ ∨ ψ.

De�nition 12. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We de�ned the
valuation of formulae: (∃x1, . . . , xk,∀a1, . . . , al.ψ(x0, . . . , xk, a0, . . . , al))I = N
i� there exist k nodes (x1, . . . , xk) such that for all choices of l nodes (a1, . . . , al),
(x1, . . . , xk, a1, . . . , al) |= ψ.
Let us de�ne (x1, . . . , xk, a1, . . . , al) |= ψ:
(x1, . . . , al) |= >
(x1, . . . , al) |= (φ ∧ ψ) i� (x1, . . . , al) |= φ and (x1, . . . , al) |= ψ
(x1, . . . , al) |= (¬φ) i� (x1, . . . , al) 6|= φ
(x1, . . . , al) |= u(v) i� u ∈ φN (v)
(x1, . . . , al) |= b(v, w) i� there exists e ∈ E. s(e) = v, t(e) = w and b = φE(e)

Theorem 4. The validity problem of ∃∗∀∗ is decidable.

This is a well-known result ([8], chapter 6).
The six requirements of the previous section clearly hold for this logic. ∃∗∀∗

contains unary predicates that are interpreted on nodes and binary predicates
that are interpreted on edges.

Theorem 5. ∃∗∀∗ is closed under substitutions.

The proof is exactly the same as the one for C2 and FO. One needs to be
careful though as additional quanti�ers are introduced. They are always of the
form ∃x.(i(x) ∧ c(x)) or ∃x.(i(x) ∧ r(x, y)) that can be rewritten as ∀x.(¬i(x) ∨
c(x)) or ∀x.(¬i(x)∨r(x, y)). Thus one can consider that only universal quanti�ers
are introduced.

Example 4. ∃∗∀∗ can express all the predicates App(ρ) for the rules of the con-
sidered example (see Figure 4):

� App(New_Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph1(x))
� App(New_Pa[pa1,ph1,fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works_in(x, y)) ∧
∃x.(¬Active(x)∧pa1(x)) ∧ ∃x.(¬Active(x)∧fo1(x))

� App(Del_Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized_in(x, y))
� App(Del_Ph[ph1,ph2]) = ∃x, y, z.(ph1(x)∧PH(x)∧works_in(x, y)∧ph2(z)∧

PH(z) ∧ works_in(z, y))



It is worth noting that the de�nition of App(ρ) introduces new existential
quanti�ers as it checks for the existence of a match. This could seem to lead to a
problem as the formula no longer is in ∃∗∀∗. Actually, as the existentially quan-
ti�ed variables do not depend on the previously de�ned universally quanti�ed
variables, it is possible to move them at the beginning thus yielding a formula
in ∃∗∀∗.

Once more one has to check whether all properties can be expressed in the
chosen logic.

Example 5. ∃∗∀∗ is not able to express Property 6:PA⇒ ∃=1 referent_phys as
it needs an existential quanti�er after the universal ones to express the existence
of an edge labeled with referent_phys. On the other hand, Property 4:
∀x, y, z.read_access(x, y) ∧ is_about(y, z)⇒ treats(x, z) is part of ∃∗∀∗.

6 Conclusions

We considered the veri�cation problem of model/graph transformations. We
introduced a notion of speci�cation consisting of pre- and postcondition which
specify the correctness of the run of rewrite rules performed according to a given
rewrite strategy.

Deciding the correctness of a given speci�cation is not an easy and decidable
task in general. We proposed some criteria which may be helpful to choose
the most appropriate logics one can use to express proof obligations related to
the correctness problem. We illustrated our proposal by considering a running
example for which two decidable logics have been used to prove its correctness.

Even in the relatively simple considered example, none of the investigated
logics is expressive enough to be able to deal with all the discussed properties.
This is a deliberate choice. Our point is that one has to select for each problem
one or several logics that are relevant and we proposed some criteria that help
to select such logics.
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