Jon Haël Brenas

Rachid Echahed

Martin Strecker

Ensuring Correctness of Model Transformations while Remaining Decidable

Keywords: Graph Transformation, Model Transformation, Program Verication, Classical Logic, Modal Logic

This paper is concerned with the interplay of the expressiveness of model and graph transformation languages, of assertion formalisms making correctness statements about transformations, and the decidability of the resulting verication problems. We put a particular focus on transformations arising in graph-based knowledge bases and model-driven engineering. We then identify requirements that should be satised by logics dedicated to reasoning about model transformations, and investigate two promising instances which are decidable fragments of rst-order logic.

Introduction

We tackle the problem of model transformations and their correctness, where transformations are specied with the aid of rules and correctness properties are stated as logical formulas. By model we intend a graph structure enriched with logical formulas which label either nodes or edges. In our approach, a rule is composed of a left-hand side which is a graph annotated with logical formulas, and a right-hand side which is a sequence of actions. The shape of the graph and the formulas yield an applicability condition of the rule at a matching subgraph of the model; the right-hand side transforms this subgraph with actions such as creation, deletion or cloning of nodes or insertion and deletion of arcs.

Rewrite systems come with a specication in the form of pre-and postconditions, and we aim at full deductive verication, ascertaining that any model satisfying the precondition is transformed into a model satisfying the postcondition.

The correctness of model transformations has attracted some attention in the last years. One prominent approach is model checking, such as implemented by the Groove tool [START_REF] Ghamarian | Modelling and analysis using GROOVE[END_REF]. The idea is to carry out a symbolic exploration of the state space, starting from a given model, in order to nd out whether certain invariants are maintained or certain states (i.e. , model congurations) are reachable. The This research has been supported by the Climt project (ANR-11-BS02-016).

Viatra tool has similar model checking capabilities [START_REF] Varró | Automated formal verication of visual modeling languages by model checking[END_REF] and in addition allows the verication of elaborate well-formedness constraints imposed on models [START_REF] Semeráth | Formal validation of domain-specic languages with derived features and well-formedness constraints[END_REF].

Well-formedness is within the realm of our approach (and amounts to checking the consistency of a formula), but is not the primary goal of this paper which is on the dynamics of models.

The Alloy analyser [START_REF] Jackson | Software Abstractions[END_REF] uses bounded model checking for exploring relational designs and transformations (see for example [START_REF] Baresi | Procs. of ICGT 2006, chapter On the Use of Alloy to Analyze Graph Transformation Systems[END_REF] for an application in graph transformations). Counter-examples are presented in graphical form. All the aforementioned techniques use powerful SAT-or SMT-solvers, but do not carry out a complete deductive verication. In our paper, we aim at full-edged verication of transformations.

General-purpose program verication with systems such as AutoProof [START_REF] Tschannen | Procs. of TACAS 2015, chapter AutoProof: Auto-Active Functional Verication of Object-Oriented Programs[END_REF] and Dafny [START_REF] Leino | Dafny: An automatic program verier for functional correctness[END_REF] becomes increasingly automated and thus interesting as pushbutton technology for model transformations. In this context, fragments of rstorder logic have been proposed that are decidable and are useful for dealing with pointer structures [START_REF] Itzhaky | Eectivelypropositional reasoning about reachability in linked data structures[END_REF].

The question explored in this paper is: which requirements does a logic have to fulll in order to allow for such a verication technique to succeed? Several dierent logics have been proposed over the years to tackle the problem of graph transformation verication. Among the most prominent approaches gure nested conditions [START_REF] Habel | Correctness of high-level transformation systems relative to nested conditions[END_REF][START_REF] Poskitt | A hoare calculus for graph programs[END_REF] that are explicitly created to describe graph properties. Another widely used logic in graph transformation verication is monadic second-order logic [START_REF] Courcelle | The monadic second-order logic of graphs. i. recognizable sets of nite graphs[END_REF][START_REF] Poskitt | Verifying monadic second-order properties of graph programs[END_REF] that allows to go beyond rst-order denable properties. [START_REF] Balbiani | A dynamic logic for termgraph rewriting[END_REF] introduces a logic closer to modal logic that allows to express both graph properties and the transformations at the same time.

Nonetheless, these approaches are not awless. They are all undecidable in general and thus either cannot be used to prove correctness of graph transformations in an automated way or only work on limited classes of graphs. Starting from the other side of the logical spectrum, one could consider using Description Logics to describe graph properties [START_REF] Ahmetaj | Managing change in graphstructured data using description logics[END_REF][START_REF] Brenas | On the closure of description logics under substitutions[END_REF] that are decidable. Another choice could be the use of modal logics as they are suited to reason about programs.

Obviously, this comes at a cost in term of expressiveness.

Separation logic [START_REF] Reynolds | An overview of separation logic[END_REF] is another choice that is worth considering when dealing with transformations of graphs. It has been developed especially to be able to talk about pointers in conventional programming languages.

In this paper, we proceed in an orthogonal direction. Instead of introducing a logic and advising users to tailor their problem so that it is expressible in our logic and that its models comply with the restrictions so that the verication is actually possible, we aim at providing a means for the users to decide whether the logic they have used to represent their problem will actually allow them to prove their transformations correct or whether they have to use several dierent systems in parallel.

We are in particular interested in decidable logics, and so we instantiate our general framework with two decidable logics: Two-variable logic with counting (in Section 5.1) and logics with exists-forall-prex (in Section 5.2). The fragment of eectively propositional logic [START_REF] Piskac | Deciding eectively propositional logic using DPLL and substitution sets[END_REF], that is implemented by the Z3 prover [START_REF] De Moura | Z3: an ecient SMT solver[END_REF] and is closely related to the logical fragment we discuss in Section 5.2, has been known for a long time to be decidable [START_REF] Börger | The classical decision problem[END_REF]. The use of two-variable logics [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF] for the verication of model transformation is relatively novel even though it contains all Description Logics without role inclusions. Once more the goal is not to advocate the use of any logic but to give the user the ability to decide if the logics that are planned to be used satisfy some minimal conditions so that the verication can be carried out eectively.

The rest of the paper is structured as follows: we start with an example, in Section 2, motivating our model transformation approach, which we then make more formal in Section 3. In Section 4, we propose general principles that a logic has to fulll to be usable for verifying model transformations. Then, in Section 5, we illustrate our proposal through the two aforementioned logics.

Concluding remarks are provided in Section 6.

Motivating Example

In order to better illustrate our purpose, an example modelling a sample of the information system of a hospital is introduced. Figure 1 is the UML model of this sample. We consider persons (shortened to P E). Some of them work in the hospital and form the medical sta (M S) and others are patients (P A). The medical sta is partitioned into physicians (P H) and nurses (N U). In addition, the hospital is split into several departments (DE) or services. Documents pertaining to patients are stored in folders (F O).

Each member of the medical sta is assigned (denoted by works_in) to a department. The same way, each patient is hospitalized (hospitalized_in) in one of the departments. There may be several members of the medical sta that may collaborate to treat (treats) a patient at a given time but one of them is considered as the referent physician (referent_phys), that is to say she is in charge of the patient. Part of the medical sta can access the folder containing the documents about (is_about) a patient either to read (read_access) or to write (write_access) information.

The fact is the hospital is bound to evolve: new patients arrive to be cured and others leave, new medical staers are hired and others move out. To illustrate our purpose, four possible transformations are specied below.

Transformation 1 The rst transformation is New_Ph(ph 1 , d 1). It creates a new physician to which is associated an identier ph 1 . This physician will be working in the department identied with d 1 .

Transformation 2 The second transformation is New_Pa(pa 1 , ph 1 , fo 1). It adds a new patient. The patient pa 1 is created alongside his folder fo 1 . She is then assigned ph 1 as referent physician.

Transformation 3 The third transformation is Del_Pa(pa 1). It modies data so that patient pa 1 is no more hospitalized. Transformation 4 The last transformation is Del_Ph(ph 1 , ph 2). It deletes the physician ph 1 and forwards all his patients to the physician ph 2 . ph 1 and ph 2 have to work in the same department.

Despite the transformations, there are some properties of the hospital that should not be altered. We give a list of six such expected properties in the following.

Expected property 1 Each member of the medical sta is either a nurse or a physician but not both.

Expected property 2 All patients and all medical staers are persons.

Expected property 3 Each person that can write in a folder can also read it.

Expected property 4 Each person that can read a folder about a patient treats that patient.

Expected property 5 Only medical staers can treat persons and only patients can be treated.

Expected property 6 Every patient has exactly one referent physician.

A Model Transformation Framework

In this section, a framework used to describe models as well as their transformations is introduced. A model is considered hereafter as a graph, labeled by logical formulae. The logic in which these formulae are expressed is considered as a parameter, say L, of the proposed framework. Required features of such a logic are discussed in the next section. Nevertheless, we assume in this section that the logic L is endowed with a relation |= over its formulae. That is to say, n |= B (resp. e |= B) should be understood as formula B is satised at node n (resp. edge e).

Denition 1 (Graph

). Let L be a logic. A graph G is a tuple (N, E, C, R, φ N , φ E , s, t) where N is a set of nodes, E is a set of edges, C is a set of (node) formulae (of L) or concepts, R is the set of edge formulae (of L) or roles, φ N is the node labeling function, φ N : N → P(C), φ E is the edge labeling function, φ E : E → R, s is the source function s : E → N and t is the target function t : E → N .
Labeling a graph with logical formulae is quite usual in Kripke structures. In this paper, labeling formulae will play a role either in the transformation process or in the generation of proof obligations for the properties intended to be proved.

Transformations of models are performed by means of graph rewrite systems.

These rewrite systems are extensions of those dened in [START_REF] Echahed | Inductively sequential term-graph rewrite systems[END_REF] where graphs are labeled with formulae. Thus, the left-hand sides of the rules are labeled graphs as dened in Denition 1, whereas the right-hand sides are dened as sequences of elementary actions. Elementary actions constitute a set of basic transformations used in graph transformation processes. They are given in the following denition.

Denition 2 (Elementary action, action). An elementary action, say a, has one of the following forms: a concept assignment c := i where i is a node and c is an atomic formula (a unary predicate). It sets the valuation of c such that the only node labeled by c is i. a concept addition c := c + i (resp. concept deletion c := c -i) where i is a node and c is an atomic formula (a unary predicate). It adds the node i to (resp. removes the node i from) the valuation of the formula c. a role addition r := r + (i, j) (resp. role deletion r := r -(i, j)) where i and j are nodes and r is an atomic role (a binary predicate). It adds the pair (i, j) to (resp. removes the pair (i, j) from) the valuation of the role r. a node addition new(i) (resp. node deletion del I (i)) where i is a new node (resp. an existing node). It creates the node i. i has no incoming nor outgoing edge and there is no atomic formula such that i belongs to its valuation (resp. it deletes i and all its incoming and outgoing edges). a global incoming edge redirection i in j where i and j are nodes. It redirects all incoming edges of i towards j. a global outgoing edge redirection i out j where i and j are nodes. It redenes the source of all outgoing edges of i as j. a node cloning clone(i, i) where i is a node, i is a node that does not exist yet. It creates a new node i that has the same labels as i and the same incoming and outgoing edges 3 . The result of performing the elementary action α on a graph 2 and write G = G[α] or G ⇒ α G . An action, say α, is a sequence of elementary actions of the form α = a 1 ; a 2 ; . . . ; a n . The result of per-

G = (N G , E G , C G , R G , φ G N , φ G E , s G , t G) produces the graph G = (N G , E G , C G , R G , φ G N , φ G E s G , t G) as dened in Figure
forming α on a graph G is written G[α]. G[a; α] = (G[a])[α] and G[] = G, being the empty sequence. Denition 3 (Rule, Graph Rewrite Systems). A rule ρ[n] is a pair (lhs,α)
where n is a vector of concept variables. These variables are instantiated by means of actual concepts when a rule is applied. lhs, called the left-hand side, is a graph and α, called the right-hand side, is an action. Rules are usually written ρ[n] : lhs → α. Concept variables n i in n may appear both in lhs and in α. A graph rewrite system is a set of rules.

Notice that a rule ρ[n] : lhs → α may be considered as a generic rule which yields an actual rewrite rule for every instance of the variables n. We write ρ[c] to denote the rule obtained from ρ[n] : lhs → α by replacing every variable concept n i appearing either in lhs or in α by the actual concept c i . Now let us dene when a rule can be applied to a graph. Denition 4 (Match). Let ρ[n] : lhs → α be a rule and G be a graph. Let ρ[c] be an instance of rule ρ[n] and inst be the instance function dened as inst(n i) = c i for i ∈ {0, . . . , k}. We say that the instance ρ[c] matches the graph G via the match h = (h N , h E), where h N : N lhs → N G and h E : E lhs → E G if the following conditions hold:

1. ∀n ∈ N lhs , ∀d ∈ φ N lhs (n), h N (n) |= inst(d) 2. ∀e ∈ E lhs , ∀r ∈ φ E lhs (e), h E (e) |= inst(r) 4 3. ∀e ∈ E lhs , s G (h E (e)) = h N (s lhs (e)) 4. ∀e ∈ E lhs , t G (h E (e)) = h N (t lhs (e))
The third and the fourth conditions are classical and say that the source and target functions and the match have to agree. The rst condition says that for every node n of the left-hand side, the node to which it is associated, h N (n), in G has to satisfy every concept that n satises. This condition clearly expresses additional negative and positive conditions which are added to the structural pattern matching. The second condition expresses the same conditions on the edges.

If α = c := i then:

If α = new(i) then: N G = N G ,E G = E G ,C G = C G ,R G = R G N G = N G ∪ {i} where i is a new node, φ G N (n) = φ G N (n) ∪ {c} if n = i φ G N (n)\{c} if n = i ,φ G E = φ G E , s G = s G , t G = t G E G = E G ,C G = C G ,R G = R G , φ G N (n) = ∅ if n = i φ G N (n) if n = i If α = c := c + i then: φ G E = φ G E , s G = s G , t G = t G N G = N G ,E G = E G ,C G = C G ,R G = R G , If α = del(i) then: φ G E = φ G E ,φ G N (n) = φ G N (n) ∪ {c} if n = i φ G N (n) if n = i N G = N G \{i}, C G = C G , R G = R G , E G = E G \{e|s G (e) = i ∨ t G (e) = i} s G = s G , t G = t G φ G N is the restriction of φ G N to N G If α = c := c -i then: φ G E is the restriction of φ G E to E G N G = N G ,E G = E G ,C G = C G ,R G = R G , s G is the restriction of s G to E G φ G E = φ G E , φ G N (n) = φ G N (n)\{c} if n = i φ G N (n) if n = i t G is the restriction of t G to E G If α = i in j then : s G = s G , t G = t G N G = N G , E G = E G , C G = C G , If α = r := r + (i, j) then : R G = R G , φ G N = φ G N ,φ G E = φ G E , N G = N G , C G = C G , R G = R G , E G = E G ∪ {e} where e is a new element s G = s G ,t G (e) = j if t G (e) = i t G (e) if t G (e) = i φ G N = φ G N , φ G E (e) = r if e = e φ G E (e) if e = e , If α = i out j then: N G = N G , E G = E G , C G = C G , s G (e) = i if e = e s G (e) if e = e , t G (e) = j if e = e t G (e) if e = e R G = R G , φ G N = φ G N , φ G E = φ G E , φ G N = φ G N , t G = t G , s G (e) = j if s G (e) = i s G (e) if s G (e) = i If α = r := r -(i, j) then: If α = clone(i, i) then: N G = N G ,C G = C G ,R G = R G C G = C G ,R G = R G E G = E G \ri,j, where N G = N G ∪ {i }, E G = E G ∪ E i where ri,j = {e ∈ E G |s G (e) = i ∧ t G (e) = j ∧ φ G E (e) = r} φ G N = φ G N , φ G E is the restriction of φ G E to E G s G is the restriction of s G to E G E i = E in i ∪ E out i ∪ E loop i with E in i = {e in | ∃e ∈ E G , t G (e) = i} E out i = {e out | ∃e ∈ E G , s G (e) = i} E loop i = {e loop |∃e ∈ E G , s G (e) = t G (e) = i} t G is the restriction of t G to E G φ G N (n) = φ G N (n) if n = i φ G N (i) otherwise φ G E (e) = φ G E (e) if e ∈ E i φ G E (co(e)) otherwise t G (e) =    t G (e) if e ∈ E i t G (co(e)) if e ∈ E out i i if e ∈ E in i ∪ E loop i s G (e) =    s G (e) if e ∈ E i s G (co(e)) if e ∈ E in i i if e ∈ E out i ∪ E loop i
where for e ∈ E , co(e) is the edge e that e is a copy of. Denition 5 (Rule application). We dene the applicability condition as:

App(ρ[c], G) i there exists a match h from the instance ρ[c] to G. A graph G rewrites to graph G using a rule ρ[c] : lhs → α i App(ρ[c], G
) holds and G is obtained from G by performing actions in h(α) 5 . Formally,

G = G[h(α)]. We write G → ρ[c] G or G → ρ[c],h G .
Example 1. Let us consider again the example given in Section 2. We provide in Very often, transforming models by means of rewrite rules necessitates the use of the notion of strategies. Informally, a strategy acts as a recipe indicating in which order the rules are applied.

Denition 6 (Strategy). Given a graph rewriting system R, a strategy is a word of the following language dened by s: s := ρ[c 0 , . . . , c k] (Rule application) s * (Closure)

s; s (Composition) s ⊕ s (Choice) where ρ[c 0 , . . . , c k] is an instance of a rule in R.
We write G ⇒ S G when G rewrites to G following the rules given by the strategy S.

Informally, the strategy "ρ 1 ; ρ 2 " means that rule ρ 1 should be applied rst, followed by the application of rule ρ 2 . Notice that the strategies as dened above allow one to dene innite derivations from a given graph G because we have included the Kleene star construct s * as a constructor of strategies. Handling the Kleene star does not introduce much more diculties but requires the use of the notion of invariants in the verication procedures, as it is the case for while loops in imperative languages. It also requires us to extend the notion of applicability from rules to strategies:

App(s * , G) = true App(s 0 ; s 1 , G) = App(s 0 , G) App(s 0 ⊕ s 1 , G) = App(s 0 , G) ∨ App(s 1 , G)
In Figure 5, we provide the rules that specify how strategies are used to rewrite a model (graph). Notice that a closure free strategy is always terminating while a choice free strategy is always conuent.

(Rule application)

G → ρ[c] G G ⇒ ρ[c] G (Choice left) G ⇒s 0 G G ⇒s 0 ⊕s 1 G (Choice right) G ⇒s 1 G G ⇒s 0 ⊕s 1 G (Composition) G ⇒s 0 G G ⇒s 1 G G ⇒s 0 ;s 1 G (Closure applicable) G ⇒s G G ⇒ s * G App(s, G) G ⇒ s * G (Closure Inapplicable) ¬App(s, G) G ⇒ s * G

Fig. 5: Strategy application rules

To end this section we dene the notion of a specication which consists in providing P re and P ost conditions that one may want to ensure for a given strategy. More precisely, we propose the following denitions.

Denition 7 (Program, Specication). A program is a tuple (R, S) where R is a graph rewrite system and S is a strategy. A specication SP is a tuple (P re, P ost, P) where P re and P ost are formulae and P is a program.

Notice that P re and P ost are supposed to be formulae of a given logic. We

do not specify such a logic in the above denition. We provide actual examples in Section 5. A specication (P re, P ost, P) asserts that for all models G that satises the formula P re, all models G obtained after rewriting G according to strategy S of program P = (R, S), (i.e. G ⇒ S G), G satises formula P ost.

General Logical Framework

Our aim in this section is to discuss general requirements for a logic, say L, that might be considered either to specify pre and post conditions of specications or to label models.

Let SP = (P re, P ost, P) be a specication. If SP is correct, then if a model G satises P re (G |= P re) and G rewrites to model G via a strategy S of a program P = (R, S) (G ⇒ S G), then G satises P ost (G |= P ost). In addition to the general requirements for logics L, a Hoare-like calculus dedicated to prove the correctness of specications is also discussed in this section .

The rst, and most obvious, requirements for a logic, L, is that it can express the labeling of models with formulae which specify nodes and edges.

Requirement 1 Node formulae (concepts in C) should be adequate to the notion of nodes. That is to say, nodes might be candidates to interpret node formulae.

Requirement 2 Edge formulae (roles in R) should be adequate to the notion of edges. That is to say, edges might be candidates to interpret edge formulae.

The conditions P re and P ost are properties of models. Thus, we have the following requirement.

Requirement 3 Assertions P re and P ost should be adequate to the notion of graphs (i.e. models). That is to say, models might be candidates to interpret P re and P ost assertions.

The main ingredient of the verication calculus consists in computing weakest preconditions of postconditions (see function wp dened in Fig 6). The basic cases of the computations of weakest precondition deal with elementary actions.

For that, to every elementary action is associated a so called substitution. Such substitutions are the elementary building blocks allowing the verication of a program. Denition 8. Let a be an elementary action, as dened in Denition 2. The substitution [a] associated to the elementary action a is the formula constructor which associates, to each formula φ of L, the formula φ

[a]. Given a model M, φ[a] is dened such that M |= φ[a] ⇔ for all models M , M ⇒ a M implies M |= φ.
A logic L is said to be closed under substitutions if for each action a, for each formula φ of L , φ[a] is also a formula of L .

wp(ρ[c], Q) = App(tag(ρ[c])) ⇒ wp(tag(α ρ[c]), Q) wp(s0; s1, Q) = wp(s0, wp(s1, Q)) wp(s *) = invs wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q) Fig. 6: Weakest preconditions for strategies. vc(ρ[c], Q) = true vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q) vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q) vc(s * , Q) = (invs ∧ App(s) ⇒ wp(s, invs)) ∧ (invs ∧ ¬App(s) ⇒ Q) ∧vc(s, invs) ∧ vc(s1, Q)
Fig. 7: Verication conditions for strategies.

Weakest preconditions for actions come in two avors: for elementary actions a, we have wp(a, Q) = Q[a], and for composite actions, wp(a; α, Q) = wp(a, wp(α, Q)). On this basis, weakest preconditions for strategies can be easily computed as depicted in Figure 6. These preconditions follow the principles of Hoare Logic calculi except for the one dedicated to rules, viz. wp(ρ[c], Q). This latter corresponds essentially to an if-then structure in imperative programs.

Put it simply, it checks three properties that are required for the application of a rule to be correct. Up to now, App depended on G. However, correctness proofs should hold for all possible models (graphs). That is way we modify

App to be dependent only on the rules and strategies. First, App is a function which applies to a rule ρ[c] and returns a formula of L stating that there exists a match from the left-hand side of ρ[c] to a potential graph. If the formula App(ρ[c]) is satised, the rule can be performed. Second, whenever the formula App(ρ[c]) ⇒ wp(α ρ[c] , Q) is valid, then if there exists a match, the conditions, viz. wp(α ρ[c] , Q), which ensure the postcondition to be satised, are satised too.

This corresponds to the usual weakest-precondition in Hoare Logic.

There is one additional issue which deserves to be handled carefully. Actually, one same rule can be red several times during the execution of a program. It is thus mandatory to keep track of where each occurence of the rule is applied. To be more precise, App introduces a condition that uses the names of the nodes in the left-hand sides of rules. As these names uniquely dene nodes and edges, if a same rule were used several times with the same names of nodes and edges, the rule would be applied to the exact same nodes and edges. This issue is solved by renaming the individuals (i.e., nodes and edges) each time the rule is red. This is done through the function tag. That is why wp

(ρ[c], Q) = App(tag(ρ[c])) ⇒ wp(tag(α ρ[c]), Q).
Finally, the closure of a strategy, s * , which is close to while structures in imperative programs, needs the denition of an invariant, inv s , and the intro-duction of verication conditions, vc(s * , Q), shown in Figure 7. Basically, the idea is that a closure is considered as a subprogram whose correctness is proven on the side. The verication condition checks that the specication of this subprogram whose pre and post conditions are the invariant.

From the discussion above, we come to a new requirement about the logic L, regarding the use of substitutions within weakest preconditions.

Requirement 4 L must be closed under substitutions.

If this last requirement is not satised, the computation of weakest preconditions may lead to formulas not expressible in L. In this case, the verication of the correctness of specications would need new proof procedures dierent from those of L.

In addition, App(ρ[c]) must be denable in L. Obviously, this depends mainly on the rules one wants to use. It is thus possible, for a given problem, to use one logic that may not be powerful enough for other problems. Nonetheless, one of the requirements this entails on L is that it must allow some kind of existential quantication so that the graph can be traversed to look for a match.

Obviously, the ∃-quantier of rst-order logic is a prime candidate but some other mechanisms like individual assertions a : C in Description Logics [START_REF] Baader | The Description Logic Handbook: Theory, Implementation, and Applications[END_REF] or the @ operator of hybrid logic [START_REF] Areces | Hybrid logics: Characterization, interpolation and complexity[END_REF] can be used.

Requirement 5 L must be able to express App(ρ[c]) for all rules ρ[c] of the graph rewrite system under study.

Theorem 1 (Soundness). Let L be a logic satisfying requirements 1 to 5.

Let SP = (P re, P ost, (R, S)) be a specication. If (P re ⇒ wp(S, P ost)) ∧ vc(S, P ost) is valid in L, then for all graphs G, G such that G ⇒ S G , G |= P re implies G |= P ost.

Proof (Sketch). The proof of this theorem is quite straightforward. One just has to check for every atomic strategy s that if P re ⇒ wp(s, P ost) and G |= P re then G |= P ost. We give the proof for the rule application which is the most complex.

Assume After performing the calculus, one gets a formula vc(S, P ost) ∧ (P re ⇒ wp(S, P ost)). Obviously, in order to be able to decide whether or not a program is correct, one has to prove that the obtained formula is valid. Hence the following requirement. Requirement 6 The validity problem for L is decidable.

S = ρ[c] where ρ[c] is a rule of R. Let us assume P re ⇒ wp(ρ[c], P ost) is valid. Because wp(ρ[c], P ost) = App(tag(ρ[c])) ⇒ wp(tag(α ρ[c]), P ost), also (P re ∧ App(tag(ρ[c]))) ⇒ wp(tag(α ρ[c]), P ost) is valid. Let G be a graph. If G |= App(ρ[c]), there is a match h. Let G be such that G ⇒ ρ[c],h G . By def- inition of the substitutions, G ⇒ ρ[c],h
Nevertheless, this last requirement could be optional if interactive theorem provers are preferred.

Instances of the Example

Hereafter, we illustrate the general logical framework proposed in the previous section through the Hospital example by providing logics which fulll the six proposed requirements. In [START_REF] Brenas | Proving correctness of logically decorated graph rewriting systems[END_REF] another instance is proposed using an extension of propositional dynamic logic is proposed.

First, let us observe that all of the invariants that we dened can be expressed in rst-order logic (Formulae on the right). First-order logic is not decidable though, and thus one may want to use a dierent logic in order to be able to decide the correctness of the considered properties. In the following, we use the 2-variable fragment of rst-order logic with counting (C

2) [START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF] and ∃ * ∀ * , the fragment of rst-order logic whose formula in prenex form are of the form ∃i 0 , . . . , i k .∀j 0 , . . . , j l .A(i 0 , . . . , i k , j 0 , . . . , j l).

In order to be able to distinguish between nodes of a model (active nodes) and those which are not part of a given model, we add to the signature of the logic a unary predicate Active which ranges over nodes and edges. Creating a new node becomes adding it to the Active nodes. This also requires to add that ∀x, y.¬Active(x) ⇒ (ψ an atomic unary predicate ¬ψ(x)∧ r an atomic binary predicate ¬r(x, y) ∧ ¬r(y, x)). I.e., non active nodes are not assumed to satisfy any property.

Let SP H be the specication (P re, P ost, P) associated to the hospital example. Assume the strategy is S = N ew_P h[nph,neonat]; Del_P a[opa] while the considered rewrite system R is the one from Proving the correctness of SP H amounts to proving that P re ⇒ wp(S, P ost) is valid. This is a formula in rst-order logic. In the following two subsections, this specication is proven to be correct using two dierent decidable logics that are able to express parts of P re and P ost.

5.1 Two-Variable Logic with Counting : C 2 C 2 is the two-variable fragment of rst-order logic with counting. Its formulas are those of rst-order logic than can be expressed with only two variables and using the counting quantier constructor ∃ <n x.P expressing that there are less than n values x that satisfy P . In our case, this constructor will mostly be used to express that there exist less than n dierent r-successors of a given node. Denition 9. Let U be a set of unary predicates, u ∈ U, B be a set of binary predicates, b ∈ B, n an integer. A formula φ of C 2 is dened as: m i = m j for 0 < i < j ≤ n such that m i |= φ x false otherwise (∃ <n y.φ y) I is dened the same as (∃ <n x.φ x) I but replacing x's with y's Let us now focus on m |= φ x :

Fig. 1 :

 1 Fig. 1: A sample UML model for the hospital example

Fig. 2 :Fig. 3 :

 23 Fig. 2: Summary of the eects of atomic actions

Figure 4 , 2 :Fig. 4 :

 424 Figure 4, for every transformation already presented informally, a corresponding rewrite rule.

 G and G |= wp(tag(α ρ[c]), P ost) implies G |= P ost. On the other hand, if G |= App(ρ[c]), there does not exist any G such that G ⇒ ρ[c] G and thus the program fails. Thus G |= P re implies that G |= P ost .

Property 1 :

 1 M S = N U P H ∀x. M S(x) ⇔ (N U (x) ∧ ¬ P H(x))∨ (¬N U (x)∧ P H(x))Property 2:P A ∪ M S ⊆ P E ∀x.P A(x)∨MS(x) ⇒ P E(x)Property 3: write_access ⊆ read_access ∀x, y.write_access(x, y) ⇒ read_access(x, y) Property 4: read_access • is_about⊆ treats ∀x, y, z.read_access(x, y)∧is_about(y, z) ⇒ treats(x, z) Property 5: treats ⊆ M S× P A ∀x, y.treats(x, y) ⇒ M S(x)∧ P A(y) Property 6: P A⇒ ∃ =1 referent_phys ∀x.P A(x) ⇒ (∃y. referent_phys(x, y)∧ ∀z.referent_phys(x, z) ⇒ z = y)

Figure 4 .

 4 This program P creates a new physician nph and lets the patient opa leave the hospital. Let inv denote the conjunction of the expected properties. Let the precondition P re be inv ∧ ∃x.(neonat(x)∧DE(x)) ∧ ∃x.(opa(x)∧PA(x)) ∧ ∀x.¬nph(x). Let the postcondition P ost be inv ∧ ∃x, y.(nph(x)∧PH(x) ∧ works_in(x, y)∧neonat(y) ∧ DE(y)).

φ

 := | φ ∧ φ | ¬φ | ∃ <n x.φ x | ∃ <n y.φ y φ x := φ | u(x) | b(x, x) | φ x ∧ φ x | ¬φ x | ∃ <n x.φ x | ∃ <n y.φ x,y φ y := φ | u(y) | b(y, y) | φ y ∧ φ y | ¬φ y | ∃ <n y.φ y | ∃ <n x.φ x,y φ x,y := φ x | φ y | b(x, y) | b(y, x) | φ x,y ∧ φ x,y | ¬φ x,y | ∃ <n x.φ x,y | ∃ <n y.φ x,y As usual, ⊥ means ¬ , φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ, ∃ ≥n v.φ means ¬∃ <n v.φ, ∃v.φ means ∃ ≥1 v.φ, ∀v.φ means ¬∃v.¬φ. Denition 10. Let G = (N, E, C, R, φ N , φ E , s, t) be a graph. We dene the valuation of formulae as follows: I = true (φ ∧ ψ) I = φ I and ψ I (¬φ) I = not φ I (∃ <n x.φ x) I =    true if there does not exist n nodes m 1 , . . . , m n ,

This action has the same eect as the one dened by means of sesquipushout[START_REF] Corradini | Sesqui-pushout rewriting[END_REF].

inst(r) (resp. inst(d)) replaces in r (resp. in d) every occurrence of a concept variable ni by its instance ci. The formal denition of the function inst depends on the structure of the considered concepts and roles.

for all 0 < i < j ≤ n such that (m i , m) |= φ x,y (m, m) |= ∃ <n y.φ x,y i there does not exist n nodes m 1 , . . . , m n , m i = m j for all 0 < i < j ≤ n such that (m, m i) |= φ x,y

Theorem 2 ([START_REF] Grädel | Two-Variable Logic with Counting is Decidable[END_REF]). The validity problem of C 2 is decidable.

Let us now check the six requirements of the previous section. C 2 contains unary predicates that are interpreted on nodes and binary predicates that are interpreted on edges. P re and P ost are interpreted on graphs.

Theorem 3. C 2 is closed under substitutions.

The proof relies on the fact that rst-order logic is closed under substitution.

The proof provides a system of rewrite rules that removes substitutions. As it does not introduce new variables, it also works for C 2 . We give three example rules to understand better how does it work:

as if φ ∧ ψ is satised after performing σ, so must be φ and ψ and the other way round.

r(x, y)[r := r + (i, j)] r(x, y) ∨ (i(x) ∧ j(y)) as r I is r I ∪ (i I , j I). r(x, y)[clone(i, i)] r(x, y) ∨ (i (x) ∧ ∃x.(i(x) ∧ r(x, y))) ∨ (i (y) ∧ ∃y.(i(y) ∧ r(x, y))) ∨ (i (x) ∧ i (y) ∧ ∃x.(i(x) ∧ r(x, x))).

Example 2. C 2 can express all the predicates App(ρ) for the rules of the considered example (see Figure 4):

One should also be interested in the ability of the logic to express the properties to be veried.

Example 3. C 2 is not able to express Property 4: read_access• is_about⊆ treats as one would need to keep track of three variables at a time. On the other hand, Property 6: ∀x.PA(x) ⇒ ∃ =1 referent_phys. is a formula of C 2 .

Exist-Forall-Prex

The logic ∃ * ∀ * is the fragment of rst-order logic such that its prex in prenex normal form is composed of a sequence of existential quantiers and then a sequence of universal quantiers.

Denition 11. Let U be a set of unary predicates, u ∈ U and B a set of binary predicates, b ∈ B. Let x 1 , . . . , x k , a 1 , . . . , a l be variables and v, w denote two of them. A formula φ of ∃ * ∀ * is dened as:

Denition 12. Let G = (N, E, C, R, φ N , φ E , s, t) be a graph. We dened the valuation of formulae: (∃x 1 , . . . , x k , ∀a 1 , . . . , a l .ψ(x 0 , . . . , x k , a 0 , . . . , a l)) I = N i there exist k nodes (x 1 , . . . , x k) such that for all choices of l nodes (a 1 , . . . , a l), (x 1 , . . . , x k , a 1 , . . . , a l) |= ψ.

Let us dene (x 1 , . . . , x k , a 1 , . . . , a l) |= ψ: w) i there exists e ∈ E. s(e) = v, t(e) = w and b = φ E (e) Theorem 4. The validity problem of ∃ * ∀ * is decidable. This is a well-known result ([START_REF] Börger | The classical decision problem[END_REF], chapter 6).

The six requirements of the previous section clearly hold for this logic. ∃ * ∀ * contains unary predicates that are interpreted on nodes and binary predicates that are interpreted on edges. Theorem 5. ∃ * ∀ * is closed under substitutions.

The proof is exactly the same as the one for C 2 and FO. One needs to be careful though as additional quantiers are introduced. They are always of the form ∃x.(i(x) ∧ c(x)) or ∃x.(i(x) ∧ r(x, y)) that can be rewritten as ∀x.(¬i(x) ∨ c(x)) or ∀x.(¬i(x)∨r(x, y)). Thus one can consider that only universal quantiers are introduced.

Example 4. ∃ * ∀ * can express all the predicates App(ρ) for the rules of the considered example (see Figure 4):

It is worth noting that the denition of App(ρ) introduces new existential quantiers as it checks for the existence of a match. This could seem to lead to a problem as the formula no longer is in ∃ * ∀ * . Actually, as the existentially quantied variables do not depend on the previously dened universally quantied variables, it is possible to move them at the beginning thus yielding a formula in ∃ * ∀ * .

Once more one has to check whether all properties can be expressed in the chosen logic.

Example 5. ∃ * ∀ * is not able to express Property 6:P A⇒ ∃ =1 referent_phys as it needs an existential quantier after the universal ones to express the existence of an edge labeled with referent_phys. On the other hand, Property 4: ∀x, y, z.read_access(x, y) ∧ is_about(y, z) ⇒ treats(x, z) is part of ∃ * ∀ * .

Conclusions

We considered the verication problem of model/graph transformations. We introduced a notion of specication consisting of pre-and postcondition which specify the correctness of the run of rewrite rules performed according to a given rewrite strategy.

Deciding the correctness of a given specication is not an easy and decidable task in general. We proposed some criteria which may be helpful to choose the most appropriate logics one can use to express proof obligations related to the correctness problem. We illustrated our proposal by considering a running example for which two decidable logics have been used to prove its correctness.

Even in the relatively simple considered example, none of the investigated logics is expressive enough to be able to deal with all the discussed properties. This is a deliberate choice. Our point is that one has to select for each problem one or several logics that are relevant and we proposed some criteria that help to select such logics.